
Data Structures and Algorithm
Analysis

Edition 3.2 (C++ Version)

Clifford A. Shaffer
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061

March 28, 2013
Update 3.2.0.10

For a list of changes, see
http://people.cs.vt.edu/

˜

shaffer/Book/errata.html

Copyright © 2009-2012 by Clifford A. Shaffer.
This document is made freely available in PDF form for educational and

other non-commercial use. You may make copies of this file and
redistribute in electronic form without charge. You may extract portions of
this document provided that the front page, including the title, author, and

this notice are included. Any commercial use of this document requires the
written consent of the author. The author can be reached at

shaffer@cs.vt.edu.
If you wish to have a printed version of this document, print copies are

published by Dover Publications
(see http://store.doverpublications.com/048648582x.html).

Further information about this text is available at
http://people.cs.vt.edu/

˜

shaffer/Book/.

3

Algorithm Analysis

How long will it take to process the company payroll once we complete our planned
merger? Should I buy a new payroll program from vendor X or vendor Y? If a
particular program is slow, is it badly implemented or is it solving a hard problem?
Questions like these ask us to consider the difficulty of a problem, or the relative
efficiency of two or more approaches to solving a problem.

This chapter introduces the motivation, basic notation, and fundamental tech-
niques of algorithm analysis. We focus on a methodology known as asymptotic
algorithm analysis, or simply asymptotic analysis. Asymptotic analysis attempts
to estimate the resource consumption of an algorithm. It allows us to compare the
relative costs of two or more algorithms for solving the same problem. Asymptotic
analysis also gives algorithm designers a tool for estimating whether a proposed
solution is likely to meet the resource constraints for a problem before they imple-
ment an actual program. After reading this chapter, you should understand

• the concept of a growth rate, the rate at which the cost of an algorithm grows
as the size of its input grows;

• the concept of upper and lower bounds for a growth rate, and how to estimate
these bounds for a simple program, algorithm, or problem; and

• the difference between the cost of an algorithm (or program) and the cost of
a problem.

The chapter concludes with a brief discussion of the practical difficulties encoun-
tered when empirically measuring the cost of a program, and some principles for
code tuning to improve program efficiency.

3.1 Introduction

How do you compare two algorithms for solving some problem in terms of effi-
ciency? We could implement both algorithms as computer programs and then run

55

56 Chap. 3 Algorithm Analysis

them on a suitable range of inputs, measuring how much of the resources in ques-
tion each program uses. This approach is often unsatisfactory for four reasons.
First, there is the effort involved in programming and testing two algorithms when
at best you want to keep only one. Second, when empirically comparing two al-
gorithms there is always the chance that one of the programs was “better written”
than the other, and therefor the relative qualities of the underlying algorithms are
not truly represented by their implementations. This can easily occur when the
programmer has a bias regarding the algorithms. Third, the choice of empirical
test cases might unfairly favor one algorithm. Fourth, you could find that even the
better of the two algorithms does not fall within your resource budget. In that case
you must begin the entire process again with yet another program implementing a
new algorithm. But, how would you know if any algorithm can meet the resource
budget? Perhaps the problem is simply too difficult for any implementation to be
within budget.

These problems can often be avoided by using asymptotic analysis. Asymp-
totic analysis measures the efficiency of an algorithm, or its implementation as a
program, as the input size becomes large. It is actually an estimating technique and
does not tell us anything about the relative merits of two programs where one is
always “slightly faster” than the other. However, asymptotic analysis has proved
useful to computer scientists who must determine if a particular algorithm is worth
considering for implementation.

The critical resource for a program is most often its running time. However,
you cannot pay attention to running time alone. You must also be concerned with
other factors such as the space required to run the program (both main memory and
disk space). Typically you will analyze the time required for an algorithm (or the
instantiation of an algorithm in the form of a program), and the space required for
a data structure.

Many factors affect the running time of a program. Some relate to the environ-
ment in which the program is compiled and run. Such factors include the speed of
the computer’s CPU, bus, and peripheral hardware. Competition with other users
for the computer’s (or the network’s) resources can make a program slow to a crawl.
The programming language and the quality of code generated by a particular com-
piler can have a significant effect. The “coding efficiency” of the programmer who
converts the algorithm to a program can have a tremendous impact as well.

If you need to get a program working within time and space constraints on a
particular computer, all of these factors can be relevant. Yet, none of these factors
address the differences between two algorithms or data structures. To be fair, pro-
grams derived from two algorithms for solving the same problem should both be
compiled with the same compiler and run on the same computer under the same
conditions. As much as possible, the same amount of care should be taken in the
programming effort devoted to each program to make the implementations “equally

Sec. 3.1 Introduction 57

efficient.” In this sense, all of the factors mentioned above should cancel out of the
comparison because they apply to both algorithms equally.

If you truly wish to understand the running time of an algorithm, there are other
factors that are more appropriate to consider than machine speed, programming
language, compiler, and so forth. Ideally we would measure the running time of
the algorithm under standard benchmark conditions. However, we have no way
to calculate the running time reliably other than to run an implementation of the
algorithm on some computer. The only alternative is to use some other measure as
a surrogate for running time.

Of primary consideration when estimating an algorithm’s performance is the
number of basic operations required by the algorithm to process an input of a
certain size. The terms “basic operations” and “size” are both rather vague and
depend on the algorithm being analyzed. Size is often the number of inputs pro-
cessed. For example, when comparing sorting algorithms, the size of the problem
is typically measured by the number of records to be sorted. A basic operation
must have the property that its time to complete does not depend on the particular
values of its operands. Adding or comparing two integer variables are examples
of basic operations in most programming languages. Summing the contents of an
array containing n integers is not, because the cost depends on the value of n (i.e.,
the size of the input).

Example 3.1 Consider a simple algorithm to solve the problem of finding
the largest value in an array of n integers. The algorithm looks at each
integer in turn, saving the position of the largest value seen so far. This
algorithm is called the largest-value sequential search and is illustrated by
the following function:

// Return position of largest value in "A" of size "n"
int largest(int A[], int n) {

int currlarge = 0; // Holds largest element position
for (int i=1; i<n; i++) // For each array element
if (A[currlarge] < A[i]) // if A[i] is larger

currlarge = i; // remember its position
return currlarge; // Return largest position

}

Here, the size of the problem is A.length, the number of integers stored
in array A. The basic operation is to compare an integer’s value to that of
the largest value seen so far. It is reasonable to assume that it takes a fixed
amount of time to do one such comparison, regardless of the value of the
two integers or their positions in the array.

Because the most important factor affecting running time is normally
size of the input, for a given input size n we often express the time T to run

58 Chap. 3 Algorithm Analysis

the algorithm as a function of n, written as T(n). We will always assume
T(n) is a non-negative value.

Let us call c the amount of time required to compare two integers in
function largest. We do not care right now what the precise value of c
might be. Nor are we concerned with the time required to increment vari-
able i because this must be done for each value in the array, or the time
for the actual assignment when a larger value is found, or the little bit of
extra time taken to initialize currlarge. We just want a reasonable ap-
proximation for the time taken to execute the algorithm. The total time
to run largest is therefore approximately cn, because we must make n
comparisons, with each comparison costing c time. We say that function
largest (and by extension ,the largest-value sequential search algorithm
for any typical implementation) has a running time expressed by the equa-
tion

T(n) = cn.

This equation describes the growth rate for the running time of the largest-
value sequential search algorithm.

Example 3.2 The running time of a statement that assigns the first value
of an integer array to a variable is simply the time required to copy the value
of the first array value. We can assume this assignment takes a constant
amount of time regardless of the value. Let us call c

1

the amount of time
necessary to copy an integer. No matter how large the array on a typical
computer (given reasonable conditions for memory and array size), the time
to copy the value from the first position of the array is always c

1

. Thus, the
equation for this algorithm is simply

T(n) = c
1

,

indicating that the size of the input n has no effect on the running time.
This is called a constant running time.

Example 3.3 Consider the following code:

sum = 0;
for (i=1; i<=n; i++)

for (j=1; j<=n; j++)
sum++;

What is the running time for this code fragment? Clearly it takes longer
to run when n is larger. The basic operation in this example is the increment

Sec. 3.1 Introduction 59

0

100

200

300

400

10n

20n

2n2

5n log n

2

n
n!

0 5 10 15

0

10 20 30 40 50

Input size n

10n

20n

5n log n2n2
2

n
n!

0

200

400

600

800

1000

1200

1400

Figure 3.1 Two views of a graph illustrating the growth rates for six equations.
The bottom view shows in detail the lower-left portion of the top view. The hor-
izontal axis represents input size. The vertical axis can represent time, space, or
any other measure of cost.

operation for variable sum. We can assume that incrementing takes constant
time; call this time c

2

. (We can ignore the time required to initialize sum,
and to increment the loop counters i and j. In practice, these costs can
safely be bundled into time c

2

.) The total number of increment operations
is n2. Thus, we say that the running time is T(n) = c

2

n2.

60 Chap. 3 Algorithm Analysis

n log log n log n n n log n n

2
n

3
2

n

16 2 4 2

4
4 · 24 = 2

6
2

8
2

12
2

16

256 3 8 2

8
8 · 28 = 2

11
2

16
2

24
2

256

1024 ⇡ 3.3 10 2

10
10 · 210 ⇡ 2

13
2

20
2

30
2

1024

64K 4 16 2

16
16 · 216 = 2

20
2

32
2

48
2

64K

1M ⇡ 4.3 20 2

20
20 · 220 ⇡ 2

24
2

40
2

60
2

1M

1G ⇡ 4.9 30 2

30
30 · 230 ⇡ 2

35
2

60
2

90
2

1G

Figure 3.2 Costs for growth rates representative of most computer algorithms.

The growth rate for an algorithm is the rate at which the cost of the algorithm
grows as the size of its input grows. Figure 3.1 shows a graph for six equations, each
meant to describe the running time for a particular program or algorithm. A variety
of growth rates representative of typical algorithms are shown. The two equations
labeled 10n and 20n are graphed by straight lines. A growth rate of cn (for c any
positive constant) is often referred to as a linear growth rate or running time. This
means that as the value of n grows, the running time of the algorithm grows in the
same proportion. Doubling the value of n roughly doubles the running time. An
algorithm whose running-time equation has a highest-order term containing a factor
of n2 is said to have a quadratic growth rate. In Figure 3.1, the line labeled 2n2

represents a quadratic growth rate. The line labeled 2n represents an exponential
growth rate. This name comes from the fact that n appears in the exponent. The
line labeled n! is also growing exponentially.

As you can see from Figure 3.1, the difference between an algorithm whose
running time has cost T(n) = 10n and another with cost T(n) = 2n2 becomes
tremendous as n grows. For n > 5, the algorithm with running time T(n) = 2n2 is
already much slower. This is despite the fact that 10n has a greater constant factor
than 2n2. Comparing the two curves marked 20n and 2n2 shows that changing the
constant factor for one of the equations only shifts the point at which the two curves
cross. For n > 10, the algorithm with cost T(n) = 2n2 is slower than the algorithm
with cost T(n) = 20n. This graph also shows that the equation T(n) = 5n log n
grows somewhat more quickly than both T(n) = 10n and T(n) = 20n, but not
nearly so quickly as the equation T(n) = 2n2. For constants a, b > 1, na grows
faster than either logb n or log nb. Finally, algorithms with cost T(n) = 2n or
T(n) = n! are prohibitively expensive for even modest values of n. Note that for
constants a, b � 1, an grows faster than nb.

We can get some further insight into relative growth rates for various algorithms
from Figure 3.2. Most of the growth rates that appear in typical algorithms are
shown, along with some representative input sizes. Once again, we see that the
growth rate has a tremendous effect on the resources consumed by an algorithm.

Sec. 3.2 Best, Worst, and Average Cases 61

3.2 Best, Worst, and Average Cases

Consider the problem of finding the factorial of n. For this problem, there is only
one input of a given “size” (that is, there is only a single instance for each size of
n). Now consider our largest-value sequential search algorithm of Example 3.1,
which always examines every array value. This algorithm works on many inputs of
a given size n. That is, there are many possible arrays of any given size. However,
no matter what array of size n that the algorithm looks at, its cost will always be
the same in that it always looks at every element in the array one time.

For some algorithms, different inputs of a given size require different amounts
of time. For example, consider the problem of searching an array containing n
integers to find the one with a particular value K (assume that K appears exactly
once in the array). The sequential search algorithm begins at the first position in
the array and looks at each value in turn until K is found. Once K is found, the
algorithm stops. This is different from the largest-value sequential search algorithm
of Example 3.1, which always examines every array value.

There is a wide range of possible running times for the sequential search alg-
orithm. The first integer in the array could have value K, and so only one integer
is examined. In this case the running time is short. This is the best case for this
algorithm, because it is not possible for sequential search to look at less than one
value. Alternatively, if the last position in the array contains K, then the running
time is relatively long, because the algorithm must examine n values. This is the
worst case for this algorithm, because sequential search never looks at more than
n values. If we implement sequential search as a program and run it many times
on many different arrays of size n, or search for many different values of K within
the same array, we expect the algorithm on average to go halfway through the array
before finding the value we seek. On average, the algorithm examines about n/2
values. We call this the average case for this algorithm.

When analyzing an algorithm, should we study the best, worst, or average case?
Normally we are not interested in the best case, because this might happen only
rarely and generally is too optimistic for a fair characterization of the algorithm’s
running time. In other words, analysis based on the best case is not likely to be
representative of the behavior of the algorithm. However, there are rare instances
where a best-case analysis is useful — in particular, when the best case has high
probability of occurring. In Chapter 7 you will see some examples where taking
advantage of the best-case running time for one sorting algorithm makes a second
more efficient.

How about the worst case? The advantage to analyzing the worst case is that
you know for certain that the algorithm must perform at least that well. This is es-
pecially important for real-time applications, such as for the computers that monitor
an air traffic control system. Here, it would not be acceptable to use an algorithm

62 Chap. 3 Algorithm Analysis

that can handle n airplanes quickly enough most of the time, but which fails to
perform quickly enough when all n airplanes are coming from the same direction.

For other applications — particularly when we wish to aggregate the cost of
running the program many times on many different inputs — worst-case analy-
sis might not be a representative measure of the algorithm’s performance. Often
we prefer to know the average-case running time. This means that we would like
to know the typical behavior of the algorithm on inputs of size n. Unfortunately,
average-case analysis is not always possible. Average-case analysis first requires
that we understand how the actual inputs to the program (and their costs) are dis-
tributed with respect to the set of all possible inputs to the program. For example, it
was stated previously that the sequential search algorithm on average examines half
of the array values. This is only true if the element with value K is equally likely
to appear in any position in the array. If this assumption is not correct, then the
algorithm does not necessarily examine half of the array values in the average case.
See Section 9.2 for further discussion regarding the effects of data distribution on
the sequential search algorithm.

The characteristics of a data distribution have a significant effect on many
search algorithms, such as those based on hashing (Section 9.4) and search trees
(e.g., see Section 5.4). Incorrect assumptions about data distribution can have dis-
astrous consequences on a program’s space or time performance. Unusual data
distributions can also be used to advantage, as shown in Section 9.2.

In summary, for real-time applications we are likely to prefer a worst-case anal-
ysis of an algorithm. Otherwise, we often desire an average-case analysis if we
know enough about the distribution of our input to compute the average case. If
not, then we must resort to worst-case analysis.

3.3 A Faster Computer, or a Faster Algorithm?

Imagine that you have a problem to solve, and you know of an algorithm whose
running time is proportional to n2. Unfortunately, the resulting program takes ten
times too long to run. If you replace your current computer with a new one that
is ten times faster, will the n2 algorithm become acceptable? If the problem size
remains the same, then perhaps the faster computer will allow you to get your work
done quickly enough even with an algorithm having a high growth rate. But a funny
thing happens to most people who get a faster computer. They don’t run the same
problem faster. They run a bigger problem! Say that on your old computer you
were content to sort 10,000 records because that could be done by the computer
during your lunch break. On your new computer you might hope to sort 100,000
records in the same time. You won’t be back from lunch any sooner, so you are
better off solving a larger problem. And because the new machine is ten times
faster, you would like to sort ten times as many records.

Sec. 3.3 A Faster Computer, or a Faster Algorithm? 63

f(n) n n

0
Change n

0
/n

10n 1000 10, 000 n

0 = 10n 10

20n 500 5000 n

0 = 10n 10

5n log n 250 1842

p
10n < n

0 < 10n 7.37
2n

2
70 223 n

0 =
p
10n 3.16

2

n
13 16 n

0 = n+ 3 ��
Figure 3.3 The increase in problem size that can be run in a fixed period of time
on a computer that is ten times faster. The first column lists the right-hand sides
for each of five growth rate equations from Figure 3.1. For the purpose of this
example, arbitrarily assume that the old machine can run 10,000 basic operations
in one hour. The second column shows the maximum value for n that can be run
in 10,000 basic operations on the old machine. The third column shows the value
for n0, the new maximum size for the problem that can be run in the same time
on the new machine that is ten times faster. Variable n0 is the greatest size for the
problem that can run in 100,000 basic operations. The fourth column shows how
the size of n changed to become n0 on the new machine. The fifth column shows
the increase in the problem size as the ratio of n0 to n.

If your algorithm’s growth rate is linear (i.e., if the equation that describes the
running time on input size n is T(n) = cn for some constant c), then 100,000
records on the new machine will be sorted in the same time as 10,000 records on
the old machine. If the algorithm’s growth rate is greater than cn, such as c

1

n2,
then you will not be able to do a problem ten times the size in the same amount of
time on a machine that is ten times faster.

How much larger a problem can be solved in a given amount of time by a faster
computer? Assume that the new machine is ten times faster than the old. Say that
the old machine could solve a problem of size n in an hour. What is the largest
problem that the new machine can solve in one hour? Figure 3.3 shows how large
a problem can be solved on the two machines for five of the running-time functions
from Figure 3.1.

This table illustrates many important points. The first two equations are both
linear; only the value of the constant factor has changed. In both cases, the machine
that is ten times faster gives an increase in problem size by a factor of ten. In other
words, while the value of the constant does affect the absolute size of the problem
that can be solved in a fixed amount of time, it does not affect the improvement in
problem size (as a proportion to the original size) gained by a faster computer. This
relationship holds true regardless of the algorithm’s growth rate: Constant factors
never affect the relative improvement gained by a faster computer.

An algorithm with time equation T(n) = 2n2 does not receive nearly as great
an improvement from the faster machine as an algorithm with linear growth rate.
Instead of an improvement by a factor of ten, the improvement is only the square

64 Chap. 3 Algorithm Analysis

root of that:
p
10 ⇡ 3.16. Thus, the algorithm with higher growth rate not only

solves a smaller problem in a given time in the first place, it also receives less of
a speedup from a faster computer. As computers get ever faster, the disparity in
problem sizes becomes ever greater.

The algorithm with growth rate T(n) = 5n log n improves by a greater amount
than the one with quadratic growth rate, but not by as great an amount as the algo-
rithms with linear growth rates.

Note that something special happens in the case of the algorithm whose running
time grows exponentially. In Figure 3.1, the curve for the algorithm whose time is
proportional to 2n goes up very quickly. In Figure 3.3, the increase in problem
size on the machine ten times as fast is shown to be about n + 3 (to be precise,
it is n + log

2

10). The increase in problem size for an algorithm with exponential
growth rate is by a constant addition, not by a multiplicative factor. Because the
old value of n was 13, the new problem size is 16. If next year you buy another
computer ten times faster yet, then the new computer (100 times faster than the
original computer) will only run a problem of size 19. If you had a second program
whose growth rate is 2n and for which the original computer could run a problem
of size 1000 in an hour, than a machine ten times faster can run a problem only of
size 1003 in an hour! Thus, an exponential growth rate is radically different than
the other growth rates shown in Figure 3.3. The significance of this difference is
explored in Chapter 17.

Instead of buying a faster computer, consider what happens if you replace an
algorithm whose running time is proportional to n2 with a new algorithm whose
running time is proportional to n log n. In the graph of Figure 3.1, a fixed amount of
time would appear as a horizontal line. If the line for the amount of time available
to solve your problem is above the point at which the curves for the two growth
rates in question meet, then the algorithm whose running time grows less quickly
is faster. An algorithm with running time T(n) = n2 requires 1024 ⇥ 1024 =
1, 048, 576 time steps for an input of size n = 1024. An algorithm with running
time T(n) = n log n requires 1024 ⇥ 10 = 10, 240 time steps for an input of
size n = 1024, which is an improvement of much more than a factor of ten when
compared to the algorithm with running time T(n) = n2. Because n2 > 10n log n
whenever n > 58, if the typical problem size is larger than 58 for this example, then
you would be much better off changing algorithms instead of buying a computer
ten times faster. Furthermore, when you do buy a faster computer, an algorithm
with a slower growth rate provides a greater benefit in terms of larger problem size
that can run in a certain time on the new computer.

Sec. 3.4 Asymptotic Analysis 65

3.4 Asymptotic Analysis

Despite the larger constant for the curve labeled 10n in Figure 3.1, 2n2 crosses
it at the relatively small value of n = 5. What if we double the value of the
constant in front of the linear equation? As shown in the graph, 20n is surpassed
by 2n2 once n = 10. The additional factor of two for the linear growth rate does
not much matter. It only doubles the x-coordinate for the intersection point. In
general, changes to a constant factor in either equation only shift where the two
curves cross, not whether the two curves cross.

When you buy a faster computer or a faster compiler, the new problem size
that can be run in a given amount of time for a given growth rate is larger by the
same factor, regardless of the constant on the running-time equation. The time
curves for two algorithms with different growth rates still cross, regardless of their
running-time equation constants. For these reasons, we usually ignore the con-
stants when we want an estimate of the growth rate for the running time or other
resource requirements of an algorithm. This simplifies the analysis and keeps us
thinking about the most important aspect: the growth rate. This is called asymp-
totic algorithm analysis. To be precise, asymptotic analysis refers to the study of
an algorithm as the input size “gets big” or reaches a limit (in the calculus sense).
However, it has proved to be so useful to ignore all constant factors that asymptotic
analysis is used for most algorithm comparisons.

It is not always reasonable to ignore the constants. When comparing algorithms
meant to run on small values of n, the constant can have a large effect. For exam-
ple, if the problem is to sort a collection of exactly five records, then an algorithm
designed for sorting thousands of records is probably not appropriate, even if its
asymptotic analysis indicates good performance. There are rare cases where the
constants for two algorithms under comparison can differ by a factor of 1000 or
more, making the one with lower growth rate impractical for most purposes due to
its large constant. Asymptotic analysis is a form of “back of the envelope” esti-
mation for algorithm resource consumption. It provides a simplified model of the
running time or other resource needs of an algorithm. This simplification usually
helps you understand the behavior of your algorithms. Just be aware of the limi-
tations to asymptotic analysis in the rare situation where the constant is important.

3.4.1 Upper Bounds

Several terms are used to describe the running-time equation for an algorithm.
These terms — and their associated symbols — indicate precisely what aspect of
the algorithm’s behavior is being described. One is the upper bound for the growth
of the algorithm’s running time. It indicates the upper or highest growth rate that
the algorithm can have.

66 Chap. 3 Algorithm Analysis

Because the phrase “has an upper bound to its growth rate of f(n)” is long and
often used when discussing algorithms, we adopt a special notation, called big-Oh
notation. If the upper bound for an algorithm’s growth rate (for, say, the worst
case) is f(n), then we would write that this algorithm is “in the set O(f(n))in the
worst case” (or just “in O(f(n))in the worst case”). For example, if n2 grows as
fast as T(n) (the running time of our algorithm) for the worst-case input, we would
say the algorithm is “in O(n2) in the worst case.”

The following is a precise definition for an upper bound. T(n) represents the
true running time of the algorithm. f(n) is some expression for the upper bound.

For T(n) a non-negatively valued function, T(n) is in set O(f(n))
if there exist two positive constants c and n

0

such that T(n) cf(n)
for all n > n

0

.

Constant n
0

is the smallest value of n for which the claim of an upper bound holds
true. Usually n

0

is small, such as 1, but does not need to be. You must also be
able to pick some constant c, but it is irrelevant what the value for c actually is.
In other words, the definition says that for all inputs of the type in question (such
as the worst case for all inputs of size n) that are large enough (i.e., n > n

0

), the
algorithm always executes in less than cf(n) steps for some constant c.

Example 3.4 Consider the sequential search algorithm for finding a spec-
ified value in an array of integers. If visiting and examining one value in
the array requires c

s

steps where c
s

is a positive number, and if the value
we search for has equal probability of appearing in any position in the ar-
ray, then in the average case T(n) = c

s

n/2. For all values of n > 1,
c
s

n/2 c
s

n. Therefore, by the definition, T(n) is in O(n) for n
0

= 1 and
c = c

s

.

Example 3.5 For a particular algorithm, T(n) = c
1

n2 + c
2

n in the av-
erage case where c

1

and c
2

are positive numbers. Then, c
1

n2 + c
2

n
c
1

n2 + c
2

n2 (c
1

+ c
2

)n2 for all n > 1. So, T(n) cn2 for c = c
1

+ c
2

,
and n

0

= 1. Therefore, T(n) is in O(n2) by the second definition.

Example 3.6 Assigning the value from the first position of an array to
a variable takes constant time regardless of the size of the array. Thus,
T(n) = c (for the best, worst, and average cases). We could say in this
case that T(n) is in O(c). However, it is traditional to say that an algorithm
whose running time has a constant upper bound is in O(1).

Sec. 3.4 Asymptotic Analysis 67

If someone asked you out of the blue “Who is the best?” your natural reaction
should be to reply “Best at what?” In the same way, if you are asked “What is
the growth rate of this algorithm,” you would need to ask “When? Best case?
Average case? Or worst case?” Some algorithms have the same behavior no matter
which input instance they receive. An example is finding the maximum in an array
of integers. But for many algorithms, it makes a big difference, such as when
searching an unsorted array for a particular value. So any statement about the
upper bound of an algorithm must be in the context of some class of inputs of size
n. We measure this upper bound nearly always on the best-case, average-case, or
worst-case inputs. Thus, we cannot say, “this algorithm has an upper bound to
its growth rate of n2.” We must say something like, “this algorithm has an upper
bound to its growth rate of n2 in the average case.”

Knowing that something is in O(f(n)) says only how bad things can be. Per-
haps things are not nearly so bad. Because sequential search is in O(n) in the worst
case, it is also true to say that sequential search is in O(n2). But sequential search
is practical for large n, in a way that is not true for some other algorithms in O(n2).
We always seek to define the running time of an algorithm with the tightest (low-
est) possible upper bound. Thus, we prefer to say that sequential search is in O(n).
This also explains why the phrase “is in O(f(n))” or the notation “2 O(f(n))” is
used instead of “is O(f(n))” or “= O(f(n)).” There is no strict equality to the use
of big-Oh notation. O(n) is in O(n2), but O(n2) is not in O(n).

3.4.2 Lower Bounds

Big-Oh notation describes an upper bound. In other words, big-Oh notation states
a claim about the greatest amount of some resource (usually time) that is required
by an algorithm for some class of inputs of size n (typically the worst such input,
the average of all possible inputs, or the best such input).

Similar notation is used to describe the least amount of a resource that an alg-
orithm needs for some class of input. Like big-Oh notation, this is a measure of the
algorithm’s growth rate. Like big-Oh notation, it works for any resource, but we
most often measure the least amount of time required. And again, like big-Oh no-
tation, we are measuring the resource required for some particular class of inputs:
the worst-, average-, or best-case input of size n.

The lower bound for an algorithm (or a problem, as explained later) is denoted
by the symbol ⌦, pronounced “big-Omega” or just “Omega.” The following defi-
nition for ⌦ is symmetric with the definition of big-Oh.

For T(n) a non-negatively valued function, T(n) is in set ⌦(g(n))
if there exist two positive constants c and n

0

such that T(n) � cg(n)
for all n > n

0

.1

1 An alternate (non-equivalent) definition for ⌦ is

68 Chap. 3 Algorithm Analysis

Example 3.7 Assume T(n) = c
1

n2 + c
2

n for c
1

and c
2

> 0. Then,

c
1

n2 + c
2

n � c
1

n2

for all n > 1. So, T(n) � cn2 for c = c
1

and n
0

= 1. Therefore, T(n) is
in ⌦(n2) by the definition.

It is also true that the equation of Example 3.7 is in ⌦(n). However, as with
big-Oh notation, we wish to get the “tightest” (for ⌦ notation, the largest) bound
possible. Thus, we prefer to say that this running time is in ⌦(n2).

Recall the sequential search algorithm to find a value K within an array of
integers. In the average and worst cases this algorithm is in ⌦(n), because in both
the average and worst cases we must examine at least cn values (where c is 1/2 in
the average case and 1 in the worst case).

3.4.3 ⇥ Notation

The definitions for big-Oh and ⌦ give us ways to describe the upper bound for an
algorithm (if we can find an equation for the maximum cost of a particular class of
inputs of size n) and the lower bound for an algorithm (if we can find an equation
for the minimum cost for a particular class of inputs of size n). When the upper
and lower bounds are the same within a constant factor, we indicate this by using
⇥ (big-Theta) notation. An algorithm is said to be ⇥(h(n)) if it is in O(h(n)) and

T(n) is in the set ⌦(g(n)) if there exists a positive constant c such that T(n) �
cg(n) for an infinite number of values for n.

This definition says that for an “interesting” number of cases, the algorithm takes at least cg(n)
time. Note that this definition is not symmetric with the definition of big-Oh. For g(n) to be a lower
bound, this definition does not require that T(n) � cg(n) for all values of n greater than some
constant. It only requires that this happen often enough, in particular that it happen for an infinite
number of values for n. Motivation for this alternate definition can be found in the following example.

Assume a particular algorithm has the following behavior:

T(n) =
⇢

n for all odd n � 1

n2/100 for all even n � 0

From this definition, n2/100 � 1
100n

2 for all even n � 0. So, T(n) � cn2 for an infinite number
of values of n (i.e., for all even n) for c = 1/100. Therefore, T(n) is in ⌦(n2

) by the definition.
For this equation for T(n), it is true that all inputs of size n take at least cn time. But an infinite

number of inputs of size n take cn2 time, so we would like to say that the algorithm is in ⌦(n2
).

Unfortunately, using our first definition will yield a lower bound of ⌦(n) because it is not possible to
pick constants c and n0 such that T(n) � cn2 for all n > n0. The alternative definition does result
in a lower bound of ⌦(n2

) for this algorithm, which seems to fit common sense more closely. Fortu-
nately, few real algorithms or computer programs display the pathological behavior of this example.
Our first definition for ⌦ generally yields the expected result.

As you can see from this discussion, asymptotic bounds notation is not a law of nature. It is merely
a powerful modeling tool used to describe the behavior of algorithms.

Sec. 3.4 Asymptotic Analysis 69

it is in ⌦(h(n)). Note that we drop the word “in” for ⇥ notation, because there
is a strict equality for two equations with the same ⇥. In other words, if f(n) is
⇥(g(n)), then g(n) is ⇥(f(n)).

Because the sequential search algorithm is both in O(n) and in ⌦(n) in the
average case, we say it is ⇥(n) in the average case.

Given an algebraic equation describing the time requirement for an algorithm,
the upper and lower bounds always meet. That is because in some sense we have
a perfect analysis for the algorithm, embodied by the running-time equation. For
many algorithms (or their instantiations as programs), it is easy to come up with
the equation that defines their runtime behavior. Most algorithms presented in this
book are well understood and we can almost always give a ⇥ analysis for them.
However, Chapter 17 discusses a whole class of algorithms for which we have no
⇥ analysis, just some unsatisfying big-Oh and ⌦ analyses. Exercise 3.14 presents
a short, simple program fragment for which nobody currently knows the true upper
or lower bounds.

While some textbooks and programmers will casually say that an algorithm is
“order of” or “big-Oh” of some cost function, it is generally better to use ⇥ notation
rather than big-Oh notation whenever we have sufficient knowledge about an alg-
orithm to be sure that the upper and lower bounds indeed match. Throughout this
book, ⇥ notation will be used in preference to big-Oh notation whenever our state
of knowledge makes that possible. Limitations on our ability to analyze certain
algorithms may require use of big-Oh or ⌦ notations. In rare occasions when the
discussion is explicitly about the upper or lower bound of a problem or algorithm,
the corresponding notation will be used in preference to ⇥ notation.

3.4.4 Simplifying Rules

Once you determine the running-time equation for an algorithm, it really is a simple
matter to derive the big-Oh, ⌦, and ⇥ expressions from the equation. You do not
need to resort to the formal definitions of asymptotic analysis. Instead, you can use
the following rules to determine the simplest form.

1. If f(n) is in O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).
2. If f(n) is in O(kg(n)) for any constant k > 0, then f(n) is in O(g(n)).
3. If f

1

(n) is in O(g
1

(n)) and f
2

(n) is in O(g
2

(n)), then f
1

(n) + f
2

(n) is in
O(max(g

1

(n), g
2

(n))).
4. If f

1

(n) is in O(g
1

(n)) and f
2

(n) is in O(g
2

(n)), then f
1

(n)f
2

(n) is in
O(g

1

(n)g
2

(n)).

The first rule says that if some function g(n) is an upper bound for your cost
function, then any upper bound for g(n) is also an upper bound for your cost func-
tion. A similar property holds true for ⌦ notation: If g(n) is a lower bound for your

70 Chap. 3 Algorithm Analysis

cost function, then any lower bound for g(n) is also a lower bound for your cost
function. Likewise for ⇥ notation.

The significance of rule (2) is that you can ignore any multiplicative constants
in your equations when using big-Oh notation. This rule also holds true for ⌦ and
⇥ notations.

Rule (3) says that given two parts of a program run in sequence (whether two
statements or two sections of code), you need consider only the more expensive
part. This rule applies to ⌦ and ⇥ notations as well: For both, you need consider
only the more expensive part.

Rule (4) is used to analyze simple loops in programs. If some action is repeated
some number of times, and each repetition has the same cost, then the total cost is
the cost of the action multiplied by the number of times that the action takes place.
This rule applies to ⌦ and ⇥ notations as well.

Taking the first three rules collectively, you can ignore all constants and all
lower-order terms to determine the asymptotic growth rate for any cost function.
The advantages and dangers of ignoring constants were discussed near the begin-
ning of this section. Ignoring lower-order terms is reasonable when performing an
asymptotic analysis. The higher-order terms soon swamp the lower-order terms in
their contribution to the total cost as n becomes larger. Thus, if T(n) = 3n4+5n2,
then T(n) is in O(n4). The n2 term contributes relatively little to the total cost for
large n.

Throughout the rest of this book, these simplifying rules are used when dis-
cussing the cost for a program or algorithm.

3.4.5 Classifying Functions

Given functions f(n) and g(n) whose growth rates are expressed as algebraic equa-
tions, we might like to determine if one grows faster than the other. The best way
to do this is to take the limit of the two functions as n grows towards infinity,

lim
n!1

f(n)

g(n)
.

If the limit goes to 1, then f(n) is in ⌦(g(n)) because f(n) grows faster. If the
limit goes to zero, then f(n) is in O(g(n)) because g(n) grows faster. If the limit
goes to some constant other than zero, then f(n) = ⇥(g(n)) because both grow at
the same rate.

Example 3.8 If f(n) = 2n log n and g(n) = n2, is f(n) in O(g(n)),
⌦(g(n)), or ⇥(g(n))? Because

n2

2n log n
=

n

2 log n
,

Sec. 3.5 Calculating the Running Time for a Program 71

we easily see that

lim
n!1

n2

2n log n
= 1

because n grows faster than 2 log n. Thus, n2 is in ⌦(2n log n).

3.5 Calculating the Running Time for a Program

This section presents the analysis for several simple code fragments.

Example 3.9 We begin with an analysis of a simple assignment to an
integer variable.

a = b;

Because the assignment statement takes constant time, it is ⇥(1).

Example 3.10 Consider a simple for loop.
sum = 0;
for (i=1; i<=n; i++)

sum += n;

The first line is ⇥(1). The for loop is repeated n times. The third
line takes constant time so, by simplifying rule (4) of Section 3.4.4, the
total cost for executing the two lines making up the for loop is ⇥(n). By
rule (3), the cost of the entire code fragment is also ⇥(n).

Example 3.11 We now analyze a code fragment with several for loops,
some of which are nested.
sum = 0;
for (i=1; i<=n; i++) // First for loop

for (j=1; j<=i; j++) // is a double loop
sum++;

for (k=0; k<n; k++) // Second for loop
A[k] = k;

This code fragment has three separate statements: the first assignment
statement and the two for loops. Again the assignment statement takes
constant time; call it c

1

. The second for loop is just like the one in Exam-
ple 3.10 and takes c

2

n = ⇥(n) time.
The first for loop is a double loop and requires a special technique. We

work from the inside of the loop outward. The expression sum++ requires
constant time; call it c

3

. Because the inner for loop is executed i times, by

72 Chap. 3 Algorithm Analysis

simplifying rule (4) it has cost c
3

i. The outer for loop is executed n times,
but each time the cost of the inner loop is different because it costs c

3

i with
i changing each time. You should see that for the first execution of the outer
loop, i is 1. For the second execution of the outer loop, i is 2. Each time
through the outer loop, i becomes one greater, until the last time through
the loop when i = n. Thus, the total cost of the loop is c

3

times the sum of
the integers 1 through n. From Equation 2.1, we know that

nX

i=1

i =
n(n+ 1)

2
,

which is ⇥(n2). By simplifying rule (3), ⇥(c
1

+ c
2

n + c
3

n2) is simply
⇥(n2).

Example 3.12 Compare the asymptotic analysis for the following two
code fragments:

sum1 = 0;
for (i=1; i<=n; i++) // First double loop

for (j=1; j<=n; j++) // do n times
sum1++;

sum2 = 0;
for (i=1; i<=n; i++) // Second double loop

for (j=1; j<=i; j++) // do i times
sum2++;

In the first double loop, the inner for loop always executes n times.
Because the outer loop executes n times, it should be obvious that the state-
ment sum1++ is executed precisely n2 times. The second loop is similar
to the one analyzed in the previous example, with cost

P
n

j=1

j. This is ap-
proximately 1

2

n2. Thus, both double loops cost ⇥(n2), though the second
requires about half the time of the first.

Example 3.13 Not all doubly nested for loops are ⇥(n2). The follow-
ing pair of nested loops illustrates this fact.

sum1 = 0;
for (k=1; k<=n; k*=2) // Do log n times

for (j=1; j<=n; j++) // Do n times
sum1++;

sum2 = 0;
for (k=1; k<=n; k*=2) // Do log n times

for (j=1; j<=k; j++) // Do k times
sum2++;

Sec. 3.5 Calculating the Running Time for a Program 73

When analyzing these two code fragments, we will assume that n is
a power of two. The first code fragment has its outer for loop executed
log n + 1 times because on each iteration k is multiplied by two until it
reaches n. Because the inner loop always executes n times, the total cost for
the first code fragment can be expressed as

P
logn

i=0

n. Note that a variable
substitution takes place here to create the summation, with k = 2i. From
Equation 2.3, the solution for this summation is ⇥(n log n). In the second
code fragment, the outer loop is also executed log n + 1 times. The inner
loop has cost k, which doubles each time. The summation can be expressed
as

P
logn

i=0

2i where n is assumed to be a power of two and again k = 2i.
From Equation 2.8, we know that this summation is simply ⇥(n).

What about other control statements? While loops are analyzed in a manner
similar to for loops. The cost of an if statement in the worst case is the greater
of the costs for the then and else clauses. This is also true for the average case,
assuming that the size of n does not affect the probability of executing one of the
clauses (which is usually, but not necessarily, true). For switch statements, the
worst-case cost is that of the most expensive branch. For subroutine calls, simply
add the cost of executing the subroutine.

There are rare situations in which the probability for executing the various
branches of an if or switch statement are functions of the input size. For exam-
ple, for input of size n, the then clause of an if statement might be executed with
probability 1/n. An example would be an if statement that executes the then
clause only for the smallest of n values. To perform an average-case analysis for
such programs, we cannot simply count the cost of the if statement as being the
cost of the more expensive branch. In such situations, the technique of amortized
analysis (see Section 14.3) can come to the rescue.

Determining the execution time of a recursive subroutine can be difficult. The
running time for a recursive subroutine is typically best expressed by a recurrence
relation. For example, the recursive factorial function fact of Section 2.5 calls
itself with a value one less than its input value. The result of this recursive call is
then multiplied by the input value, which takes constant time. Thus, the cost of
the factorial function, if we wish to measure cost in terms of the number of multi-
plication operations, is one more than the number of multiplications made by the
recursive call on the smaller input. Because the base case does no multiplications,
its cost is zero. Thus, the running time for this function can be expressed as

T(n) = T(n� 1) + 1 for n > 1; T (1) = 0.

We know from Examples 2.8 and 2.13 that the closed-form solution for this recur-
rence relation is ⇥(n).

74 Chap. 3 Algorithm Analysis

Key

Position 0 2 3 4 5 6 7 8

26 29 36

10 11 12 13 14 15

11 13 21 41 45 51 54

1

56 65 72 77

9

8340

Figure 3.4 An illustration of binary search on a sorted array of 16 positions.
Consider a search for the position with value K = 45. Binary search first checks
the value at position 7. Because 41 < K, the desired value cannot appear in any
position below 7 in the array. Next, binary search checks the value at position 11.
Because 56 > K, the desired value (if it exists) must be between positions 7
and 11. Position 9 is checked next. Again, its value is too great. The final search
is at position 8, which contains the desired value. Thus, function binary returns
position 8. Alternatively, if K were 44, then the same series of record accesses
would be made. After checking position 8, binary would return a value of n,
indicating that the search is unsuccessful.

The final example of algorithm analysis for this section will compare two algo-
rithms for performing search in an array. Earlier, we determined that the running
time for sequential search on an array where the search value K is equally likely
to appear in any location is ⇥(n) in both the average and worst cases. We would
like to compare this running time to that required to perform a binary search on
an array whose values are stored in order from lowest to highest.

Binary search begins by examining the value in the middle position of the ar-
ray; call this position mid and the corresponding value k

mid

. If k
mid

= K, then
processing can stop immediately. This is unlikely to be the case, however. Fortu-
nately, knowing the middle value provides useful information that can help guide
the search process. In particular, if k

mid

> K, then you know that the value K
cannot appear in the array at any position greater than mid. Thus, you can elim-
inate future search in the upper half of the array. Conversely, if k

mid

< K, then
you know that you can ignore all positions in the array less than mid. Either way,
half of the positions are eliminated from further consideration. Binary search next
looks at the middle position in that part of the array where value K may exist. The
value at this position again allows us to eliminate half of the remaining positions
from consideration. This process repeats until either the desired value is found, or
there are no positions remaining in the array that might contain the value K. Fig-
ure 3.4 illustrates the binary search method. Figure 3.5 shows an implementation
for binary search.

To find the cost of this algorithm in the worst case, we can model the running
time as a recurrence and then find the closed-form solution. Each recursive call
to binary cuts the size of the array approximately in half, so we can model the
worst-case cost as follows, assuming for simplicity that n is a power of two.

T(n) = T(n/2) + 1 for n > 1; T(1) = 1.

Sec. 3.5 Calculating the Running Time for a Program 75

// Return the position of an element in sorted array "A" of
// size "n" with value "K". If "K" is not in "A", return
// the value "n".
int binary(int A[], int n, int K) {

int l = -1;
int r = n; // l and r are beyond array bounds
while (l+1 != r) { // Stop when l and r meet

int i = (l+r)/2; // Check middle of remaining subarray
if (K < A[i]) r = i; // In left half
if (K == A[i]) return i; // Found it
if (K > A[i]) l = i; // In right half

}
return n; // Search value not in A

}

Figure 3.5 Implementation for binary search.

If we expand the recurrence, we find that we can do so only log n times before
we reach the base case, and each expansion adds one to the cost. Thus, the closed-
form solution for the recurrence is T(n) = log n.

Function binary is designed to find the (single) occurrence of K and return
its position. A special value is returned if K does not appear in the array. This
algorithm can be modified to implement variations such as returning the position
of the first occurrence of K in the array if multiple occurrences are allowed, and
returning the position of the greatest value less than K when K is not in the array.

Comparing sequential search to binary search, we see that as n grows, the ⇥(n)
running time for sequential search in the average and worst cases quickly becomes
much greater than the ⇥(log n) running time for binary search. Taken in isolation,
binary search appears to be much more efficient than sequential search. This is
despite the fact that the constant factor for binary search is greater than that for
sequential search, because the calculation for the next search position in binary
search is more expensive than just incrementing the current position, as sequential
search does.

Note however that the running time for sequential search will be roughly the
same regardless of whether or not the array values are stored in order. In contrast,
binary search requires that the array values be ordered from lowest to highest. De-
pending on the context in which binary search is to be used, this requirement for a
sorted array could be detrimental to the running time of a complete program, be-
cause maintaining the values in sorted order requires to greater cost when inserting
new elements into the array. This is an example of a tradeoff between the advan-
tage of binary search during search and the disadvantage related to maintaining a
sorted array. Only in the context of the complete problem to be solved can we know
whether the advantage outweighs the disadvantage.

76 Chap. 3 Algorithm Analysis

3.6 Analyzing Problems

You most often use the techniques of “algorithm” analysis to analyze an algorithm,
or the instantiation of an algorithm as a program. You can also use these same
techniques to analyze the cost of a problem. It should make sense to you to say that
the upper bound for a problem cannot be worse than the upper bound for the best
algorithm that we know for that problem. But what does it mean to give a lower
bound for a problem?

Consider a graph of cost over all inputs of a given size n for some algorithm
for a given problem. Define A to be the collection of all algorithms that solve
the problem (theoretically, there are an infinite number of such algorithms). Now,
consider the collection of all the graphs for all of the (infinitely many) algorithms
in A. The worst case lower bound is the least of all the highest points on all the
graphs.

It is much easier to show that an algorithm (or program) is in ⌦(f(n)) than it
is to show that a problem is in ⌦(f(n)). For a problem to be in ⌦(f(n)) means
that every algorithm that solves the problem is in ⌦(f(n)), even algorithms that we
have not thought of!

So far all of our examples of algorithm analysis give “obvious” results, with
big-Oh always matching ⌦. To understand how big-Oh, ⌦, and ⇥ notations are
properly used to describe our understanding of a problem or an algorithm, it is best
to consider an example where you do not already know a lot about the problem.

Let us look ahead to analyzing the problem of sorting to see how this process
works. What is the least possible cost for any sorting algorithm in the worst case?
The algorithm must at least look at every element in the input, just to determine
that the input is truly sorted. Thus, any sorting algorithm must take at least cn time.
For many problems, this observation that each of the n inputs must be looked at
leads to an easy ⌦(n) lower bound.

In your previous study of computer science, you have probably seen an example
of a sorting algorithm whose running time is in O(n2) in the worst case. The simple
Bubble Sort and Insertion Sort algorithms typically given as examples in a first year
programming course have worst case running times in O(n2). Thus, the problem
of sorting can be said to have an upper bound in O(n2). How do we close the
gap between ⌦(n) and O(n2)? Can there be a better sorting algorithm? If you can
think of no algorithm whose worst-case growth rate is better than O(n2), and if you
have discovered no analysis technique to show that the least cost for the problem
of sorting in the worst case is greater than ⌦(n), then you cannot know for sure
whether or not there is a better algorithm.

Chapter 7 presents sorting algorithms whose running time is in O(n log n) for
the worst case. This greatly narrows the gap. With this new knowledge, we now
have a lower bound in ⌦(n) and an upper bound in O(n log n). Should we search

Sec. 3.7 Common Misunderstandings 77

for a faster algorithm? Many have tried, without success. Fortunately (or perhaps
unfortunately?), Chapter 7 also includes a proof that any sorting algorithm must
have running time in ⌦(n log n) in the worst case.2 This proof is one of the most
important results in the field of algorithm analysis, and it means that no sorting
algorithm can possibly run faster than cn log n for the worst-case input of size n.
Thus, we can conclude that the problem of sorting is ⇥(n log n) in the worst case,
because the upper and lower bounds have met.

Knowing the lower bound for a problem does not give you a good algorithm.
But it does help you to know when to stop looking. If the lower bound for the
problem matches the upper bound for the algorithm (within a constant factor), then
we know that we can find an algorithm that is better only by a constant factor.

3.7 Common Misunderstandings

Asymptotic analysis is one of the most intellectually difficult topics that undergrad-
uate computer science majors are confronted with. Most people find growth rates
and asymptotic analysis confusing and so develop misconceptions about either the
concepts or the terminology. It helps to know what the standard points of confusion
are, in hopes of avoiding them.

One problem with differentiating the concepts of upper and lower bounds is
that, for most algorithms that you will encounter, it is easy to recognize the true
growth rate for that algorithm. Given complete knowledge about a cost function,
the upper and lower bound for that cost function are always the same. Thus, the
distinction between an upper and a lower bound is only worthwhile when you have
incomplete knowledge about the thing being measured. If this distinction is still not
clear, reread Section 3.6. We use ⇥-notation to indicate that there is no meaningful
difference between what we know about the growth rates of the upper and lower
bound (which is usually the case for simple algorithms).

It is a common mistake to confuse the concepts of upper bound or lower bound
on the one hand, and worst case or best case on the other. The best, worst, or
average cases each give us a concrete input instance (or concrete set of instances)
that we can apply to an algorithm description to get a cost measure. The upper and
lower bounds describe our understanding of the growth rate for that cost measure.
So to define the growth rate for an algorithm or problem, we need to determine
what we are measuring (the best, worst, or average case) and also our description
for what we know about the growth rate of that cost measure (big-Oh, ⌦, or ⇥).

The upper bound for an algorithm is not the same as the worst case for that
algorithm for a given input of size n. What is being bounded is not the actual cost
(which you can determine for a given value of n), but rather the growth rate for the

2While it is fortunate to know the truth, it is unfortunate that sorting is ⇥(n log n) rather than
⇥(n)!

78 Chap. 3 Algorithm Analysis

cost. There cannot be a growth rate for a single point, such as a particular value
of n. The growth rate applies to the change in cost as a change in input size occurs.
Likewise, the lower bound is not the same as the best case for a given size n.

Another common misconception is thinking that the best case for an algorithm
occurs when the input size is as small as possible, or that the worst case occurs
when the input size is as large as possible. What is correct is that best- and worse-
case instances exist for each possible size of input. That is, for all inputs of a given
size, say i, one (or more) of the inputs of size i is the best and one (or more) of the
inputs of size i is the worst. Often (but not always!), we can characterize the best
input case for an arbitrary size, and we can characterize the worst input case for an
arbitrary size. Ideally, we can determine the growth rate for the characterized best,
worst, and average cases as the input size grows.

Example 3.14 What is the growth rate of the best case for sequential
search? For any array of size n, the best case occurs when the value we
are looking for appears in the first position of the array. This is true regard-
less of the size of the array. Thus, the best case (for arbitrary size n) occurs
when the desired value is in the first of n positions, and its cost is 1. It is
not correct to say that the best case occurs when n = 1.

Example 3.15 Imagine drawing a graph to show the cost of finding the
maximum value among n values, as n grows. That is, the x axis would
be n, and the y value would be the cost. Of course, this is a diagonal line
going up to the right, as n increases (you might want to sketch this graph
for yourself before reading further).

Now, imagine the graph showing the cost for each instance of the prob-
lem of finding the maximum value among (say) 20 elements in an array.
The first position along the x axis of the graph might correspond to having
the maximum element in the first position of the array. The second position
along the x axis of the graph might correspond to having the maximum el-
ement in the second position of the array, and so on. Of course, the cost is
always 20. Therefore, the graph would be a horizontal line with value 20.
You should sketch this graph for yourself.

Now, let us switch to the problem of doing a sequential search for a
given value in an array. Think about the graph showing all the problem
instances of size 20. The first problem instance might be when the value
we search for is in the first position of the array. This has cost 1. The second
problem instance might be when the value we search for is in the second
position of the array. This has cost 2. And so on. If we arrange the problem
instances of size 20 from least expensive on the left to most expensive on

Sec. 3.8 Multiple Parameters 79

the right, we see that the graph forms a diagonal line from lower left (with
value 0) to upper right (with value 20). Sketch this graph for yourself.

Finally, let us consider the cost for performing sequential search as the
size of the array n gets bigger. What will this graph look like? Unfortu-
nately, there’s not one simple answer, as there was for finding the maximum
value. The shape of this graph depends on whether we are considering the
best case cost (that would be a horizontal line with value 1), the worst case
cost (that would be a diagonal line with value i at position i along the x
axis), or the average cost (that would be a a diagonal line with value i/2 at
position i along the x axis). This is why we must always say that function
f(n) is in O(g(n)) in the best, average, or worst case! If we leave off which
class of inputs we are discussing, we cannot know which cost measure we
are referring to for most algorithms.

3.8 Multiple Parameters

Sometimes the proper analysis for an algorithm requires multiple parameters to de-
scribe the cost. To illustrate the concept, consider an algorithm to compute the rank
ordering for counts of all pixel values in a picture. Pictures are often represented by
a two-dimensional array, and a pixel is one cell in the array. The value of a pixel is
either the code value for the color, or a value for the intensity of the picture at that
pixel. Assume that each pixel can take any integer value in the range 0 to C � 1.
The problem is to find the number of pixels of each color value and then sort the
color values with respect to the number of times each value appears in the picture.
Assume that the picture is a rectangle with P pixels. A pseudocode algorithm to
solve the problem follows.

for (i=0; i<C; i++) // Initialize count
count[i] = 0;

for (i=0; i<P; i++) // Look at all of the pixels
count[value(i)]++; // Increment a pixel value count

sort(count, C); // Sort pixel value counts

In this example, count is an array of size C that stores the number of pixels for
each color value. Function value(i) returns the color value for pixel i.

The time for the first for loop (which initializes count) is based on the num-
ber of colors, C. The time for the second loop (which determines the number of
pixels with each color) is ⇥(P). The time for the final line, the call to sort, de-
pends on the cost of the sorting algorithm used. From the discussion of Section 3.6,
we can assume that the sorting algorithm has cost ⇥(P logP) if P items are sorted,
thus yielding ⇥(P logP) as the total algorithm cost.

80 Chap. 3 Algorithm Analysis

Is this a good representation for the cost of this algorithm? What is actu-
ally being sorted? It is not the pixels, but rather the colors. What if C is much
smaller than P ? Then the estimate of ⇥(P logP) is pessimistic, because much
fewer than P items are being sorted. Instead, we should use P as our analysis vari-
able for steps that look at each pixel, and C as our analysis variable for steps that
look at colors. Then we get ⇥(C) for the initialization loop, ⇥(P) for the pixel
count loop, and ⇥(C logC) for the sorting operation. This yields a total cost of
⇥(P + C logC).

Why can we not simply use the value of C for input size and say that the cost
of the algorithm is ⇥(C logC)? Because, C is typically much less than P . For
example, a picture might have 1000 ⇥ 1000 pixels and a range of 256 possible
colors. So, P is one million, which is much larger than C logC. But, if P is
smaller, or C larger (even if it is still less than P), then C logC can become the
larger quantity. Thus, neither variable should be ignored.

3.9 Space Bounds

Besides time, space is the other computing resource that is commonly of concern
to programmers. Just as computers have become much faster over the years, they
have also received greater allotments of memory. Even so, the amount of available
disk space or main memory can be significant constraints for algorithm designers.

The analysis techniques used to measure space requirements are similar to those
used to measure time requirements. However, while time requirements are nor-
mally measured for an algorithm that manipulates a particular data structure, space
requirements are normally determined for the data structure itself. The concepts of
asymptotic analysis for growth rates on input size apply completely to measuring
space requirements.

Example 3.16 What are the space requirements for an array of n inte-
gers? If each integer requires c bytes, then the array requires cn bytes,
which is ⇥(n).

Example 3.17 Imagine that we want to keep track of friendships between
n people. We can do this with an array of size n⇥n. Each row of the array
represents the friends of an individual, with the columns indicating who has
that individual as a friend. For example, if person j is a friend of person
i, then we place a mark in column j of row i in the array. Likewise, we
should also place a mark in column i of row j if we assume that friendship
works both ways. For n people, the total size of the array is ⇥(n2).

Sec. 3.9 Space Bounds 81

A data structure’s primary purpose is to store data in a way that allows efficient
access to those data. To provide efficient access, it may be necessary to store addi-
tional information about where the data are within the data structure. For example,
each node of a linked list must store a pointer to the next value on the list. All such
information stored in addition to the actual data values is referred to as overhead.
Ideally, overhead should be kept to a minimum while allowing maximum access.
The need to maintain a balance between these opposing goals is what makes the
study of data structures so interesting.

One important aspect of algorithm design is referred to as the space/time trade-
off principle. The space/time tradeoff principle says that one can often achieve a
reduction in time if one is willing to sacrifice space or vice versa. Many programs
can be modified to reduce storage requirements by “packing” or encoding informa-
tion. “Unpacking” or decoding the information requires additional time. Thus, the
resulting program uses less space but runs slower. Conversely, many programs can
be modified to pre-store results or reorganize information to allow faster running
time at the expense of greater storage requirements. Typically, such changes in time
and space are both by a constant factor.

A classic example of a space/time tradeoff is the lookup table. A lookup table
pre-stores the value of a function that would otherwise be computed each time it is
needed. For example, 12! is the greatest value for the factorial function that can be
stored in a 32-bit int variable. If you are writing a program that often computes
factorials, it is likely to be much more time efficient to simply pre-compute and
store the 12 values in a table. Whenever the program needs the value of n! it can
simply check the lookup table. (If n > 12, the value is too large to store as an int
variable anyway.) Compared to the time required to compute factorials, it may be
well worth the small amount of additional space needed to store the lookup table.

Lookup tables can also store approximations for an expensive function such as
sine or cosine. If you compute this function only for exact degrees or are willing
to approximate the answer with the value for the nearest degree, then a lookup
table storing the computation for exact degrees can be used instead of repeatedly
computing the sine function. Note that initially building the lookup table requires
a certain amount of time. Your application must use the lookup table often enough
to make this initialization worthwhile.

Another example of the space/time tradeoff is typical of what a programmer
might encounter when trying to optimize space. Here is a simple code fragment for
sorting an array of integers. We assume that this is a special case where there are n
integers whose values are a permutation of the integers from 0 to n� 1. This is an
example of a Binsort, which is discussed in Section 7.7. Binsort assigns each value
to an array position corresponding to its value.

for (i=0; i<n; i++)
B[A[i]] = A[i];

82 Chap. 3 Algorithm Analysis

This is efficient and requires ⇥(n) time. However, it also requires two arrays
of size n. Next is a code fragment that places the permutation in order but does so
within the same array (thus it is an example of an “in place” sort).

for (i=0; i<n; i++)
while (A[i] != i)

swap(A, i, A[i]);

Function swap(A, i, j) exchanges elements i and j in array A. It may
not be obvious that the second code fragment actually sorts the array. To see that
this does work, notice that each pass through the for loop will at least move the
integer with value i to its correct position in the array, and that during this iteration,
the value of A[i] must be greater than or equal to i. A total of at most n swap
operations take place, because an integer cannot be moved out of its correct position
once it has been placed there, and each swap operation places at least one integer in
its correct position. Thus, this code fragment has cost ⇥(n). However, it requires
more time to run than the first code fragment. On my computer the second version
takes nearly twice as long to run as the first, but it only requires half the space.

A second principle for the relationship between a program’s space and time
requirements applies to programs that process information stored on disk, as dis-
cussed in Chapter 8 and thereafter. Strangely enough, the disk-based space/time
tradeoff principle is almost the reverse of the space/time tradeoff principle for pro-
grams using main memory.

The disk-based space/time tradeoff principle states that the smaller you can
make your disk storage requirements, the faster your program will run. This is be-
cause the time to read information from disk is enormous compared to computation
time, so almost any amount of additional computation needed to unpack the data is
going to be less than the disk-reading time saved by reducing the storage require-
ments. Naturally this principle does not hold true in all cases, but it is good to keep
in mind when designing programs that process information stored on disk.

3.10 Speeding Up Your Programs

In practice, there is not such a big difference in running time between an algorithm
with growth rate ⇥(n) and another with growth rate ⇥(n log n). There is, however,
an enormous difference in running time between algorithms with growth rates of
⇥(n log n) and ⇥(n2). As you shall see during the course of your study of common
data structures and algorithms, it is not unusual that a problem whose obvious solu-
tion requires ⇥(n2) time also has a solution requiring ⇥(n log n) time. Examples
include sorting and searching, two of the most important computer problems.

Example 3.18 The following is a true story. A few years ago, one of
my graduate students had a big problem. His thesis work involved several

Sec. 3.10 Speeding Up Your Programs 83

intricate operations on a large database. He was now working on the final
step. “Dr. Shaffer,” he said, “I am running this program and it seems to
be taking a long time.” After examining the algorithm we realized that its
running time was ⇥(n2), and that it would likely take one to two weeks
to complete. Even if we could keep the computer running uninterrupted
for that long, he was hoping to complete his thesis and graduate before
then. Fortunately, we realized that there was a fairly easy way to convert
the algorithm so that its running time was ⇥(n log n). By the next day he
had modified the program. It ran in only a few hours, and he finished his
thesis on time.

While not nearly so important as changing an algorithm to reduce its growth
rate, “code tuning” can also lead to dramatic improvements in running time. Code
tuning is the art of hand-optimizing a program to run faster or require less storage.
For many programs, code tuning can reduce running time by a factor of ten, or
cut the storage requirements by a factor of two or more. I once tuned a critical
function in a program — without changing its basic algorithm — to achieve a factor
of 200 speedup. To get this speedup, however, I did make major changes in the
representation of the information, converting from a symbolic coding scheme to a
numeric coding scheme on which I was able to do direct computation.

Here are some suggestions for ways to speed up your programs by code tuning.
The most important thing to realize is that most statements in a program do not
have much effect on the running time of that program. There are normally just a
few key subroutines, possibly even key lines of code within the key subroutines,
that account for most of the running time. There is little point to cutting in half the
running time of a subroutine that accounts for only 1% of the total running time.
Focus your attention on those parts of the program that have the most impact.

When tuning code, it is important to gather good timing statistics. Many com-
pilers and operating systems include profilers and other special tools to help gather
information on both time and space use. These are invaluable when trying to make
a program more efficient, because they can tell you where to invest your effort.

A lot of code tuning is based on the principle of avoiding work rather than
speeding up work. A common situation occurs when we can test for a condition
that lets us skip some work. However, such a test is never completely free. Care
must be taken that the cost of the test does not exceed the amount of work saved.
While one test might be cheaper than the work potentially saved, the test must
always be made and the work can be avoided only some fraction of the time.

Example 3.19 A common operation in computer graphics applications is
to find which among a set of complex objects contains a given point in
space. Many useful data structures and algorithms have been developed to

84 Chap. 3 Algorithm Analysis

deal with variations of this problem. Most such implementations involve
the following tuning step. Directly testing whether a given complex ob-
ject contains the point in question is relatively expensive. Instead, we can
screen for whether the point is contained within a bounding box for the
object. The bounding box is simply the smallest rectangle (usually defined
to have sides perpendicular to the x and y axes) that contains the object.
If the point is not in the bounding box, then it cannot be in the object. If
the point is in the bounding box, only then would we conduct the full com-
parison of the object versus the point. Note that if the point is outside the
bounding box, we saved time because the bounding box test is cheaper than
the comparison of the full object versus the point. But if the point is inside
the bounding box, then that test is redundant because we still have to com-
pare the point against the object. Typically the amount of work avoided by
making this test is greater than the cost of making the test on every object.

Example 3.20 Section 7.2.3 presents a sorting algorithm named Selec-
tion Sort. The chief distinguishing characteristic of this algorithm is that
it requires relatively few swaps of records stored in the array to be sorted.
However, it sometimes performs an unnecessary swap operation where it
tries to swap a record with itself. This work could be avoided by testing
whether the two indices being swapped are the same. However, this event
does not occurr often. Because the cost of the test is high enough compared
to the work saved when the test is successful, adding the test typically will
slow down the program rather than speed it up.

Be careful not to use tricks that make the program unreadable. Most code tun-
ing is simply cleaning up a carelessly written program, not taking a clear program
and adding tricks. In particular, you should develop an appreciation for the capa-
bilities of modern compilers to make extremely good optimizations of expressions.
“Optimization of expressions” here means a rearrangement of arithmetic or logical
expressions to run more efficiently. Be careful not to damage the compiler’s ability
to do such optimizations for you in an effort to optimize the expression yourself.
Always check that your “optimizations” really do improve the program by running
the program before and after the change on a suitable benchmark set of input. Many
times I have been wrong about the positive effects of code tuning in my own pro-
grams. Most often I am wrong when I try to optimize an expression. It is hard to
do better than the compiler.

The greatest time and space improvements come from a better data structure or
algorithm. The final thought for this section is

First tune the algorithm, then tune the code.

Sec. 3.11 Empirical Analysis 85

3.11 Empirical Analysis

This chapter has focused on asymptotic analysis. This is an analytic tool, whereby
we model the key aspects of an algorithm to determine the growth rate of the alg-
orithm as the input size grows. As pointed out previously, there are many limita-
tions to this approach. These include the effects at small problem size, determining
the finer distinctions between algorithms with the same growth rate, and the inher-
ent difficulty of doing mathematical modeling for more complex problems.

An alternative to analytical approaches are empirical ones. The most obvious
empirical approach is simply to run two competitors and see which performs better.
In this way we might overcome the deficiencies of analytical approaches.

Be warned that comparative timing of programs is a difficult business, often
subject to experimental errors arising from uncontrolled factors (system load, the
language or compiler used, etc.). The most important point is not to be biased in
favor of one of the programs. If you are biased, this is certain to be reflected in
the timings. One look at competing software or hardware vendors’ advertisements
should convince you of this. The most common pitfall when writing two programs
to compare their performance is that one receives more code-tuning effort than the
other. As mentioned in Section 3.10, code tuning can often reduce running time by
a factor of ten. If the running times for two programs differ by a constant factor
regardless of input size (i.e., their growth rates are the same), then differences in
code tuning might account for any difference in running time. Be suspicious of
empirical comparisons in this situation.

Another approach to analysis is simulation. The idea of simulation is to model
the problem with a computer program and then run it to get a result. In the con-
text of algorithm analysis, simulation is distinct from empirical comparison of two
competitors because the purpose of the simulation is to perform analysis that might
otherwise be too difficult. A good example of this appears in Figure 9.10. This
figure shows the cost for inserting or deleting a record from a hash table under two
different assumptions for the policy used to find a free slot in the table. The y axes
is the cost in number of hash table slots evaluated, and the x axes is the percentage
of slots in the table that are full. The mathematical equations for these curves can
be determined, but this is not so easy. A reasonable alternative is to write simple
variations on hashing. By timing the cost of the program for various loading con-
ditions, it is not difficult to construct a plot similar to Figure 9.10. The purpose of
this analysis is not to determine which approach to hashing is most efficient, so we
are not doing empirical comparison of hashing alternatives. Instead, the purpose
is to analyze the proper loading factor that would be used in an efficient hashing
system to balance time cost versus hash table size (space cost).

86 Chap. 3 Algorithm Analysis

3.12 Further Reading

Pioneering works on algorithm analysis include The Art of Computer Programming
by Donald E. Knuth [Knu97, Knu98], and The Design and Analysis of Computer
Algorithms by Aho, Hopcroft, and Ullman [AHU74]. The alternate definition for
⌦ comes from [AHU83]. The use of the notation “T(n) is in O(f(n))” rather
than the more commonly used “T(n) = O(f(n))” I derive from Brassard and
Bratley [BB96], though certainly this use predates them. A good book to read for
further information on algorithm analysis techniques is Compared to What? by
Gregory J.E. Rawlins [Raw92].

Bentley [Ben88] describes one problem in numerical analysis for which, be-
tween 1945 and 1988, the complexity of the best known algorithm had decreased
from O(n7) to O(n3). For a problem of size n = 64, this is roughly equivalent
to the speedup achieved from all advances in computer hardware during the same
time period.

While the most important aspect of program efficiency is the algorithm, much
improvement can be gained from efficient coding of a program. As cited by Freder-
ick P. Brooks in The Mythical Man-Month [Bro95], an efficient programmer can of-
ten produce programs that run five times faster than an inefficient programmer, even
when neither takes special efforts to speed up their code. For excellent and enjoy-
able essays on improving your coding efficiency, and ways to speed up your code
when it really matters, see the books by Jon Bentley [Ben82, Ben00, Ben88]. The
situation described in Example 3.18 arose when we were working on the project
reported on in [SU92].

As an interesting aside, writing a correct binary search algorithm is not easy.
Knuth [Knu98] notes that while the first binary search was published in 1946, the
first bug-free algorithm was not published until 1962! Bentley (“Writing Correct
Programs” in [Ben00]) has found that 90% of the computer professionals he tested
could not write a bug-free binary search in two hours.

3.13 Exercises

3.1 For each of the six expressions of Figure 3.1, give the range of values of n
for which that expression is most efficient.

3.2 Graph the following expressions. For each expression, state the range of
values of n for which that expression is the most efficient.

4n2 log
3

n 3n 20n 2 log
2

n n2/3

3.3 Arrange the following expressions by growth rate from slowest to fastest.

4n2 log
3

n n! 3n 20n 2 log
2

n n2/3

See Stirling’s approximation in Section 2.2 for help in classifying n!.

Sec. 3.13 Exercises 87

3.4 (a) Suppose that a particular algorithm has time complexity T(n) = 3 ⇥
2n, and that executing an implementation of it on a particular machine
takes t seconds for n inputs. Now suppose that we are presented with a
machine that is 64 times as fast. How many inputs could we process on
the new machine in t seconds?

(b) Suppose that another algorithm has time complexity T(n) = n2, and
that executing an implementation of it on a particular machine takes
t seconds for n inputs. Now suppose that we are presented with a ma-
chine that is 64 times as fast. How many inputs could we process on
the new machine in t seconds?

(c) A third algorithm has time complexity T(n) = 8n. Executing an im-
plementation of it on a particular machine takes t seconds for n inputs.
Given a new machine that is 64 times as fast, how many inputs could
we process in t seconds?

3.5 Hardware vendor XYZ Corp. claims that their latest computer will run 100
times faster than that of their competitor, Prunes, Inc. If the Prunes, Inc.
computer can execute a program on input of size n in one hour, what size
input can XYZ’s computer execute in one hour for each algorithm with the
following growth rate equations?

n n2 n3 2n

3.6 (a) Find a growth rate that squares the run time when we double the input
size. That is, if T(n) = X , then T(2n) = x2

(b) Find a growth rate that cubes the run time when we double the input
size. That is, if T(n) = X , then T(2n) = x3

3.7 Using the definition of big-Oh, show that 1 is in O(1) and that 1 is in O(n).
3.8 Using the definitions of big-Oh and ⌦, find the upper and lower bounds for

the following expressions. Be sure to state appropriate values for c and n
0

.

(a) c
1

n
(b) c

2

n3 + c
3

(c) c
4

n log n+ c
5

n
(d) c

6

2n + c
7

n6

3.9 (a) What is the smallest integer k such that
p
n = O(nk)?

(b) What is the smallest integer k such that n log n = O(nk)?
3.10 (a) Is 2n = ⇥(3n)? Explain why or why not.

(b) Is 2n = ⇥(3n)? Explain why or why not.
3.11 For each of the following pairs of functions, either f(n) is in O(g(n)), f(n)

is in ⌦(g(n)), or f(n) = ⇥(g(n)). For each pair, determine which relation-
ship is correct. Justify your answer, using the method of limits discussed in
Section 3.4.5.

88 Chap. 3 Algorithm Analysis

(a) f(n) = log n2; g(n) = log n+ 5.
(b) f(n) =

p
n; g(n) = log n2.

(c) f(n) = log2 n; g(n) = log n.
(d) f(n) = n; g(n) = log2n.
(e) f(n) = n log n+ n; g(n) = log n.
(f) f(n) = log n2; g(n) = (log n)2.
(g) f(n) = 10; g(n) = log 10.
(h) f(n) = 2n; g(n) = 10n2.
(i) f(n) = 2n; g(n) = n log n.
(j) f(n) = 2n; g(n) = 3n.
(k) f(n) = 2n; g(n) = nn.

3.12 Determine ⇥ for the following code fragments in the average case. Assume
that all variables are of type int.

(a) a = b + c;
d = a + e;

(b) sum = 0;
for (i=0; i<3; i++)

for (j=0; j<n; j++)
sum++;

(c) sum=0;
for (i=0; i<n*n; i++)

sum++;

(d) for (i=0; i < n-1; i++)
for (j=i+1; j < n; j++) {

tmp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = tmp;

}

(e) sum = 0;
for (i=1; i<=n; i++)

for (j=1; j<=n; j*=2)
sum++;

(f) sum = 0;
for (i=1; i<=n; i*=2)

for (j=1; j<=n; j++)
sum++;

(g) Assume that array A contains n values, Random takes constant time,
and sort takes n log n steps.
for (i=0; i<n; i++) {

for (j=0; j<n; j++)
A[j] = Random(n);

sort(A, n);
}

Sec. 3.13 Exercises 89

(h) Assume array A contains a random permutation of the values from 0 to
n� 1.
sum = 0;
for (i=0; i<n; i++)

for (j=0; A[j]!=i; j++)
sum++;

(i) sum = 0;
if (EVEN(n))

for (i=0; i<n; i++)
sum++;

else
sum = sum + n;

3.13 Show that big-Theta notation (⇥) defines an equivalence relation on the set
of functions.

3.14 Give the best lower bound that you can for the following code fragment, as a
function of the initial value of n.

while (n > 1)
if (ODD(n))

n = 3 * n + 1;
else

n = n / 2;

Do you think that the upper bound is likely to be the same as the answer you
gave for the lower bound?

3.15 Does every algorithm have a ⇥ running-time equation? In other words, are
the upper and lower bounds for the running time (on any specified class of
inputs) always the same?

3.16 Does every problem for which there exists some algorithm have a ⇥ running-
time equation? In other words, for every problem, and for any specified
class of inputs, is there some algorithm whose upper bound is equal to the
problem’s lower bound?

3.17 Given an array storing integers ordered by value, modify the binary search
routine to return the position of the first integer with value K in the situation
where K can appear multiple times in the array. Be sure that your algorithm
is ⇥(log n), that is, do not resort to sequential search once an occurrence of
K is found.

3.18 Given an array storing integers ordered by value, modify the binary search
routine to return the position of the integer with the greatest value less than
K when K itself does not appear in the array. Return ERROR if the least
value in the array is greater than K.

3.19 Modify the binary search routine to support search in an array of infinite
size. In particular, you are given as input a sorted array and a key value
K to search for. Call n the position of the smallest value in the array that

90 Chap. 3 Algorithm Analysis

is equal to or larger than X . Provide an algorithm that can determine n in
O(log n) comparisons in the worst case. Explain why your algorithm meets
the required time bound.

3.20 It is possible to change the way that we pick the dividing point in a binary
search, and still get a working search routine. However, where we pick the
dividing point could affect the performance of the algorithm.

(a) If we change the dividing point computation in function binary from
i = (l + r)/2 to i = (l + ((r � l)/3)), what will the worst-case run-
ning time be in asymptotic terms? If the difference is only a constant
time factor, how much slower or faster will the modified program be
compared to the original version of binary?

(b) If we change the dividing point computation in function binary from
i = (l+ r)/2 to i = r� 2, what will the worst-case running time be in
asymptotic terms? If the difference is only a constant time factor, how
much slower or faster will the modified program be compared to the
original version of binary?

3.21 Design an algorithm to assemble a jigsaw puzzle. Assume that each piece
has four sides, and that each piece’s final orientation is known (top, bottom,
etc.). Assume that you have available a function

bool compare(Piece a, Piece b, Side ad)

that can tell, in constant time, whether piece a connects to piece b on a’s
side ad and b’s opposite side bd. The input to your algorithm should consist
of an n ⇥ m array of random pieces, along with dimensions n and m. The
algorithm should put the pieces in their correct positions in the array. Your
algorithm should be as efficient as possible in the asymptotic sense. Write
a summation for the running time of your algorithm on n pieces, and then
derive a closed-form solution for the summation.

3.22 Can the average case cost for an algorithm be worse than the worst case cost?
Can it be better than the best case cost? Explain why or why not.

3.23 Prove that if an algorithm is ⇥(f(n)) in the average case, then it is ⌦(f(n))
in the worst case.

3.24 Prove that if an algorithm is ⇥(f(n)) in the average case, then it is O(f(n))
in the best case.

3.14 Projects

3.1 Imagine that you are trying to store 32 Boolean values, and must access
them frequently. Compare the time required to access Boolean values stored
alternatively as a single bit field, a character, a short integer, or a long integer.
There are two things to be careful of when writing your program. First, be

Sec. 3.14 Projects 91

sure that your program does enough variable accesses to make meaningful
measurements. A single access takes much less time than a single unit of
measurement (typically milliseconds) for all four methods. Second, be sure
that your program spends as much time as possible doing variable accesses
rather than other things such as calling timing functions or incrementing for
loop counters.

3.2 Implement sequential search and binary search algorithms on your computer.
Run timings for each algorithm on arrays of size n = 10i for i ranging from
1 to as large a value as your computer’s memory and compiler will allow. For
both algorithms, store the values 0 through n � 1 in order in the array, and
use a variety of random search values in the range 0 to n � 1 on each size
n. Graph the resulting times. When is sequential search faster than binary
search for a sorted array?

3.3 Implement a program that runs and gives timings for the two Fibonacci se-
quence functions provided in Exercise 2.11. Graph the resulting running
times for as many values of n as your computer can handle.

