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Example 4.3 The TOH function shown in Figure 2.2 makes two recursive
calls: one to move n — 1 rings off the bottom ring, and another to move
these n — 1 rings back to the goal pole. We can eliminate the recursion by
using a stack to store a representation of the three operations that TOH must
perform: two recursive calls and a move operation. To do so, we must first
come up with a representation of the various operations, implemented as a
class whose objects will be stored on the stack.

Figure 4.22 shows such a class. We first define an enumerated type
called TOHop, with two values MOVE and TOH, to indicate calls to the
move function and recursive calls to TOH, respectively. Class TOHobj
stores five values: an operation field (indicating either a move or a new
TOH operation), the number of rings, and the three poles. Note that the
move operation actually needs only to store information about two poles.
Thus, there are two constructors: one to store the state when imitating a
recursive call, and one to store the state for a move operation.

An array-based stack is used because we know that the stack will need
to store exactly 2n+ 1 elements. The new version of TOH begins by placing
on the stack a description of the initial problem for n rings. The rest of
the function is simply a while loop that pops the stack and executes the
appropriate operation. In the case of a TOH operation (for n > 0), we
store on the stack representations for the three operations executed by the
recursive version. However, these operations must be placed on the stack
in reverse order, so that they will be popped off in the correct order.

Recursive algorithms lend themselves to efficient implementation with a stack
when the amount of information needed to describe a sub-problem is small. For
example, Section 7.5 discusses a stack-based implementation for Quicksort.

4.3 Queues

Like the stack, the queue is a list-like structure that provides restricted access to
its elements. Queue elements may only be inserted at the back (called an enqueue
operation) and removed from the front (called a dequeue operation). Queues oper-
ate like standing in line at a movie theater ticket counter.! If nobody cheats, then
newcomers go to the back of the line. The person at the front of the line is the next
to be served. Thus, queues release their elements in order of arrival. Accountants
have used queues since long before the existence of computers. They call a queue
a “FIFO” list, which stands for “First-In, First-Out.” Figure 4.23 shows a sample

'In Britain, a line of people is called a “queue,” and getting into line to wait for service is called
“queuing up.”
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// Operation choices: DOMOVE will move a disk
// DOTOH corresponds to a recursive call

enum TOHop { DOMOVE, DOTOH },;

class TOHobj { // An operation object

public:
TOHop op; // This operation type
int num; // How many disks

Pole start, goal, tmp; // Define pole order

// DOTOH operation constructor
TOHobj(int n, Pole s, Pole g, Pole t) {
op = DOTOH; num n;
start = s; goal g, tmp = t;
}

// DOMOVE operation constructor
TOHobj (Pole s, Pole g)
{ op = DOMOVE; start = s; goal = g; }
};

void TOH(int n, Pole start, Pole goal, Pole tmp,
Stack<TOHobj*x>& S) {
S.push (new TOHobj(n, start, goal, tmp)); // Initial
TOHobj* t;

while (S.length() > 0) { // Grab next task
t = S.pop();
if (t->op == DOMOVE) // Do a move

move (t—->start, t->goal);

else if (t->num > 0) {
// Store (in reverse) 3 recursive statements
int num = t->num;
Pole tmp = t->tmp; Pole goal = t->goal;
Pole start = t->start;
S.push (new TOHobj(num-1, tmp, goal, start));
S.push (new TOHobj(start, goal));
S.push (new TOHobj(num-1, start, tmp, goal));

}
delete t; // Must delete the TOHobj we made

}
} Figure 4.22 Stack-based implementation for Towers of Hanoi.

queue ADT. This section presents two implementations for queues: the array-based
queue and the linked queue.

4.3.1 Array-Based Queues

The array-based queue is somewhat tricky to implement effectively. A simple con-
version of the array-based list implementation is not efficient.

Assume that there are n elements in the queue. By analogy to the array-based
list implementation, we could require that all elements of the queue be stored in the
first n positions of the array. If we choose the rear element of the queue to be in
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// Abstract queue class
template <typename E> class Queue {

private:
void operator =(const Queue&) {} // Protect assignment
Queue (const Queue&) {} // Protect copy constructor
public:
Queue() {} // Default

virtual “Queue() {} // Base destructor

// Reinitialize the queue. The user is responsible for
// reclaiming the storage used by the queue elements.
virtual void clear() = O0;

// Place an element at the rear of the queue.
// it: The element being enqueued.
virtual void enqueue (const E&) = 0;

// Remove and return element at the front of the queue.
// Return: The element at the front of the queue.
virtual E dequeue() = O;

// Return: A copy of the front element.
virtual const E& frontValue() const = 0;

// Return: The number of elements in the queue.
virtual int length() const = 0;

Figure 4.23 The C++ ADT for a queue.

position 0, then dequeue operations require only ©(1) time because the front ele-
ment of the queue (the one being removed) is the last element in the array. However,
enqueue operations will require ©(n) time, because the n elements currently in
the queue must each be shifted one position in the array. If instead we chose the
rear element of the queue to be in position n — 1, then an enqueue operation is
equivalent to an append operation on a list. This requires only O(1) time. But
now, a dequeue operation requires O(n) time, because all of the elements must
be shifted down by one position to retain the property that the remaining n — 1
queue elements reside in the first n — 1 positions of the array.

A far more efficient implementation can be obtained by relaxing the require-
ment that all elements of the queue must be in the first n positions of the array.
We will still require that the queue be stored be in contiguous array positions, but
the contents of the queue will be permitted to drift within the array, as illustrated
by Figure 4.24. Now, both the enqueue and the dequeue operations can be
performed in ©(1) time because no other elements in the queue need be moved.

This implementation raises a new problem. Assume that the front element of
the queue is initially at position 0, and that elements are added to successively
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Figure 4.24 After repeated use, elements in the array-based queue will drift to
the back of the array. (a) The queue after the initial four numbers 20, 5, 12, and 17
have been inserted. (b) The queue after elements 20 and 5 are deleted, following
which 3, 30, and 4 are inserted.

front

Figure 4.25 The circular queue with array positions increasing in the clockwise
direction. (a) The queue after the initial four numbers 20, 5, 12, and 17 have been
inserted. (b) The queue after elements 20 and 5 are deleted, following which 3,
30, and 4 are inserted.

higher-numbered positions in the array. When elements are removed from the
queue, the front index increases. Over time, the entire queue will drift toward
the higher-numbered positions in the array. Once an element is inserted into the
highest-numbered position in the array, the queue has run out of space. This hap-
pens despite the fact that there might be free positions at the low end of the array
where elements have previously been removed from the queue.

The “drifting queue” problem can be solved by pretending that the array is
circular and so allow the queue to continue directly from the highest-numbered
position in the array to the lowest-numbered position. This is easily implemented
through use of the modulus operator (denoted by % in C++). In this way, positions
in the array are numbered from O through size—1, and position size—1 is de-
fined to immediately precede position 0 (which is equivalent to position size %
size). Figure 4.25 illustrates this solution.
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There remains one more serious, though subtle, problem to the array-based
queue implementation. How can we recognize when the queue is empty or full?
Assume that £ront stores the array index for the front element in the queue, and
rear stores the array index for the rear element. If both £ront and rear have the
same position, then with this scheme there must be one element in the queue. Thus,
an empty queue would be recognized by having rear be one less than front (tak-
ing into account the fact that the queue is circular, so position size—1 is actually
considered to be one less than position 0). But what if the queue is completely full?
In other words, what is the situation when a queue with n array positions available
contains n elements? In this case, if the front element is in position 0, then the
rear element is in position size—1. But this means that the value for rear is one
less than the value for £ront when the circular nature of the queue is taken into
account. In other words, the full queue is indistinguishable from the empty queue!

You might think that the problem is in the assumption about £ront and rear
being defined to store the array indices of the front and rear elements, respectively,
and that some modification in this definition will allow a solution. Unfortunately,
the problem cannot be remedied by a simple change to the definition for front
and rear, because of the number of conditions or states that the queue can be in.
Ignoring the actual position of the first element, and ignoring the actual values of
the elements stored in the queue, how many different states are there? There can
be no elements in the queue, one element, two, and so on. At most there can be
n elements in the queue if there are n array positions. This means that there are
n + 1 different states for the queue (0 through n elements are possible).

If the value of f£ront is fixed, then n + 1 different values for rear are needed
to distinguish among the n 4- 1 states. However, there are only n possible values for
rear unless we invent a special case for, say, empty queues. This is an example of
the Pigeonhole Principle defined in Exercise 2.30. The Pigeonhole Principle states
that, given n pigeonholes and n + 1 pigeons, when all of the pigeons go into the
holes we can be sure that at least one hole contains more than one pigeon. In similar
manner, we can be sure that two of the n + 1 states are indistinguishable by the n
relative values of £ront and rear. We must seek some other way to distinguish
full from empty queues.

One obvious solution is to keep an explicit count of the number of elements in
the queue, or at least a Boolean variable that indicates whether the queue is empty
or not. Another solution is to make the array be of size n + 1, and only allow
n elements to be stored. Which of these solutions to adopt is purely a matter of the
implementor’s taste in such affairs. My choice is to use an array of size n + 1.

Figure 4.26 shows an array-based queue implementation. 1istArray holds
the queue elements, and as usual, the queue constructor allows an optional param-
eter to set the maximum size of the queue. The array as created is actually large
enough to hold one element more than the queue will allow, so that empty queues
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// Array-based queue implementation
template <typename E> class AQueue: public Queue<E> ({

private:
int maxSize; // Maximum size of queue
int front; // Index of front element
int rear; // Index of rear element
E xlistArray; // Array holding queue elements
public:

AQueue (int size =defaultSize) { // Constructor
// Make list array one position larger for empty slot
maxSize = size+l;
rear = 0; front = 1;
listArray = new E[maxSize];

}

“AQueue () { delete [] listArray; } // Destructor

void clear() { rear = 0; front = 1; } // Reinitialize

void enqueue (const E& it) { // Put "it" in queue
Assert (((rear+2) % maxSize) != front, "Queue is full");
rear = (rear+l) % maxSize; // Circular increment
listArray[rear] = it;

}

E dequeue() { // Take element out
Assert (length() != 0, "Queue is empty");
E it = listArray[front];
front = (front+l) % maxSize; // Circular increment

return it;

}

const E& frontValue() const { // Get front value
Assert (length() != 0, "Queue is empty");
return listArray[front];

}

virtual int length() const // Return length
{ return ((rear+maxSize) - front + 1) % maxSize; }

};

Figure 4.26 An array-based queue implementation.
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can be distinguished from full queues. Member maxSize is used to control the
circular motion of the queue (it is the base for the modulus operator). Member
rear is set to the position of the current rear element, while £ront is the position
of the current front element.

In this implementation, the front of the queue is defined to be toward the
lower numbered positions in the array (in the counter-clockwise direction in Fig-
ure 4.25), and the rear is defined to be toward the higher-numbered positions. Thus,
enqueue increments the rear pointer (modulus size), and dequeue increments
the front pointer. Implementation of all member functions is straightforward.

4.3.2 Linked Queues

The linked queue implementation is a straightforward adaptation of the linked list.
Figure 4.27 shows the linked queue class declaration. Methods £ront and rear
are pointers to the front and rear queue elements, respectively. We will use a header
link node, which allows for a simpler implementation of the enqueue operation by
avoiding any special cases when the queue is empty. On initialization, the front
and rear pointers will point to the header node, and front will always point to
the header node while rear points to the true last link node in the queue. Method
enqueue places the new element in a link node at the end of the linked list (i.e.,
the node that rear points to) and then advances rear to point to the new link
node. Method dequeue removes and returns the first element of the list.

4.3.3 Comparison of Array-Based and Linked Queues

All member functions for both the array-based and linked queue implementations
require constant time. The space comparison issues are the same as for the equiva-
lent stack implementations. Unlike the array-based stack implementation, there is
no convenient way to store two queues in the same array, unless items are always
transferred directly from one queue to the other.

4.4 Dictionaries

The most common objective of computer programs is to store and retrieve data.
Much of this book is about efficient ways to organize collections of data records
so that they can be stored and retrieved quickly. In this section we describe a
simple interface for such a collection, called a dictionary. The dictionary ADT
provides operations for storing records, finding records, and removing records from
the collection. This ADT gives us a standard basis for comparing various data
structures.

Before we can discuss the interface for a dictionary, we must first define the
concepts of a key and comparable objects. If we want to search for a given record
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