
Data Structures and Algorithm
Analysis

Edition 3.2 (C++ Version)

Clifford A. Shaffer
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061

March 28, 2013
Update 3.2.0.10

For a list of changes, see
http://people.cs.vt.edu/

˜

shaffer/Book/errata.html

Copyright © 2009-2012 by Clifford A. Shaffer.
This document is made freely available in PDF form for educational and

other non-commercial use. You may make copies of this file and
redistribute in electronic form without charge. You may extract portions of
this document provided that the front page, including the title, author, and

this notice are included. Any commercial use of this document requires the
written consent of the author. The author can be reached at

shaffer@cs.vt.edu.
If you wish to have a printed version of this document, print copies are

published by Dover Publications
(see http://store.doverpublications.com/048648582x.html).

Further information about this text is available at
http://people.cs.vt.edu/

˜

shaffer/Book/.



Sec. 4.4 Dictionaries 133

can be distinguished from full queues. Member maxSize is used to control the
circular motion of the queue (it is the base for the modulus operator). Member
rear is set to the position of the current rear element, while front is the position
of the current front element.

In this implementation, the front of the queue is defined to be toward the
lower numbered positions in the array (in the counter-clockwise direction in Fig-
ure 4.25), and the rear is defined to be toward the higher-numbered positions. Thus,
enqueue increments the rear pointer (modulus size), and dequeue increments
the front pointer. Implementation of all member functions is straightforward.

4.3.2 Linked Queues

The linked queue implementation is a straightforward adaptation of the linked list.
Figure 4.27 shows the linked queue class declaration. Methods front and rear
are pointers to the front and rear queue elements, respectively. We will use a header
link node, which allows for a simpler implementation of the enqueue operation by
avoiding any special cases when the queue is empty. On initialization, the front
and rear pointers will point to the header node, and front will always point to
the header node while rear points to the true last link node in the queue. Method
enqueue places the new element in a link node at the end of the linked list (i.e.,
the node that rear points to) and then advances rear to point to the new link
node. Method dequeue removes and returns the first element of the list.

4.3.3 Comparison of Array-Based and Linked Queues

All member functions for both the array-based and linked queue implementations
require constant time. The space comparison issues are the same as for the equiva-
lent stack implementations. Unlike the array-based stack implementation, there is
no convenient way to store two queues in the same array, unless items are always
transferred directly from one queue to the other.

4.4 Dictionaries

The most common objective of computer programs is to store and retrieve data.
Much of this book is about efficient ways to organize collections of data records
so that they can be stored and retrieved quickly. In this section we describe a
simple interface for such a collection, called a dictionary. The dictionary ADT
provides operations for storing records, finding records, and removing records from
the collection. This ADT gives us a standard basis for comparing various data
structures.

Before we can discuss the interface for a dictionary, we must first define the
concepts of a key and comparable objects. If we want to search for a given record


