University of California, San Diego: Edward Bender and S. Williamson's "Arithmetic, Logic and Numbers: Logic"
Read Section 2: "Predicate Logic" up to and including Definition 4 on pages Lo-12 and Lo-13. As you read this text, consider that statements in the first order predicate calculus, or for us, simply, the predicate calculus, involve variables that can take on values from a set in a reference domain. We interpret the statement by introducing a domain of discourse or reference domain that the symbols (statements and operators), the rules, and variables represent or refer to. This is essentially what we do when we translate from English to logic. In other words, translation is using one domain, e.g. logic, to represent another domain, and setting up an association between symbols in one to those of the other. Just keep in mind, that the variables in a predicate calculus statement take on the values from a particular set, for example, the set of all boys in Chicago or the set of positive integers.
For an understanding of the universal quantifier, study Definition 4, on page Lo-12, which is critically important for the study of logic, science and mathematics. This definition also defines the existential quantifier. These two quantifiers are often used together, as the examples in the next subunits will show.