Data Structures and Algorithm
Analysis

Edition 3.2 (C++ Version)

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, VA 24061

March 28, 2013
Update 3.2.0.10
For a list of changes, see
http://people.cs.vt.edu/~shaffer/Book/errata.html

Copyright © 2009-2012 by Clifford A. Shaffer.

This document is made freely available in PDF form for educational and
other non-commercial use. You may make copies of this file and
redistribute in electronic form without charge. You may extract portions of
this document provided that the front page, including the title, author, and
this notice are included. Any commercial use of this document requires the
written consent of the author. The author can be reached at
shaffer@cs.vt.edu.

If you wish to have a printed version of this document, print copies are
published by Dover Publications
(see http://store.doverpublications.com/048648582x.html).
Further information about this text is available at
http://people.cs.vt.edu/~shaffer/Book/.

Sec. 4.2 Stacks 123

be the index for the top element in the stack, rather than the first free position. If
this had been done, the empty list would initialize top as —1.) Methods push and
pop simply place an element into, or remove an element from, the array position
indicated by top. Because top is assumed to be at the first free position, push
first inserts its value into the top position and then increments top, while pop first
decrements top and then removes the top element.

4.2.2 Linked Stacks

The linked stack implementation is quite simple. The freelist of Section 4.1.2 is
an example of a linked stack. Elements are inserted and removed only from the
head of the list. A header node is not used because no special-case code is required
for lists of zero or one elements. Figure 4.19 shows the complete linked stack
implementation. The only data member is top, a pointer to the first (top) link node
of the stack. Method push first modifies the next field of the newly created link
node to point to the top of the stack and then sets top to point to the new link
node. Method pop is also quite simple. Variable temp stores the top nodes’ value,
while 1temp links to the top node as it is removed from the stack. The stack is
updated by setting top to point to the next link in the stack. The old top node is
then returned to free store (or the freelist), and the element value is returned.

4.2.3 Comparison of Array-Based and Linked Stacks

All operations for the array-based and linked stack implementations take constant
time, so from a time efficiency perspective, neither has a significant advantage.
Another basis for comparison is the total space required. The analysis is similar to
that done for list implementations. The array-based stack must declare a fixed-size
array initially, and some of that space is wasted whenever the stack is not full. The
linked stack can shrink and grow but requires the overhead of a link field for every
element.

When multiple stacks are to be implemented, it is possible to take advantage of
the one-way growth of the array-based stack. This can be done by using a single
array to store two stacks. One stack grows inward from each end as illustrated by
Figure 4.20, hopefully leading to less wasted space. However, this only works well
when the space requirements of the two stacks are inversely correlated. In other
words, ideally when one stack grows, the other will shrink. This is particularly
effective when elements are taken from one stack and given to the other. If instead
both stacks grow at the same time, then the free space in the middle of the array
will be exhausted quickly.

124 Chap. 4 Lists, Stacks, and Queues

// Linked stack implementation
template <typename E> class LStack: public Stack<E> {

private:
Link<E>* top; // Pointer to first element
int size; // Number of elements
public:

};

LStack (int sz =defaultSize) // Constructor
{ top = NULL; size = 0; }

“LStack() { clear(); } // Destructor
void clear() { // Reinitialize
while (top != NULL) ({ // Delete link nodes

Link<E>x temp = top;
top = top—>next;
delete temp;

}

size = 0;

}

void push(const E& it) { // Put "it" on stack
top = new Link<E>(it, top);

size++;

}

E pop() { // Remove "it" from stack
Assert (top != NULL, "Stack is empty");

E it = top->element;
Link<E>* ltemp = top—>next;

delete top;
top = ltemp;
size——;

return it;

}

const E& topValue() const { // Return top value
Assert (top !'= 0, "Stack is empty");
return top->element;

}

int length() const { return size; } // Return length

Figure 4.19 Linked stack class implementation.

top1 top2

X K

Figure 4.20 Two stacks implemented within in a single array, both growing
toward the middle.

Sec. 4.2 Stacks 125

Currptr | By
ni2

Currptr | Ba| Currptr | B
n|3 n|3
Currptr B1 Currptr [31 Currptr B,

n| 4 nl4 n
Currptr | B Currptr | B Currptr | B Currptr | B
Call fact(4) Call fact(3) Call fact(2) Call fact(1)

Currptr | B,
nl 3 Return 24
Currptr | B, Currptr | B,
nf4 n
Currptr | B Currptr | B Currptr | B
Return 1 Return 2 Return 6

Figure 4.21 Implementing recursion with a stack. 8 values indicate the address
of the program instruction to return to after completing the current function call.
On each recursive function call to £act (as implemented in Section 2.5), both the
return address and the current value of n must be saved. Each return from fact
pops the top activation record off the stack.

4.2.4 Implementing Recursion

Perhaps the most common computer application that uses stacks is not even visible
to its users. This is the implementation of subroutine calls in most programming
language runtime environments. A subroutine call is normally implemented by
placing necessary information about the subroutine (including the return address,
parameters, and local variables) onto a stack. This information is called an ac-
tivation record. Further subroutine calls add to the stack. Each return from a
subroutine pops the top activation record off the stack. Figure 4.21 illustrates the
implementation of the recursive factorial function of Section 2.5 from the runtime
environment’s point of view.

Consider what happens when we call fact with the value 4. We use (3 to
indicate the address of the program instruction where the call to fact is made.
Thus, the stack must first store the address 3, and the value 4 is passed to fact.

