
Data Structures and Algorithm
Analysis

Edition 3.2 (C++ Version)

Clifford A. Shaffer
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061

March 28, 2013
Update 3.2.0.10

For a list of changes, see
http://people.cs.vt.edu/

˜

shaffer/Book/errata.html

Copyright © 2009-2012 by Clifford A. Shaffer.
This document is made freely available in PDF form for educational and

other non-commercial use. You may make copies of this file and
redistribute in electronic form without charge. You may extract portions of
this document provided that the front page, including the title, author, and

this notice are included. Any commercial use of this document requires the
written consent of the author. The author can be reached at

shaffer@cs.vt.edu.
If you wish to have a printed version of this document, print copies are

published by Dover Publications
(see http://store.doverpublications.com/048648582x.html).

Further information about this text is available at
http://people.cs.vt.edu/

˜

shaffer/Book/.



120 Chap. 4 Lists, Stacks, and Queues

Example 4.1 There is a space-saving technique that can be employed to
eliminate the additional space requirement, though it will complicate the
implementation and be somewhat slower. Thus, this is an example of a
space/time tradeoff. It is based on observing that, if we store the sum of
two values, then we can get either value back by subtracting the other. That
is, if we store a+ b in variable c, then b = c� a and a = c� b. Of course,
to recover one of the values out of the stored summation, the other value
must be supplied. A pointer to the first node in the list, along with the value
of one of its two link fields, will allow access to all of the remaining nodes
of the list in order. This is because the pointer to the node must be the same
as the value of the following node’s prev pointer, as well as the previous
node’s next pointer. It is possible to move down the list breaking apart
the summed link fields as though you were opening a zipper. Details for
implementing this variation are left as an exercise.

The principle behind this technique is worth remembering, as it has
many applications. The following code fragment will swap the contents
of two variables without using a temporary variable (at the cost of three
arithmetic operations).

a = a + b;
b = a - b; // Now b contains original value of a
a = a - b; // Now a contains original value of b

A similar effect can be had by using the exclusive-or operator. This fact
is widely used in computer graphics. A region of the computer screen can
be highlighted by XORing the outline of a box around it. XORing the box
outline a second time restores the original contents of the screen.

4.2 Stacks

The stack is a list-like structure in which elements may be inserted or removed
from only one end. While this restriction makes stacks less flexible than lists, it
also makes stacks both efficient (for those operations they can do) and easy to im-
plement. Many applications require only the limited form of insert and remove
operations that stacks provide. In such cases, it is more efficient to use the sim-
pler stack data structure rather than the generic list. For example, the freelist of
Section 4.1.2 is really a stack.

Despite their restrictions, stacks have many uses. Thus, a special vocabulary
for stacks has developed. Accountants used stacks long before the invention of the
computer. They called the stack a “LIFO” list, which stands for “Last-In, First-



Sec. 4.2 Stacks 121

// Stack abtract class
template <typename E> class Stack {
private:

void operator =(const Stack&) {} // Protect assignment
Stack(const Stack&) {} // Protect copy constructor

public:
Stack() {} // Default constructor
virtual ˜Stack() {} // Base destructor

// Reinitialize the stack. The user is responsible for
// reclaiming the storage used by the stack elements.
virtual void clear() = 0;

// Push an element onto the top of the stack.
// it: The element being pushed onto the stack.
virtual void push(const E& it) = 0;

// Remove the element at the top of the stack.
// Return: The element at the top of the stack.
virtual E pop() = 0;

// Return: A copy of the top element.
virtual const E& topValue() const = 0;

// Return: The number of elements in the stack.
virtual int length() const = 0;

};

Figure 4.17 The stack ADT.

Out.” Note that one implication of the LIFO policy is that stacks remove elements
in reverse order of their arrival.

The accessible element of the stack is called the top element. Elements are not
said to be inserted, they are pushed onto the stack. When removed, an element is
said to be popped from the stack. Figure 4.17 shows a sample stack ADT.

As with lists, there are many variations on stack implementation. The two ap-
proaches presented here are array-based and linked stacks, which are analogous
to array-based and linked lists, respectively.

4.2.1 Array-Based Stacks

Figure 4.18 shows a complete implementation for the array-based stack class. As
with the array-based list implementation, listArray must be declared of fixed
size when the stack is created. In the stack constructor, size serves to indicate
this size. Method top acts somewhat like a current position value (because the
“current” position is always at the top of the stack), as well as indicating the number
of elements currently in the stack.



122 Chap. 4 Lists, Stacks, and Queues

// Array-based stack implementation
template <typename E> class AStack: public Stack<E> {
private:

int maxSize; // Maximum size of stack
int top; // Index for top element
E *listArray; // Array holding stack elements

public:
AStack(int size =defaultSize) // Constructor

{ maxSize = size; top = 0; listArray = new E[size]; }

˜AStack() { delete [] listArray; } // Destructor

void clear() { top = 0; } // Reinitialize

void push(const E& it) { // Put "it" on stack
Assert(top != maxSize, "Stack is full");
listArray[top++] = it;

}

E pop() { // Pop top element
Assert(top != 0, "Stack is empty");
return listArray[--top];

}

const E& topValue() const { // Return top element
Assert(top != 0, "Stack is empty");
return listArray[top-1];

}

int length() const { return top; } // Return length
};

Figure 4.18 Array-based stack class implementation.

The array-based stack implementation is essentially a simplified version of the
array-based list. The only important design decision to be made is which end of
the array should represent the top of the stack. One choice is to make the top be
at position 0 in the array. In terms of list functions, all insert and remove
operations would then be on the element in position 0. This implementation is
inefficient, because now every push or pop operation will require that all elements
currently in the stack be shifted one position in the array, for a cost of ⇥(n) if there
are n elements. The other choice is have the top element be at position n� 1 when
there are n elements in the stack. In other words, as elements are pushed onto
the stack, they are appended to the tail of the list. Method pop removes the tail
element. In this case, the cost for each push or pop operation is only ⇥(1).

For the implementation of Figure 4.18, top is defined to be the array index of
the first free position in the stack. Thus, an empty stack has top set to 0, the first
available free position in the array. (Alternatively, top could have been defined to



Sec. 4.2 Stacks 123

be the index for the top element in the stack, rather than the first free position. If
this had been done, the empty list would initialize top as �1.) Methods push and
pop simply place an element into, or remove an element from, the array position
indicated by top. Because top is assumed to be at the first free position, push
first inserts its value into the top position and then increments top, while pop first
decrements top and then removes the top element.

4.2.2 Linked Stacks

The linked stack implementation is quite simple. The freelist of Section 4.1.2 is
an example of a linked stack. Elements are inserted and removed only from the
head of the list. A header node is not used because no special-case code is required
for lists of zero or one elements. Figure 4.19 shows the complete linked stack
implementation. The only data member is top, a pointer to the first (top) link node
of the stack. Method push first modifies the next field of the newly created link
node to point to the top of the stack and then sets top to point to the new link
node. Method pop is also quite simple. Variable temp stores the top nodes’ value,
while ltemp links to the top node as it is removed from the stack. The stack is
updated by setting top to point to the next link in the stack. The old top node is
then returned to free store (or the freelist), and the element value is returned.

4.2.3 Comparison of Array-Based and Linked Stacks

All operations for the array-based and linked stack implementations take constant
time, so from a time efficiency perspective, neither has a significant advantage.
Another basis for comparison is the total space required. The analysis is similar to
that done for list implementations. The array-based stack must declare a fixed-size
array initially, and some of that space is wasted whenever the stack is not full. The
linked stack can shrink and grow but requires the overhead of a link field for every
element.

When multiple stacks are to be implemented, it is possible to take advantage of
the one-way growth of the array-based stack. This can be done by using a single
array to store two stacks. One stack grows inward from each end as illustrated by
Figure 4.20, hopefully leading to less wasted space. However, this only works well
when the space requirements of the two stacks are inversely correlated. In other
words, ideally when one stack grows, the other will shrink. This is particularly
effective when elements are taken from one stack and given to the other. If instead
both stacks grow at the same time, then the free space in the middle of the array
will be exhausted quickly.



124 Chap. 4 Lists, Stacks, and Queues

// Linked stack implementation
template <typename E> class LStack: public Stack<E> {
private:

Link<E>* top; // Pointer to first element
int size; // Number of elements

public:
LStack(int sz =defaultSize) // Constructor

{ top = NULL; size = 0; }

˜LStack() { clear(); } // Destructor

void clear() { // Reinitialize
while (top != NULL) { // Delete link nodes

Link<E>* temp = top;
top = top->next;
delete temp;

}
size = 0;

}

void push(const E& it) { // Put "it" on stack
top = new Link<E>(it, top);
size++;

}

E pop() { // Remove "it" from stack
Assert(top != NULL, "Stack is empty");
E it = top->element;
Link<E>* ltemp = top->next;
delete top;
top = ltemp;
size--;
return it;

}

const E& topValue() const { // Return top value
Assert(top != 0, "Stack is empty");
return top->element;

}

int length() const { return size; } // Return length
};

Figure 4.19 Linked stack class implementation.

top1 top2

Figure 4.20 Two stacks implemented within in a single array, both growing
toward the middle.


