

DEPARTMENT OF EDUCATION

UPPER SECONDARY SCHOOL CERTIFICATE EXAMINATIONS

ADVANCE MATHEMATICS

Paper 1

Monday 14th October 2013

Time allowed: 2 hours and 30 minutes (8:00am – 10:30 am)

NO EXTRA TIME (NO OTHER TIME)

Candidates are advised to fully utilise the allocated time.

INSTRUCTIONS TO CANDIDATES

To be read by the external invigilator to all candidates.

- 1. The subject code for Advance Mathematics is 3.
- 2. There are **8** printed pages in the question booklet.
- 3. An Electronic Answer Sheet for Part A, 2 pages Part B Answer Booklet and a 1 page formula sheet are inserted in the question booklet.
- 4. There are two parts in this paper. Answer all questions.

Part A: Multiple Choice (Questions 1-30) 30 Marks

This part will be electronically marked.

All answers to the Multiple Choice Part MUST be answered on the ELECTRONIC ANSWER SHEET provided.

Carefully following the instructions, fill in your Candidate Information and Subject Information.

Choose A, B, C or D from the alternatives given and use a HB pencil to shade in the correct letter to each question on the Electronic Answer Sheet.

If you make a mistake, rub the shading out completely using an eraser and shade in your correct alternative clearly.

Part B: Short Answers (Questions 31- 50) 20 Marks

Write your name, your school and complete your 10-digit candidate number on the Answer Booklet provided for Part B.

- 5. You are required to write only the correct answer in the space provided on the Answer Sheet.
- 6. Calculators may be used.
- 7. Answer all questions on the answer sheet. Answers on any other paper including rough work paper and the question paper <u>will not be marked</u>.
- 8. Correction fluid is <u>not allowed</u>. Where you have made an error, cross out all the working and start on a new line.

Penalty For Cheating Or Assisting To Cheat In National Examinations Is Non-Certification.

DO NOT TURN OVER THE PAGE AND DO NOT WRITE UNTIL YOU ARE TOLD TO START.

Answer each question by shading in with HB pencil the circle directly under the correct alternative A, B, C or D. If you make a mistake, rub it out completely using an eraser rubber and shade the correct answer on the **Electronic Answer Sheet.**

QUESTION 1

What is 1.08772 correct to four significant figures?

B.1.090 A.1.088

C.1.0877 D.1.0880

OUESTION 2

The quadratic equation $x^2 - 4x + 3 = 0$ has roots α and β . What is the value of $\alpha + \beta$?

D. -4

A. -1 B.-3

C.4

QUESTION 3

Express $\frac{x^5 - 4x}{x^2 + 2}$ in its simplest form.

B. $\frac{x^2 + 2}{x}$ A. $\frac{x}{x^2 + 2}$

C. $x(x^2 - 2)$ D. $x(x^2+2)$

QUESTION 4

The expression $2\log_2 x^3 - \log_2 x^2$ is equivalent to

D. $\log_2\left(\frac{1}{r}\right)$

A. $\log_2 x$ B. $4\log_2 x$

C. $\log_2 x^5$

The parabola $y = x^2 - 3x - 1$ intersect the line y = 3 at the point

A. x = -4 and x = 1B. x = 1 and x = 2

C. x = -1 and x = 2

D. x = 4 and x = -1

QUESTION 6

The domain of the logarithm function $y = \log(2x+1)$ is

A.
$$x > -\frac{1}{2}$$
 B. $x > 0$

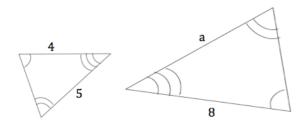
C.
$$0 \le x \le \frac{1}{2}$$
 D. $-\frac{1}{2}x < x < 0$

QUESTION 7

What is the probability of picking a diamond card from a deck of 52 cards?

A.
$$\frac{1}{3}$$
 B. $\frac{1}{2}$

C.
$$\frac{1}{4}$$
 D. $\frac{1}{52}$


QUESTION 8

What is the average for a set of results given below?

C.15 D.18 **30 MARKS**

(QUESTIONS 1 to 30)

The figure below gives two similar triangles.

What is the value of **a**?

A.3 B.6

C. 8

D. 10

D.16

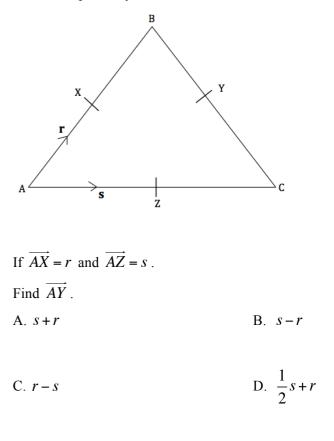
QUESTION 10

The value of the determinant	1 -1 -2	2 2 -4	3 3 -6	is
equal to				
A. 24	B.0			
C12	D24	4		

QUESTION 11

The total number of subsets of the set $\left\{ \begin{array}{cc} \alpha, & \beta, & a, & b \end{array} \right\}$ is A. 4 B. 6

C.8


QUESTION 12

Given $\cos\theta = \frac{4}{5}$ and θ is in the 1st quadrant. Find the angle equivalent to θ between 0 and 360 degrees. A. 36.86° B. 143.14°

C. 216.86° D. 323.14°

QUESTION 13

In the diagram below, X, Y, Z are mid points of AB, BC and CA respectively.

QUESTION 14

The value of $\int x^2 dx$ is

A.
$$\frac{1}{2}x^2 + c$$
 B. $\frac{1}{3}x^3 + c$

C. $x^3 + c$ D. 2x + c

Given that
$$y = 2x^3 - \cos x$$
, $\frac{dy}{dx}$ is equal to
A. $\frac{1}{2}x^4 - \sin x$
B. $\frac{1}{2}x^4 + \sin x$

C. $6x^2 - \sin x$

D. $6x^2 + \sin x$

QUESTION 16

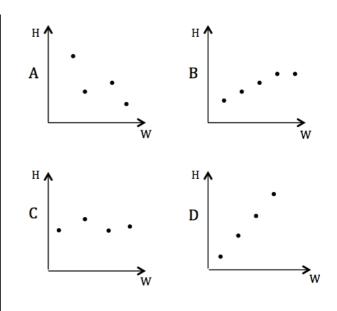
Evaluate $\left(\frac{571}{2\pi}\right)^{\frac{1}{3}}$ correct to four significant figures. A. 0. 4496 B. 4. 496

C. 44.96

D. 4496

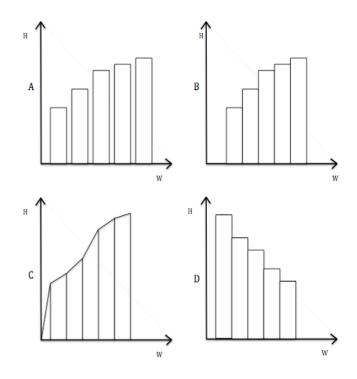
QUESTION 17

The solution to the inequality $-2x - \frac{1}{2} \le -x - 2$ is

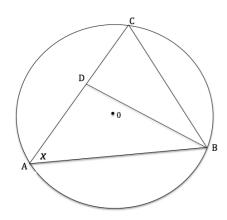

A. $x \le -\frac{3}{2}$ B. $x \ge \frac{3}{2}$

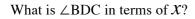
C. $x \le \frac{3}{2}$	D. $x \ge -\frac{3}{2}$
------------------------	-------------------------

QUESTION 18


What would a scatter graph for the relationship of height versus weight look like for the given data?

Weight (kg)	15	30	45	60	75
Height (cm)	75	100	110	160	170




QUESTION 19

What would a cumulative-histogram of the relationship in *Question 18* look like?

In the diagram, the vertices of $\triangle ABC$ lie on the circle with centre 0. The point D lies on AC such that $\triangle ABD$ is isosceles and $\angle BAC = x$.

A. X B. 90 – X

C. 180 - X D. 2X

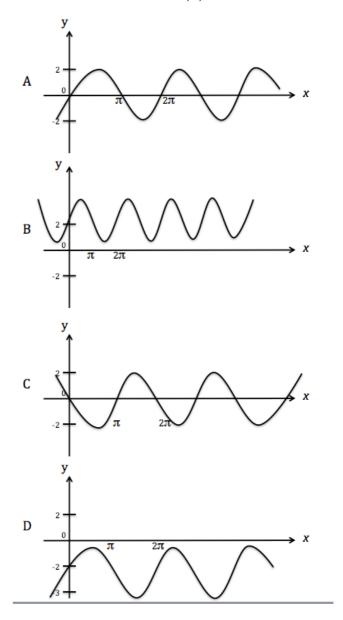
QUESTION 21

Kapi is making a pattern using triangular tiles. The pattern has 3 tiles in the first row, 5 tiles in the second row and each successive row has 2 more tiles than the previous row.

How many tiles would Kapi use altogether to make the first 50 rows?

A. 2, 600 B. 2, 400

C. 2, 500 D. 3, 000


QUESTION 22

The 4th term of the expansion $(2x - 3y^2)^{10}$ is A. 414, 720 $x^6 y^7$ B. -414, 720 $x^7 y^6$

C. -414, 720 $x^6 y^7$ B. 414, 720 $x^7 y^6$

QUESTION 23

The sketch of the function $f(x) = 2 + \sin x$ is given by

QUESTION 24

What is the value of θ in radians, given $\sin \theta + \frac{1}{2} = 1$

A. π B. $\frac{\pi}{6}$

C.
$$\frac{\pi}{3}$$
 D. $\frac{\pi}{2}$

Given that
$$\int \cos(\beta x) dx = \frac{1}{\beta} \sin(\beta x) + c$$
.
The exact value of $\int_{0}^{\frac{\pi}{4}} \cos 2x \, dx$ is
A. 0 B. $-\frac{1}{2}$

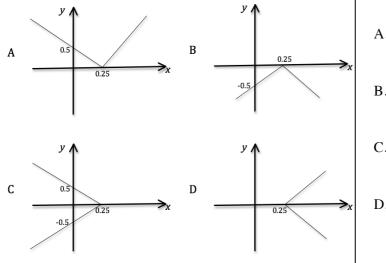
C. $\frac{1}{2}$

QUESTION 26

A pmv bus uses 30 litres of diesel to travel 210 km. If diesel costs K3.00 per litre, how much would it cost the bus operator on diesel to travel 300 km? (*Assume fuel consumption rate is constant*).

A. K50. 00 B. K128. 57

C. K210. 00 D.


D. K90. 00

D. -1

QUESTION 27

The graph of the absolute value function $y = \left| 2x - \frac{1}{2} \right|$ is

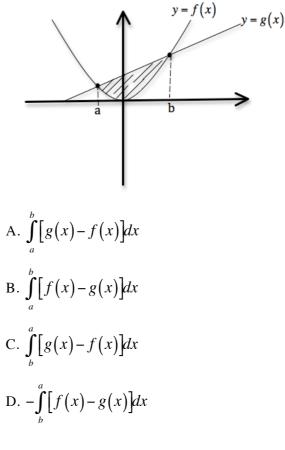
given by

QUESTION 28

How many 3-digit even numbers can you make from the
values 2, 3 and 4? You are to use them once.

A. 1		B.2

C.3 D.4


QUESTION 29

A regular polygon of n sides has a sum of 1260. Find n?

A. 6	B.8
C. 9	D. 12

QUESTION 30

What is the expression of the area between these curves?

PART B: SHORT ANSWERS 20 MARKS

Write your answers on the Answer Sheet provided.

QUESTION 31

Express the recurring decimal 0.111 as a fraction.

QUESTION 32

The speed of a particle is 100 metres per second. What is this speed in km/ hr?

QUESTION 33

Find the exact distance between the points (5, -5) and (1, 1).

QUESTION 34

What is the solution to the linear inequality, -5x - 3 < 2 + x?

QUESTION 35

The function f(x) = |2x-3| can be expressed as

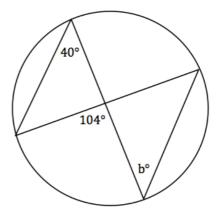
$$f(x) = \begin{cases} 3-2x, & x < \frac{3}{2} \\ -3+2x, & t \end{cases}$$

Find *t*, the domain of (-3+2x)

QUESTION 36

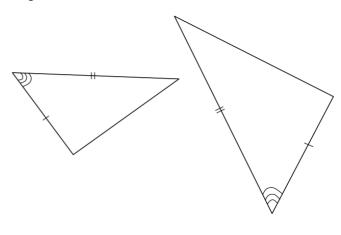
Express the logarithmic function $f(x) = \log_e e^x - 2\log_e e^{x^2}$ in its equivalent form without the log function.

QUESTION 37


A bag contains 3 yellow, 2 red and 5 blue marbles. The first marble drawn out of the bag was <u>not</u> blue. If the marble was not placed back into the bag, what would be the probability of drawing out a blue marble in the second pick?

QUESTION 38

From question 37, if the marbles are to be placed back into the bag, what is the probability of picking a yellow and then a blue?


QUESTION 39

Find the value of "b" given in the diagram below.

QUESTION 40

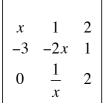
What test is used to show that these two triangles are congruent?

What is the equation of a circle of radius 5, with centre at (3, 4)?

QUESTION 42

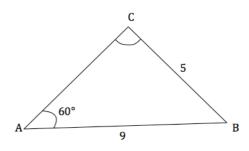
Given that sets;

$$A = \{x \in z : x \text{ is even}\}\$$
$$B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}\$$
$$C = \{x \in z : -5 \le x < 9\}\$$


Determine the set $A \cap B \cap C$.

QUESTION 43

Find the sum of the first 40 terms of a geometric series with first term -3 and common ratio $\frac{1}{2}$.


QUESTION 44

Evaluate the determinant.

QUESTION 45

Find the angle \angle ACB of the given triangle with sides AB = 9 cm and BC = 5 cm. (Give your answer to the nearest degree).

Find $2\mathbf{u} - \mathbf{v}$, if $\mathbf{u} = -\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\mathbf{v} = -2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$

QUESTION 47

QUESTION 46

Find the unit vector of $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$

QUESTION 48

Evaluate $\int 2x \, dx$.

QUESTION 49

What is the gradient of the curve $y = \sin x$ at the point

where $x = \frac{\pi}{3}$?

QUESTION 50

At what point is the slope of the tangent line to the curve $y = e^x$ equal to one?

END OF EXAMINATION

1
R
PER
APEI
PA
Ð
iCS
\sum
$T^{J}C^{*}$
Ut
\geq
(E
J.L.
[J]
R
M
Ð
\sum
K
R
ADVAC
\square
A D

RT B ANSWER BOOKLE

Write your 10-digit candidate number, your name and your school name in the spaces provided below.

Ye	ear	Prov	vince	S	chool	Can	didate	No
1	3							

Candidate Name: _____

School Name: _____

This answer booklet is for you to write the answers to Part B only.

All Multiple Choice Answers should be on the Electronic Mark Sheet.

All answers must be written <u>neatly</u> in the appropriate spaces in this booklet. **Answers written elsewhere on the question paper (or any other paper) will not be marked.**

₽◇₽◇₽◇₽◇₽◇₽◇₽◇₽◇₽◇₽◇₽◇₽◇₽◇₽◇₽

TOTAL SCOR	E

Recorded by: _____

Checked by: _____

ANSWERS TO PART B ONLY

Question 31	
Question 32	
Question 33	
Question 34	
Question 35	

Question 41	
Question 42	
Question 43	
Question 44	
Question 45	

Question 36	
Question 37	
Question 38	
Question 39	
Question 40	

Question 46	
Question 47	
Question 48	
Question 49	
Question 50	

HIGHER SCHOOL CERTIFICATE EXAMINATIONS 2013 FORMULAE SHEET FOR ADVANCE MATHEMATICS

		1	
MENSURATION	θ	SERIES	
Arc Length	$L = \frac{\theta}{360} = 2\pi r$	Arithmetic Progression	$T_n = a + (n-1)d$
Area of Sector	$A = \frac{\theta}{360} 2\pi r^2$		$S_n = \frac{n}{2}(a + T_n)$
Surface Area of Cylinder	$A = 2\pi r^2 + 2\pi rh$		$S_n = \frac{n}{2}(2a + [n-1]d)$
Surface Area of Sphere	$A = 4\pi r^2$	Geometric progression	$T_n = ar^{n-1}$
Curved Surface Area of Cone	$A = \pi r L$		$S_n = \frac{a(r^{n-1})}{r-1} = \frac{a(1-r^n)}{1-r}$, for $r \neq 1$
Volume of Sphere	$V = \frac{4}{3}\pi r^3$		$S_{\infty} = \frac{a}{1-r}$, for $-1 < r < 1$
Interior Angles of Polygon	$s_n = (n - 2) x 180^o$		- 1- <i>r</i>
INTEREST		ALGEBRA	
Compound Interest	$A = P \left(1 + \frac{r}{100} \right)^n$	Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
TRIGONOMETRY		First Derivative	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$
Sin Rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	ANALYTIC GEOMETRY	
Cosine Rule	$c^2 = a^2 + b^2 - 2ab\cos C$	Distance between two points	$d = \sqrt{(x_2 - x_1)^2 + (y_2 + y_1)^2}$
Area of Triangle	$A = \frac{1}{2}ab\sin C$	Mid-point of Interval	$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
Conversion	$\pi^c = 180^o$	_	
Arc Length	$L = r\theta^c$	Gradient of a Line	$\frac{y_2 - y_1}{x_2 - x_1} = m = \tan \theta$
Area of Sector	$A = \frac{1}{2}r^2\theta$	Absolute value	$ x = \begin{cases} -x, \text{ if } x < 0\\ x, \text{ if } x \ge 0 \end{cases}$
Area of Minor Segment	$A = \frac{1}{2}r^2(\theta^c - \sin\theta^c)$		$x, \text{ if } x \ge 0$
		BINOMIAL EXPANSION	
PERMUTATION	${}^{n}P_{r} = \frac{n!}{(n-r)!}$	$(x + y)^n = x^n + \binom{n}{1}x^{n-1}y +$	$\binom{n}{2}x^{n-2}y^2 + \dots + y^n$ where $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
		1	