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6

Non-Binary Trees

Many organizations are hierarchical in nature, such as the military and most busi-
nesses. Consider a company with a president and some number of vice presidents
who report to the president. Each vice president has some number of direct sub-
ordinates, and so on. If we wanted to model this company with a data structure, it
would be natural to think of the president in the root node of a tree, the vice presi-
dents at level 1, and their subordinates at lower levels in the tree as we go down the
organizational hierarchy.

Because the number of vice presidents is likely to be more than two, this com-
pany’s organization cannot easily be represented by a binary tree. We need instead
to use a tree whose nodes have an arbitrary number of children. Unfortunately,
when we permit trees to have nodes with an arbitrary number of children, they be-
come much harder to implement than binary trees. We consider such trees in this
chapter. To distinguish them from binary trees, we use the term general tree.

Section 6.1 presents general tree terminology. Section 6.2 presents a simple
representation for solving the important problem of processing equivalence classes.
Several pointer-based implementations for general trees are covered in Section 6.3.
Aside from general trees and binary trees, there are also uses for trees whose in-
ternal nodes have a fixed number K of children where K is something other than
two. Such trees are known as K-ary trees. Section 6.4 generalizes the properties
of binary trees to K-ary trees. Sequential representations, useful for applications
such as storing trees on disk, are covered in Section 6.5.

6.1 General Tree Definitions and Terminology

A tree T is a finite set of one or more nodes such that there is one designated node
R, called the root of T. If the set (T�{R}) is not empty, these nodes are partitioned
into n > 0 disjoint subsets T

0

, T
1

, ..., T
n�1

, each of which is a tree, and whose
roots R

1

, R

2

, ..., R

n

, respectively, are children of R. The subsets T
i

(0  i < n) are
said to be subtrees of T. These subtrees are ordered in that T

i

is said to come before
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Figure 6.1 Notation for general trees. Node P is the parent of nodes V , S1,
and S2. Thus, V , S1, and S2 are children of P. Nodes R and P are ancestors of V .
Nodes V , S1, and S2 are called siblings. The oval surrounds the subtree having V

as its root.

T
j

if i < j. By convention, the subtrees are arranged from left to right with subtree
T
0

called the leftmost child of R. A node’s out degree is the number of children for
that node. A forest is a collection of one or more trees. Figure 6.1 presents further
tree notation generalized from the notation for binary trees presented in Chapter 5.

Each node in a tree has precisely one parent, except for the root, which has no
parent. From this observation, it immediately follows that a tree with n nodes must
have n� 1 edges because each node, aside from the root, has one edge connecting
that node to its parent.

6.1.1 An ADT for General Tree Nodes

Before discussing general tree implementations, we should first make precise what
operations such implementations must support. Any implementation must be able
to initialize a tree. Given a tree, we need access to the root of that tree. There
must be some way to access the children of a node. In the case of the ADT for
binary tree nodes, this was done by providing member functions that give explicit
access to the left and right child pointers. Unfortunately, because we do not know
in advance how many children a given node will have in the general tree, we cannot
give explicit functions to access each child. An alternative must be found that works
for an unknown number of children.
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// General tree node ADT
template <typename E> class GTNode {
public:

E value(); // Return node’s value
bool isLeaf(); // True if node is a leaf
GTNode* parent(); // Return parent
GTNode* leftmostChild(); // Return first child
GTNode* rightSibling(); // Return right sibling
void setValue(E&); // Set node’s value
void insertFirst(GTNode<E>*); // Insert first child
void insertNext(GTNode<E>*); // Insert next sibling
void removeFirst(); // Remove first child
void removeNext(); // Remove right sibling

};

// General tree ADT
template <typename E> class GenTree {
public:

void clear(); // Send all nodes to free store
GTNode<E>* root(); // Return the root of the tree
// Combine two subtrees
void newroot(E&, GTNode<E>*, GTNode<E>*);
void print(); // Print a tree

};

Figure 6.2 Definitions for the general tree and general tree node

One choice would be to provide a function that takes as its parameter the index
for the desired child. That combined with a function that returns the number of
children for a given node would support the ability to access any node or process
all children of a node. Unfortunately, this view of access tends to bias the choice for
node implementations in favor of an array-based approach, because these functions
favor random access to a list of children. In practice, an implementation based on
a linked list is often preferred.

An alternative is to provide access to the first (or leftmost) child of a node, and
to provide access to the next (or right) sibling of a node. Figure 6.2 shows class
declarations for general trees and their nodes. Based on these two access functions,
the children of a node can be traversed like a list. Trying to find the next sibling of
the rightmost sibling would return NULL.

6.1.2 General Tree Traversals

In Section 5.2, three tree traversals were presented for binary trees: preorder, pos-
torder, and inorder. For general trees, preorder and postorder traversals are defined
with meanings similar to their binary tree counterparts. Preorder traversal of a gen-
eral tree first visits the root of the tree, then performs a preorder traversal of each
subtree from left to right. A postorder traversal of a general tree performs a pos-
torder traversal of the root’s subtrees from left to right, then visits the root. Inorder
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Figure 6.3 An example of a general tree.

traversal does not have a natural definition for the general tree, because there is no
particular number of children for an internal node. An arbitrary definition — such
as visit the leftmost subtree in inorder, then the root, then visit the remaining sub-
trees in inorder — can be invented. However, inorder traversals are generally not
useful with general trees.

Example 6.1 A preorder traversal of the tree in Figure 6.3 visits the nodes
in order RACDEBF .

A postorder traversal of this tree visits the nodes in order CDEAFBR.

To perform a preorder traversal, it is necessary to visit each of the children for
a given node (say R) from left to right. This is accomplished by starting at R’s
leftmost child (call it T). From T , we can move to T’s right sibling, and then to that
node’s right sibling, and so on.

Using the ADT of Figure 6.2, here is a C++ implementation to print the nodes
of a general tree in preorder. Note the for loop at the end, which processes the
list of children by beginning with the leftmost child, then repeatedly moving to the
next child until calling next returns NULL.

// Print using a preorder traversal
void printhelp(GTNode<E>* root) {

if (root->isLeaf()) cout << "Leaf: ";
else cout << "Internal: ";
cout << root->value() << "\n";
// Now process the children of "root"
for (GTNode<E>* temp = root->leftmostChild();

temp != NULL; temp = temp->rightSibling())
printhelp(temp);

}
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6.2 The Parent Pointer Implementation

Perhaps the simplest general tree implementation is to store for each node only a
pointer to that node’s parent. We will call this the parent pointer implementation.
Clearly this implementation is not general purpose, because it is inadequate for
such important operations as finding the leftmost child or the right sibling for a
node. Thus, it may seem to be a poor idea to implement a general tree in this
way. However, the parent pointer implementation stores precisely the information
required to answer the following, useful question: “Given two nodes, are they in
the same tree?” To answer the question, we need only follow the series of parent
pointers from each node to its respective root. If both nodes reach the same root,
then they must be in the same tree. If the roots are different, then the two nodes are
not in the same tree. The process of finding the ultimate root for a given node we
will call FIND.

The parent pointer representation is most often used to maintain a collection of
disjoint sets. Two disjoint sets share no members in common (their intersection is
empty). A collection of disjoint sets partitions some objects such that every object
is in exactly one of the disjoint sets. There are two basic operations that we wish to
support:

(1) determine if two objects are in the same set, and
(2) merge two sets together.

Because two merged sets are united, the merging operation is called UNION and
the whole process of determining if two objects are in the same set and then merging
the sets goes by the name “UNION/FIND.”

To implement UNION/FIND, we represent each disjoint set with a separate
general tree. Two objects are in the same disjoint set if they are in the same tree.
Every node of the tree (except for the root) has precisely one parent. Thus, each
node requires the same space to represent it. The collection of objects is typically
stored in an array, where each element of the array corresponds to one object, and
each element stores the object’s value. The objects also correspond to nodes in
the various disjoint trees (one tree for each disjoint set), so we also store the parent
value with each object in the array. Those nodes that are the roots of their respective
trees store an appropriate indicator. Note that this representation means that a single
array is being used to implement a collection of trees. This makes it easy to merge
trees together with UNION operations.

Figure 6.4 shows the parent pointer implementation for the general tree, called
ParPtrTree. This class is greatly simplified from the declarations of Figure 6.2
because we need only a subset of the general tree operations. Instead of implement-
ing a separate node class, ParPtrTree simply stores an array where each array
element corresponds to a node of the tree. Each position i of the array stores the
value for node i and the array position for the parent of node i. Class ParPtrTree
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// General tree representation for UNION/FIND
class ParPtrTree {
private:

int* array; // Node array
int size; // Size of node array
int FIND(int) const; // Find root

public:
ParPtrTree(int); // Constructor
˜ParPtrTree() { delete [] array; } // Destructor
void UNION(int, int); // Merge equivalences
bool differ(int, int); // True if not in same tree

};

int ParPtrTree::FIND(int curr) const { // Find root
while (array[curr] != ROOT) curr = array[curr];
return curr; // At root

}
Figure 6.4 General tree implementation using parent pointers for the UNION/
FIND algorithm.

is given two new methods, differ and UNION. Method differ checks if two
objects are in different sets, and method UNIONmerges two sets together. A private
method FIND is used to find the ultimate root for an object.

An application using the UNION/FIND operations should store a set of n ob-
jects, where each object is assigned a unique index in the range 0 to n � 1. The
indices refer to the corresponding parent pointers in the array. Class ParPtrTree
creates and initializes the UNION/FIND array, and methods differ and UNION
take array indices as inputs.

Figure 6.5 illustrates the parent pointer implementation. Note that the nodes
can appear in any order within the array, and the array can store up to n separate
trees. For example, Figure 6.5 shows two trees stored in the same array. Thus,
a single array can store a collection of items distributed among an arbitrary (and
changing) number of disjoint subsets.

Consider the problem of assigning the members of a set to disjoint subsets
called equivalence classes. Recall from Section 2.1 that an equivalence relation is
reflexive, symmetric, and transitive. Thus, if objects A and B are equivalent, and
objects B and C are equivalent, we must be able to recognize that objects A and C

are also equivalent.
There are many practical uses for disjoint sets and representing equivalences.

For example, consider Figure 6.6 which shows a graph of ten nodes labeled A

through J. Notice that for nodes A through I, there is some series of edges that
connects any pair of the nodes, but node J is disconnected from the rest of the
nodes. Such a graph might be used to represent connections such as wires be-
tween components on a circuit board, or roads between cities. We can consider
two nodes of the graph to be equivalent if there is a path between them. Thus,
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Figure 6.5 The parent pointer array implementation. Each node corresponds
to a position in the node array, which stores its value and a pointer to its parent.
The parent pointers are represented by the position in the array of the parent. The
root of any tree stores ROOT, represented graphically by a slash in the “Parent’s
Index” box. This figure shows two trees stored in the same parent pointer array,
one rooted at R, and the other rooted at W.
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Figure 6.6 A graph with two connected components.

nodes A, H, and E would be equivalent in Figure 6.6, but J is not equivalent to any
other. A subset of equivalent (connected) edges in a graph is called a connected
component. The goal is to quickly classify the objects into disjoint sets that corre-
spond to the connected components. Another application for UNION/FIND occurs
in Kruskal’s algorithm for computing the minimal cost spanning tree for a graph
(Section 11.5.2).

The input to the UNION/FIND algorithm is typically a series of equivalence
pairs. In the case of the connected components example, the equivalence pairs
would simply be the set of edges in the graph. An equivalence pair might say that
object C is equivalent to object A. If so, C and A are placed in the same subset. If
a later equivalence relates A and B, then by implication C is also equivalent to B.
Thus, an equivalence pair may cause two subsets to merge, each of which contains
several objects.
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Equivalence classes can be managed efficiently with the UNION/FIND alg-
orithm. Initially, each object is at the root of its own tree. An equivalence pair is
processed by checking to see if both objects of the pair are in the same tree us-
ing method differ. If they are in the same tree, then no change need be made
because the objects are already in the same equivalence class. Otherwise, the two
equivalence classes should be merged by the UNION method.

Example 6.2 As an example of solving the equivalence class problem,
consider the graph of Figure 6.6. Initially, we assume that each node of the
graph is in a distinct equivalence class. This is represented by storing each
as the root of its own tree. Figure 6.7(a) shows this initial configuration
using the parent pointer array representation. Now, consider what happens
when equivalence relationship (A, B) is processed. The root of the tree
containing A is A, and the root of the tree containing B is B. To make them
equivalent, one of these two roots is set to be the parent of the other. In
this case it is irrelevant which points to which, so we arbitrarily select the
first in alphabetical order to be the root. This is represented in the parent
pointer array by setting the parent field of B (the node in array position 1
of the array) to store a pointer to A. Equivalence pairs (C, H), (G, F), and
(D, E) are processed in similar fashion. When processing the equivalence
pair (I, F), because I and F are both their own roots, I is set to point to F.
Note that this also makes G equivalent to I. The result of processing these
five equivalences is shown in Figure 6.7(b).

The parent pointer representation places no limit on the number of nodes that
can share a parent. To make equivalence processing as efficient as possible, the
distance from each node to the root of its respective tree should be as small as
possible. Thus, we would like to keep the height of the trees small when merging
two equivalence classes together. Ideally, each tree would have all nodes pointing
directly to the root. Achieving this goal all the time would require too much ad-
ditional processing to be worth the effort, so we must settle for getting as close as
possible.

A low-cost approach to reducing the height is to be smart about how two trees
are joined together. One simple technique, called the weighted union rule, joins
the tree with fewer nodes to the tree with more nodes by making the smaller tree’s
root point to the root of the bigger tree. This will limit the total depth of the tree to
O(log n), because the depth of nodes only in the smaller tree will now increase by
one, and the depth of the deepest node in the combined tree can only be at most one
deeper than the deepest node before the trees were combined. The total number
of nodes in the combined tree is therefore at least twice the number in the smaller
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Figure 6.7 An example of equivalence processing. (a) Initial configuration for
the ten nodes of the graph in Figure 6.6. The nodes are placed into ten independent
equivalence classes. (b) The result of processing five edges: (A, B), (C, H), (G, F),
(D, E), and (I, F). (c) The result of processing two more edges: (H, A) and (E, G).
(d) The result of processing edge (H, E).
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subtree. Thus, the depth of any node can be increased at most log n times when n
equivalences are processed.

Example 6.3 When processing equivalence pair (I, F) in Figure 6.7(b),
F is the root of a tree with two nodes while I is the root of a tree with only
one node. Thus, I is set to point to F rather than the other way around.
Figure 6.7(c) shows the result of processing two more equivalence pairs:
(H, A) and (E, G). For the first pair, the root for H is C while the root
for A is itself. Both trees contain two nodes, so it is an arbitrary decision
as to which node is set to be the root for the combined tree. In the case
of equivalence pair (E, G), the root of E is D while the root of G is F.
Because F is the root of the larger tree, node D is set to point to F.

Not all equivalences will combine two trees. If equivalence (F, G) is processed
when the representation is in the state shown in Figure 6.7(c), no change will be
made because F is already the root for G.

The weighted union rule helps to minimize the depth of the tree, but we can do
better than this. Path compression is a method that tends to create extremely shal-
low trees. Path compression takes place while finding the root for a given node X.
Call this root R. Path compression resets the parent of every node on the path from
X to R to point directly to R. This can be implemented by first finding R. A second
pass is then made along the path from X to R, assigning the parent field of each
node encountered to R. Alternatively, a recursive algorithm can be implemented as
follows. This version of FIND not only returns the root of the current node, but
also makes all ancestors of the current node point to the root.

// FIND with path compression
int ParPtrTree::FIND(int curr) const {

if (array[curr] == ROOT) return curr; // At root
array[curr] = FIND(array[curr]);
return array[curr];

}

Example 6.4 Figure 6.7(d) shows the result of processing equivalence
pair (H, E) on the the representation shown in Figure 6.7(c) using the stan-
dard weighted union rule without path compression. Figure 6.8 illustrates
the path compression process for the same equivalence pair. After locating
the root for node H, we can perform path compression to make H point
directly to root object A. Likewise, E is set to point directly to its root, F.
Finally, object A is set to point to root object F.

Note that path compression takes place during the FIND operation, not

during the UNION operation. In Figure 6.8, this means that nodes B, C, and
H have node A remain as their parent, rather than changing their parent to
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Figure 6.8 An example of path compression, showing the result of processing
equivalence pair (H, E) on the representation of Figure 6.7(c).

be F. While we might prefer to have these nodes point to F, to accomplish
this would require that additional information from the FIND operation be
passed back to the UNION operation. This would not be practical.

Path compression keeps the cost of each FIND operation very close to constant.
To be more precise about what is meant by “very close to constant,” the cost of path
compression for n FIND operations on n nodes (when combined with the weighted
union rule for joining sets) is approximately1 ⇥(n log⇤ n). The notation “log⇤ n”
means the number of times that the log of n must be taken before n  1. For
example, log⇤ 65536 is 4 because log 65536 = 16, log 16 = 4, log 4 = 2, and
finally log 2 = 1. Thus, log⇤ n grows very slowly, so the cost for a series of n FIND
operations is very close to n.

Note that this does not mean that the tree resulting from processing n equiva-
lence pairs necessarily has depth ⇥(log⇤ n). One can devise a series of equivalence
operations that yields ⇥(log n) depth for the resulting tree. However, many of the
equivalences in such a series will look only at the roots of the trees being merged,
requiring little processing time. The total amount of processing time required for
n operations will be ⇥(n log⇤ n), yielding nearly constant time for each equiva-
lence operation. This is an example of amortized analysis, discussed further in
Section 14.3.

6.3 General Tree Implementations

We now tackle the problem of devising an implementation for general trees that
allows efficient processing for all member functions of the ADTs shown in Fig-
ure 6.2. This section presents several approaches to implementing general trees.
Each implementation yields advantages and disadvantages in the amount of space
required to store a node and the relative ease with which key operations can be
performed. General tree implementations should place no restriction on how many

1To be more precise, this cost has been found to grow in time proportional to the inverse of
Ackermann’s function. See Section 6.6.
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Figure 6.9 The “list of children” implementation for general trees. The col-
umn of numbers to the left of the node array labels the array indices. The column
labeled “Val” stores node values. The column labeled “Par” stores indices (or
pointers) to the parents. The last column stores pointers to the linked list of chil-
dren for each internal node. Each element of the linked list stores a pointer to one
of the node’s children (shown as the array index of the target node).

children a node may have. In some applications, once a node is created the number
of children never changes. In such cases, a fixed amount of space can be allocated
for the node when it is created, based on the number of children for the node. Mat-
ters become more complicated if children can be added to or deleted from a node,
requiring that the node’s space allocation be adjusted accordingly.

6.3.1 List of Children

Our first attempt to create a general tree implementation is called the “list of chil-
dren” implementation for general trees. It simply stores with each internal node a
linked list of its children. This is illustrated by Figure 6.9.

The “list of children” implementation stores the tree nodes in an array. Each
node contains a value, a pointer (or index) to its parent, and a pointer to a linked list
of the node’s children, stored in order from left to right. Each linked list element
contains a pointer to one child. Thus, the leftmost child of a node can be found
directly because it is the first element in the linked list. However, to find the right
sibling for a node is more difficult. Consider the case of a node M and its parent P.
To find M’s right sibling, we must move down the child list of P until the linked list
element storing the pointer to M has been found. Going one step further takes us to
the linked list element that stores a pointer to M’s right sibling. Thus, in the worst
case, to find M’s right sibling requires that all children of M’s parent be searched.
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Figure 6.10 The “left-child/right-sibling” implementation.

Combining trees using this representation is difficult if each tree is stored in a
separate node array. If the nodes of both trees are stored in a single node array, then
adding tree T as a subtree of node R is done by simply adding the root of T to R’s
list of children.

6.3.2 The Left-Child/Right-Sibling Implementation

With the “list of children” implementation, it is difficult to access a node’s right
sibling. Figure 6.10 presents an improvement. Here, each node stores its value
and pointers to its parent, leftmost child, and right sibling. Thus, each of the basic
ADT operations can be implemented by reading a value directly from the node.
If two trees are stored within the same node array, then adding one as the subtree
of the other simply requires setting three pointers. Combining trees in this way
is illustrated by Figure 6.11. This implementation is more space efficient than the
“list of children” implementation, and each node requires a fixed amount of space
in the node array.

6.3.3 Dynamic Node Implementations

The two general tree implementations just described use an array to store the col-
lection of nodes. In contrast, our standard implementation for binary trees stores
each node as a separate dynamic object containing its value and pointers to its two
children. Unfortunately, nodes of a general tree can have any number of children,
and this number may change during the life of the node. A general tree node imple-
mentation must support these properties. One solution is simply to limit the number
of children permitted for any node and allocate pointers for exactly that number of
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Figure 6.11 Combining two trees that use the “left-child/right-sibling” imple-
mentation. The subtree rooted at R in Figure 6.10 now becomes the first child
of R

0. Three pointers are adjusted in the node array: The left-child field of R

0 now
points to node R, while the right-sibling field for R points to node X. The parent
field of node R points to node R

0.

children. There are two major objections to this. First, it places an undesirable
limit on the number of children, which makes certain trees unrepresentable by this
implementation. Second, this might be extremely wasteful of space because most
nodes will have far fewer children and thus leave some pointer positions empty.

The alternative is to allocate variable space for each node. There are two basic
approaches. One is to allocate an array of child pointers as part of the node. In
essence, each node stores an array-based list of child pointers. Figure 6.12 illus-
trates the concept. This approach assumes that the number of children is known
when the node is created, which is true for some applications but not for others.
It also works best if the number of children does not change. If the number of
children does change (especially if it increases), then some special recovery mech-
anism must be provided to support a change in the size of the child pointer array.
One possibility is to allocate a new node of the correct size from free store and re-
turn the old copy of the node to free store for later reuse. This works especially well
in a language with built-in garbage collection such as Java. For example, assume
that a node M initially has two children, and that space for two child pointers is al-
located when M is created. If a third child is added to M, space for a new node with
three child pointers can be allocated, the contents of M is copied over to the new
space, and the old space is then returned to free store. As an alternative to relying
on the system’s garbage collector, a memory manager for variable size storage units
can be implemented, as described in Section 12.3. Another possibility is to use a
collection of free lists, one for each array size, as described in Section 4.1.2. Note
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Figure 6.12 A dynamic general tree representation with fixed-size arrays for the
child pointers. (a) The general tree. (b) The tree representation. For each node,
the first field stores the node value while the second field stores the size of the
child pointer array.
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Figure 6.13 A dynamic general tree representation with linked lists of child
pointers. (a) The general tree. (b) The tree representation.

in Figure 6.12 that the current number of children for each node is stored explicitly
in a size field. The child pointers are stored in an array with size elements.

Another approach that is more flexible, but which requires more space, is to
store a linked list of child pointers with each node as illustrated by Figure 6.13.
This implementation is essentially the same as the “list of children” implementation
of Section 6.3.1, but with dynamically allocated nodes rather than storing the nodes
in an array.



218 Chap. 6 Non-Binary Trees

(a)

root

(b)

Figure 6.14 Converting from a forest of general trees to a single binary tree.
Each node stores pointers to its left child and right sibling. The tree roots are
assumed to be siblings for the purpose of converting.

6.3.4 Dynamic “Left-Child/Right-Sibling” Implementation

The “left-child/right-sibling” implementation of Section 6.3.2 stores a fixed number
of pointers with each node. This can be readily adapted to a dynamic implemen-
tation. In essence, we substitute a binary tree for a general tree. Each node of the
“left-child/right-sibling” implementation points to two “children” in a new binary
tree structure. The left child of this new structure is the node’s first child in the
general tree. The right child is the node’s right sibling. We can easily extend this
conversion to a forest of general trees, because the roots of the trees can be con-
sidered siblings. Converting from a forest of general trees to a single binary tree
is illustrated by Figure 6.14. Here we simply include links from each node to its
right sibling and remove links to all children except the leftmost child. Figure 6.15
shows how this might look in an implementation with two pointers at each node.
Compared with the implementation illustrated by Figure 6.13 which requires over-
head of three pointers/node, the implementation of Figure 6.15 only requires two
pointers per node. The representation of Figure 6.15 is likely to be easier to imple-
ment, space efficient, and more flexible than the other implementations presented
in this section.

6.4 K-ary Trees

K-ary trees are trees whose internal nodes all have exactly K children. Thus,
a full binary tree is a 2-ary tree. The PR quadtree discussed in Section 13.3 is an
example of a 4-ary tree. Because K-ary tree nodes have a fixed number of children,
unlike general trees, they are relatively easy to implement. In general, K-ary trees
bear many similarities to binary trees, and similar implementations can be used for
K-ary tree nodes. Note that as K becomes large, the potential number of NULL
pointers grows, and the difference between the required sizes for internal nodes
and leaf nodes increases. Thus, as K becomes larger, the need to choose separate
implementations for the internal and leaf nodes becomes more pressing.
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(b)

Figure 6.15 A general tree converted to the dynamic “left-child/right-sibling”
representation. Compared to the representation of Figure 6.13, this representation
requires less space.

(a) (b)

Figure 6.16 Full and complete 3-ary trees. (a) This tree is full (but not complete).
(b) This tree is complete (but not full).

Full and complete K-ary trees are analogous to full and complete binary trees,
respectively. Figure 6.16 shows full and complete K-ary trees for K = 3. In
practice, most applications of K-ary trees limit them to be either full or complete.

Many of the properties of binary trees extend to K-ary trees. Equivalent theo-
rems to those in Section 5.1.1 regarding the number of NULL pointers in a K-ary
tree and the relationship between the number of leaves and the number of internal
nodes in a K-ary tree can be derived. We can also store a complete K-ary tree in
an array, using simple formulas to compute a node’s relations in a manner similar
to that used in Section 5.3.3.

6.5 Sequential Tree Implementations

Next we consider a fundamentally different approach to implementing trees. The
goal is to store a series of node values with the minimum information needed to
reconstruct the tree structure. This approach, known as a sequential tree imple-
mentation, has the advantage of saving space because no pointers are stored. It has
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the disadvantage that accessing any node in the tree requires sequentially process-
ing all nodes that appear before it in the node list. In other words, node access must
start at the beginning of the node list, processing nodes sequentially in whatever
order they are stored until the desired node is reached. Thus, one primary virtue
of the other implementations discussed in this section is lost: efficient access (typi-
cally ⇥(log n) time) to arbitrary nodes in the tree. Sequential tree implementations
are ideal for archiving trees on disk for later use because they save space, and the
tree structure can be reconstructed as needed for later processing.

Sequential tree implementations can be used to serialize a tree structure. Seri-
alization is the process of storing an object as a series of bytes, typically so that the
data structure can be transmitted between computers. This capability is important
when using data structures in a distributed processing environment.

A sequential tree implementation typically stores the node values as they would
be enumerated by a preorder traversal, along with sufficient information to describe
the tree’s shape. If the tree has restricted form, for example if it is a full binary tree,
then less information about structure typically needs to be stored. A general tree,
because it has the most flexible shape, tends to require the most additional shape
information. There are many possible sequential tree implementation schemes. We
will begin by describing methods appropriate to binary trees, then generalize to an
implementation appropriate to a general tree structure.

Because every node of a binary tree is either a leaf or has two (possibly empty)
children, we can take advantage of this fact to implicitly represent the tree’s struc-
ture. The most straightforward sequential tree implementation lists every node
value as it would be enumerated by a preorder traversal. Unfortunately, the node
values alone do not provide enough information to recover the shape of the tree. In
particular, as we read the series of node values, we do not know when a leaf node
has been reached. However, we can treat all non-empty nodes as internal nodes
with two (possibly empty) children. Only NULL values will be interpreted as leaf
nodes, and these can be listed explicitly. Such an augmented node list provides
enough information to recover the tree structure.

Example 6.5 For the binary tree of Figure 6.17, the corresponding se-
quential representation would be as follows (assuming that ‘/’ stands for
NULL):

AB/D//CEG///FH//I// (6.1)

To reconstruct the tree structure from this node list, we begin by setting
node A to be the root. A’s left child will be node B. Node B’s left child is
a NULL pointer, so node D must be B’s right child. Node D has two NULL
children, so node C must be the right child of node A.
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Figure 6.17 Sample binary tree for sequential tree implementation examples.

To illustrate the difficulty involved in using the sequential tree representation
for processing, consider searching for the right child of the root node. We must first
move sequentially through the node list of the left subtree. Only at this point do
we reach the value of the root’s right child. Clearly the sequential representation
is space efficient, but not time efficient for descending through the tree along some
arbitrary path.

Assume that each node value takes a constant amount of space. An example
would be if the node value is a positive integer and NULL is indicated by the value
zero. From the Full Binary Tree Theorem of Section 5.1.1, we know that the size
of the node list will be about twice the number of nodes (i.e., the overhead fraction
is 1/2). The extra space is required by the NULL pointers. We should be able to
store the node list more compactly. However, any sequential implementation must
recognize when a leaf node has been reached, that is, a leaf node indicates the end
of a subtree. One way to do this is to explicitly list with each node whether it is
an internal node or a leaf. If a node X is an internal node, then we know that its
two children (which may be subtrees) immediately follow X in the node list. If X

is a leaf node, then the next node in the list is the right child of some ancestor
of X, not the right child of X. In particular, the next node will be the child of X’s
most recent ancestor that has not yet seen its right child. However, this assumes
that each internal node does in fact have two children, in other words, that the
tree is full. Empty children must be indicated in the node list explicitly. Assume
that internal nodes are marked with a prime (0) and that leaf nodes show no mark.
Empty children of internal nodes are indicated by ‘/’, but the (empty) children of
leaf nodes are not represented at all. Note that a full binary tree stores no NULL
values with this implementation, and so requires less overhead.

Example 6.6 We can represent the tree of Figure 6.17 as follows:

A

0
B

0/DC

0
E

0
G/F

0
HI (6.2)
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Note that slashes are needed for the empty children because this is not a full
binary tree.

Storing n extra bits can be a considerable savings over storing n NULL values.
In Example 6.6, each node is shown with a mark if it is internal, or no mark if it
is a leaf. This requires that each node value has space to store the mark bit. This
might be true if, for example, the node value were stored as a 4-byte integer but
the range of the values sored was small enough so that not all bits are used. An
example would be if all node values must be positive. Then the high-order (sign)
bit of the integer value could be used as the mark bit.

Another approach is to store a separate bit vector to represent the status of each
node. In this case, each node of the tree corresponds to one bit in the bit vector. A
value of ‘1’ could indicate an internal node, and ‘0’ could indicate a leaf node.

Example 6.7 The bit vector for the tree if Figure 6.17 (including positions
for the null children of nodes B and E) would be

11001100100 (6.3)

Storing general trees by means of a sequential implementation requires that
more explicit structural information be included with the node list. Not only must
the general tree implementation indicate whether a node is leaf or internal, it must
also indicate how many children the node has. Alternatively, the implementation
can indicate when a node’s child list has come to an end. The next example dis-
penses with marks for internal or leaf nodes. Instead it includes a special mark (we
will use the “)” symbol) to indicate the end of a child list. All leaf nodes are fol-
lowed by a “)” symbol because they have no children. A leaf node that is also the
last child for its parent would indicate this by two or more successive “)” symbols.

Example 6.8 For the general tree of Figure 6.3, we get the sequential
representation

RAC)D)E))BF))) (6.4)

Note that F is followed by three “)” marks, because it is a leaf, the last node
of B’s rightmost subtree, and the last node of R’s rightmost subtree.

Note that this representation for serializing general trees cannot be used for bi-
nary trees. This is because a binary tree is not merely a restricted form of general
tree with at most two children. Every binary tree node has a left and a right child,
though either or both might be empty. For example, the representation of Exam-
ple 6.8 cannot let us distinguish whether node D in Figure 6.17 is the left or right
child of node B.
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6.6 Further Reading

The expression log⇤ n cited in Section 6.2 is closely related to the inverse of Ack-
ermann’s function. For more information about Ackermann’s function and the cost
of path compression for UNION/FIND, see Robert E. Tarjan’s paper “On the effi-
ciency of a good but not linear set merging algorithm” [Tar75]. The article “Data
Structures and Algorithms for Disjoint Set Union Problems” by Galil and Italiano
[GI91] covers many aspects of the equivalence class problem.

Foundations of Multidimensional and Metric Data Structures by Hanan Samet
[Sam06] treats various implementations of tree structures in detail within the con-
text of K-ary trees. Samet covers sequential implementations as well as the linked
and array implementations such as those described in this chapter and Chapter 5.
While these books are ostensibly concerned with spatial data structures, many of
the concepts treated are relevant to anyone who must implement tree structures.

6.7 Exercises

6.1 Write an algorithm to determine if two general trees are identical. Make the
algorithm as efficient as you can. Analyze your algorithm’s running time.

6.2 Write an algorithm to determine if two binary trees are identical when the
ordering of the subtrees for a node is ignored. For example, if a tree has root
node with value R, left child with value A and right child with value B, this
would be considered identical to another tree with root node value R, left
child value B, and right child value A. Make the algorithm as efficient as you
can. Analyze your algorithm’s running time. How much harder would it be
to make this algorithm work on a general tree?

6.3 Write a postorder traversal function for general trees, similar to the preorder
traversal function named preorder given in Section 6.1.2.

6.4 Write a function that takes as input a general tree and returns the number of
nodes in that tree. Write your function to use the GenTree and GTNode
ADTs of Figure 6.2.

6.5 Describe how to implement the weighted union rule efficiently. In particular,
describe what information must be stored with each node and how this infor-
mation is updated when two trees are merged. Modify the implementation of
Figure 6.4 to support the weighted union rule.

6.6 A potential alternative to the weighted union rule for combining two trees is
the height union rule. The height union rule requires that the root of the tree
with greater height become the root of the union. Explain why the height
union rule can lead to worse average time behavior than the weighted union
rule.

6.7 Using the weighted union rule and path compression, show the array for
the parent pointer implementation that results from the following series of
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equivalences on a set of objects indexed by the values 0 through 15. Initially,
each element in the set should be in a separate equivalence class. When two
trees to be merged are the same size, make the root with greater index value
be the child of the root with lesser index value.

(0, 2) (1, 2) (3, 4) (3, 1) (3, 5) (9, 11) (12, 14) (3, 9) (4, 14) (6, 7) (8, 10) (8, 7)
(7, 0) (10, 15) (10, 13)

6.8 Using the weighted union rule and path compression, show the array for
the parent pointer implementation that results from the following series of
equivalences on a set of objects indexed by the values 0 through 15. Initially,
each element in the set should be in a separate equivalence class. When two
trees to be merged are the same size, make the root with greater index value
be the child of the root with lesser index value.

(2, 3) (4, 5) (6, 5) (3, 5) (1, 0) (7, 8) (1, 8) (3, 8) (9, 10) (11, 14) (11, 10)
(12, 13) (11, 13) (14, 1)

6.9 Devise a series of equivalence statements for a collection of sixteen items
that yields a tree of height 5 when both the weighted union rule and path
compression are used. What is the total number of parent pointers followed
to perform this series?

6.10 One alternative to path compression that gives similar performance gains
is called path halving. In path halving, when the path is traversed from
the node to the root, we make the grandparent of every other node i on the
path the new parent of i. Write a version of FIND that implements path
halving. Your FIND operation should work as you move up the tree, rather
than require the two passes needed by path compression.

6.11 Analyze the fraction of overhead required by the “list of children” imple-
mentation, the “left-child/right-sibling” implementation, and the two linked
implementations of Section 6.3.3. How do these implementations compare
in space efficiency?

6.12 Using the general tree ADT of Figure 6.2, write a function that takes as input
the root of a general tree and returns a binary tree generated by the conversion
process illustrated by Figure 6.14.

6.13 Use mathematical induction to prove that the number of leaves in a non-
empty full K-ary tree is (K � 1)n + 1, where n is the number of internal
nodes.

6.14 Derive the formulas for computing the relatives of a non-empty complete
K-ary tree node stored in the complete tree representation of Section 5.3.3.

6.15 Find the overhead fraction for a full K-ary tree implementation with space
requirements as follows:

(a) All nodes store data, K child pointers, and a parent pointer. The data
field requires four bytes and each pointer requires four bytes.
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Figure 6.18 A sample tree for Exercise 6.16.

(b) All nodes store data and K child pointers. The data field requires six-
teen bytes and each pointer requires four bytes.

(c) All nodes store data and a parent pointer, and internal nodes store K
child pointers. The data field requires eight bytes and each pointer re-
quires four bytes.

(d) Only leaf nodes store data; only internal nodes store K child pointers.
The data field requires four bytes and each pointer requires two bytes.

6.16 (a) Write out the sequential representation for Figure 6.18 using the coding
illustrated by Example 6.5.

(b) Write out the sequential representation for Figure 6.18 using the coding
illustrated by Example 6.6.

6.17 Draw the binary tree representing the following sequential representation for
binary trees illustrated by Example 6.5:

ABD//E//C/F//

6.18 Draw the binary tree representing the following sequential representation for
binary trees illustrated by Example 6.6:

A0/B0/C0D0G/E

Show the bit vector for leaf and internal nodes (as illustrated by Example 6.7)
for this tree.

6.19 Draw the general tree represented by the following sequential representation
for general trees illustrated by Example 6.8:

XPC)Q)RV)M))))

6.20 (a) Write a function to decode the sequential representation for binary trees
illustrated by Example 6.5. The input should be the sequential repre-
sentation and the output should be a pointer to the root of the resulting
binary tree.
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(b) Write a function to decode the sequential representation for full binary
trees illustrated by Example 6.6. The input should be the sequential
representation and the output should be a pointer to the root of the re-
sulting binary tree.

(c) Write a function to decode the sequential representation for general
trees illustrated by Example 6.8. The input should be the sequential
representation and the output should be a pointer to the root of the re-
sulting general tree.

6.21 Devise a sequential representation for Huffman coding trees suitable for use
as part of a file compression utility (see Project 5.7).

6.8 Projects

6.1 Write classes that implement the general tree class declarations of Figure 6.2
using the dynamic “left-child/right-sibling” representation described in Sec-
tion 6.3.4.

6.2 Write classes that implement the general tree class declarations of Figure 6.2
using the linked general tree implementation with child pointer arrays of Fig-
ure 6.12. Your implementation should support only fixed-size nodes that
do not change their number of children once they are created. Then, re-
implement these classes with the linked list of children representation of
Figure 6.13. How do the two implementations compare in space and time
efficiency and ease of implementation?

6.3 Write classes that implement the general tree class declarations of Figure 6.2
using the linked general tree implementation with child pointer arrays of Fig-
ure 6.12. Your implementation must be able to support changes in the num-
ber of children for a node. When created, a node should be allocated with
only enough space to store its initial set of children. Whenever a new child is
added to a node such that the array overflows, allocate a new array from free
store that can store twice as many children.

6.4 Implement a BST file archiver. Your program should take a BST created in
main memory using the implementation of Figure 5.14 and write it out to
disk using one of the sequential representations of Section 6.5. It should also
be able to read in disk files using your sequential representation and create
the equivalent main memory representation.

6.5 Use the UNION/FIND algorithm to implement a solution to the following
problem. Given a set of points represented by their xy-coordinates, assign
the points to clusters. Any two points are defined to be in the same cluster if
they are within a specified distance d of each other. For the purpose of this
problem, clustering is an equivalence relationship. In other words, points A,
B, and C are defined to be in the same cluster if the distance between A and B
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is less than d and the distance between A and C is also less than d, even if the
distance between B and C is greater than d. To solve the problem, compute
the distance between each pair of points, using the equivalence processing
algorithm to merge clusters whenever two points are within the specified
distance. What is the asymptotic complexity of this algorithm? Where is the
bottleneck in processing?

6.6 In this project, you will run some empirical tests to determine if some vari-
ations on path compression in the UNION/FIND algorithm will lead to im-
proved performance. You should compare the following five implementa-
tions:

(a) Standard UNION/FIND with path compression and weighted union.
(b) Path compression and weighted union, except that path compression is

done after the UNION, instead of during the FIND operation. That is,
make all nodes along the paths traversed in both trees point directly to
the root of the larger tree.

(c) Weighted union and path halving as described in Exercise 6.10.
(d) Weighted union and a simplified form of path compression. At the end

of every FIND operation, make the node point to its tree’s root (but
don’t change the pointers for other nodes along the path).

(e) Weighted union and a simplified form of path compression. Both nodes
in the equivalence will be set to point directly to the root of the larger
tree after the UNION operation. For example, consider processing the
equivalence (A, B) where A

0 is the root of A and B

0 is the root of B.
Assume the tree with root A

0 is bigger than the tree with root B

0. At the
end of the UNION/FIND operation, nodes A, B, and B

0 will all point
directly to A

0.
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