
Data Structures and Algorithm

Analysis

Edition 3.2 (C++ Version)

Clifford A. Shaffer

Department of Computer Science

Virginia Tech

Blacksburg, VA 24061

March 28, 2013

Update 3.2.0.10

For a list of changes, see

http://people.cs.vt.edu/

˜

shaffer/Book/errata.html

Copyright © 2009-2012 by Clifford A. Shaffer.

This document is made freely available in PDF form for educational and

other non-commercial use. You may make copies of this file and

redistribute in electronic form without charge. You may extract portions of

this document provided that the front page, including the title, author, and

this notice are included. Any commercial use of this document requires the

written consent of the author. The author can be reached at

shaffer@cs.vt.edu.

If you wish to have a printed version of this document, print copies are

published by Dover Publications

(see http://store.doverpublications.com/048648582x.html).

Further information about this text is available at

http://people.cs.vt.edu/

˜

shaffer/Book/.

http://people.cs.vt.edu/~shaffer/Book/errata.html
http://store.doverpublications.com/048648582x.html
http://people.cs.vt.edu/~shaffer/Book/

98 Chap. 4 Lists, Stacks, and Queues

template <typename E> class List { // List ADT
private:

void operator =(const List&) {} // Protect assignment
List(const List&) {} // Protect copy constructor

public:
List() {} // Default constructor
virtual ˜List() {} // Base destructor

// Clear contents from the list, to make it empty.
virtual void clear() = 0;

// Insert an element at the current location.
// item: The element to be inserted
virtual void insert(const E& item) = 0;

// Append an element at the end of the list.
// item: The element to be appended.
virtual void append(const E& item) = 0;

// Remove and return the current element.
// Return: the element that was removed.
virtual E remove() = 0;

// Set the current position to the start of the list
virtual void moveToStart() = 0;

// Set the current position to the end of the list
virtual void moveToEnd() = 0;

// Move the current position one step left. No change
// if already at beginning.
virtual void prev() = 0;

// Move the current position one step right. No change
// if already at end.
virtual void next() = 0;

// Return: The number of elements in the list.
virtual int length() const = 0;

// Return: The position of the current element.
virtual int currPos() const = 0;

// Set current position.
// pos: The position to make current.
virtual void moveToPos(int pos) = 0;

// Return: The current element.
virtual const E& getValue() const = 0;

};

Figure 4.1 The ADT for a list.

Sec. 4.1 Lists 99

A list can be iterated through as shown in the following code fragment.

for (L.moveToStart(); L.currPos()<L.length(); L.next()) {
it = L.getValue();
doSomething(it);

}

In this example, each element of the list in turn is stored in it, and passed to the

doSomething function. The loop terminates when the current position reaches

the end of the list.

The declaration for abstract class List also makes private the class copy con-

structor and an overloading for the assignment operator. This protects the class

from accidentally being copied. This is done in part to simplify the example code

used in this book. A full-featured list implementation would likely support copying

and assigning list objects.

The list class declaration presented here is just one of many possible interpreta-

tions for lists. Figure 4.1 provides most of the operations that one naturally expects

to perform on lists and serves to illustrate the issues relevant to implementing the

list data structure. As an example of using the list ADT, we can create a function

to return true if there is an occurrence of a given integer in the list, and false
otherwise. The find method needs no knowledge about the specific list imple-

mentation, just the list ADT.

// Return true if "K" is in list "L", false otherwise
bool find(List<int>& L, int K) {

int it;
for (L.moveToStart(); L.currPos()<L.length(); L.next()) {

it = L.getValue();
if (K == it) return true; // Found K

}
return false; // K not found

}

While this implementation for find could be written as a template with respect

to the element type, it would still be limited in its ability to handle different data

types stored on the list. In particular, it only works when the description for the

object being searched for (k in the function) is of the same type as the objects

themselves, and that can meaningfully be compared when using the == comparison

operator. A more typical situation is that we are searching for a record that contains

a key field who’s value matches k. Similar functions to find and return a composite

element based on a key value can be created using the list implementation, but to

do so requires some agreement between the list ADT and the find function on the

concept of a key, and on how keys may be compared. This topic will be discussed

in Section 4.4.

100 Chap. 4 Lists, Stacks, and Queues

4.1.1 Array-Based List Implementation

There are two standard approaches to implementing lists, the array-based list, and

the linked list. This section discusses the array-based approach. The linked list is

presented in Section 4.1.2. Time and space efficiency comparisons for the two are

discussed in Section 4.1.3.

Figure 4.2 shows the array-based list implementation, named AList. AList
inherits from abstract class List and so must implement all of the member func-

tions of List.

Class AList’s private portion contains the data members for the array-based

list. These include listArray, the array which holds the list elements. Because

listArray must be allocated at some fixed size, the size of the array must be

known when the list object is created. Note that an optional parameter is declared

for the AList constructor. With this parameter, the user can indicate the maximum

number of elements permitted in the list. The phrase “=defaultSize” indicates

that the parameter is optional. If no parameter is given, then it takes the value

defaultSize, which is assumed to be a suitably defined constant value.

Because each list can have a differently sized array, each list must remember

its maximum permitted size. Data member maxSize serves this purpose. At any

given time the list actually holds some number of elements that can be less than the

maximum allowed by the array. This value is stored in listSize. Data member

curr stores the current position. Because listArray, maxSize, listSize,

and curr are all declared to be private, they may only be accessed by methods

of Class AList.

Class AList stores the list elements in the first listSize contiguous array

positions. Array positions correspond to list positions. In other words, the element

at position i in the list is stored at array cell i. The head of the list is always at

position 0. This makes random access to any element in the list quite easy. Given

some position in the list, the value of the element in that position can be accessed

directly. Thus, access to any element using the moveToPos method followed by

the getValue method takes ⇥(1) time.

Because the array-based list implementation is defined to store list elements in

contiguous cells of the array, the insert, append, and remove methods must

maintain this property. Inserting or removing elements at the tail of the list is easy,

so the append operation takes ⇥(1) time. But if we wish to insert an element at

the head of the list, all elements currently in the list must shift one position toward

the tail to make room, as illustrated by Figure 4.3. This process takes ⇥(n) time

if there are n elements already in the list. If we wish to insert at position i within

a list of n elements, then n � i elements must shift toward the tail. Removing an

element from the head of the list is similar in that all remaining elements must shift

toward the head by one position to fill in the gap. To remove the element at position

Sec. 4.1 Lists 101

template <typename E> // Array-based list implementation
class AList : public List<E> {
private:

int maxSize; // Maximum size of list
int listSize; // Number of list items now
int curr; // Position of current element
E* listArray; // Array holding list elements

public:
AList(int size=defaultSize) { // Constructor

maxSize = size;
listSize = curr = 0;
listArray = new E[maxSize];

}

˜AList() { delete [] listArray; } // Destructor

void clear() { // Reinitialize the list
delete [] listArray; // Remove the array
listSize = curr = 0; // Reset the size
listArray = new E[maxSize]; // Recreate array

}

// Insert "it" at current position
void insert(const E& it) {

Assert(listSize < maxSize, "List capacity exceeded");
for(int i=listSize; i>curr; i--) // Shift elements up

listArray[i] = listArray[i-1]; // to make room
listArray[curr] = it;
listSize++; // Increment list size

}

void append(const E& it) { // Append "it"
Assert(listSize < maxSize, "List capacity exceeded");
listArray[listSize++] = it;

}

// Remove and return the current element.
E remove() {

Assert((curr>=0) && (curr < listSize), "No element");
E it = listArray[curr]; // Copy the element
for(int i=curr; i<listSize-1; i++) // Shift them down

listArray[i] = listArray[i+1];
listSize--; // Decrement size
return it;

}

Figure 4.2 An array-based list implementation.

102 Chap. 4 Lists, Stacks, and Queues

void moveToStart() { curr = 0; } // Reset position
void moveToEnd() { curr = listSize; } // Set at end
void prev() { if (curr != 0) curr--; } // Back up
void next() { if (curr < listSize) curr++; } // Next

// Return list size
int length() const { return listSize; }

// Return current position
int currPos() const { return curr; }

// Set current list position to "pos"
void moveToPos(int pos) {

Assert ((pos>=0)&&(pos<=listSize), "Pos out of range");
curr = pos;

}

const E& getValue() const { // Return current element
Assert((curr>=0)&&(curr<listSize),"No current element");
return listArray[curr];

}
};

Figure 4.2 (continued)

Insert 23:

12 20 38 13 12 20 8 3

3820121323

13

(a) (b)

(c)

50 1 2 4 43210

1 2 3 4 5

5

0

3

Figure 4.3 Inserting an element at the head of an array-based list requires shift-

ing all existing elements in the array by one position toward the tail. (a) A list

containing five elements before inserting an element with value 23. (b) The list

after shifting all existing elements one position to the right. (c) The list after 23

has been inserted in array position 0. Shading indicates the unused part of the

array.

i, n � i � 1 elements must shift toward the head. In the average case, insertion or

removal requires moving half of the elements, which is ⇥(n).

Most of the other member functions for Class AList simply access the current

list element or move the current position. Such operations all require ⇥(1) time.

Aside from insert and remove, the only other operations that might require

Sec. 4.1 Lists 103

// Singly linked list node
template <typename E> class Link {
public:

E element; // Value for this node
Link *next; // Pointer to next node in list
// Constructors
Link(const E& elemval, Link* nextval =NULL)

{ element = elemval; next = nextval; }
Link(Link* nextval =NULL) { next = nextval; }

};

Figure 4.4 A simple singly linked list node implementation.

more than constant time are the constructor, the destructor, and clear. These

three member functions each make use of the system free-storeoperators new and

delete. As discussed further in Section 4.1.2, system free-store operations can

be expensive. In particular, the cost to delete listArray depends in part on the

type of elements it stores, and whether the delete operator must call a destructor

on each one.

4.1.2 Linked Lists

The second traditional approach to implementing lists makes use of pointers and is

usually called a linked list. The linked list uses dynamic memory allocation, that

is, it allocates memory for new list elements as needed.

A linked list is made up of a series of objects, called the nodes of the list.

Because a list node is a distinct object (as opposed to simply a cell in an array), it is

good practice to make a separate list node class. An additional benefit to creating a

list node class is that it can be reused by the linked implementations for the stack

and queue data structures presented later in this chapter. Figure 4.4 shows the

implementation for list nodes, called the Link class. Objects in the Link class

contain an element field to store the element value, and a next field to store a

pointer to the next node on the list. The list built from such nodes is called a singly
linked list, or a one-way list, because each list node has a single pointer to the next

node on the list.

The Link class is quite simple. There are two forms for its constructor, one

with an initial element value and one without. Because the Link class is also

used by the stack and queue implementations presented later, its data members are

made public. While technically this is breaking encapsulation, in practice the Link
class should be implemented as a private class of the linked list (or stack or queue)

implementation, and thus not visible to the rest of the program.

Figure 4.5(a) shows a graphical depiction for a linked list storing four integers.

The value stored in a pointer variable is indicated by an arrow “pointing” to some-

thing. C++

uses the special symbol NULL for a pointer value that points nowhere,

such as for the last list node’s next field. A NULL pointer is indicated graphically

	Preface
	I Preliminaries
	1 Data Structures and Algorithms
	1.1 A Philosophy of Data Structures
	1.1.1 The Need for Data Structures
	1.1.2 Costs and Benefits

	1.2 Abstract Data Types and Data Structures
	1.3 Design Patterns
	1.3.1 Flyweight
	1.3.2 Visitor
	1.3.3 Composite
	1.3.4 Strategy

	1.4 Problems, Algorithms, and Programs
	1.5 Further Reading
	1.6 Exercises

	2 Mathematical Preliminaries
	2.1 Sets and Relations
	2.2 Miscellaneous Notation
	2.3 Logarithms
	2.4 Summations and Recurrences
	2.5 Recursion
	2.6 Mathematical Proof Techniques
	2.6.1 Direct Proof
	2.6.2 Proof by Contradiction
	2.6.3 Proof by Mathematical Induction

	2.7 Estimation
	2.8 Further Reading
	2.9 Exercises

	3 Algorithm Analysis
	3.1 Introduction
	3.2 Best, Worst, and Average Cases
	3.3 A Faster Computer, or a Faster Algorithm?
	3.4 Asymptotic Analysis
	3.4.1 Upper Bounds
	3.4.2 Lower Bounds
	3.4.3 Notation
	3.4.4 Simplifying Rules
	3.4.5 Classifying Functions

	3.5 Calculating the Running Time for a Program
	3.6 Analyzing Problems
	3.7 Common Misunderstandings
	3.8 Multiple Parameters
	3.9 Space Bounds
	3.10 Speeding Up Your Programs
	3.11 Empirical Analysis
	3.12 Further Reading
	3.13 Exercises
	3.14 Projects

	II Fundamental Data Structures
	4 Lists, Stacks, and Queues
	4.1 Lists
	4.1.1 Array-Based List Implementation
	4.1.2 Linked Lists
	4.1.3 Comparison of List Implementations
	4.1.4 Element Implementations
	4.1.5 Doubly Linked Lists

	4.2 Stacks
	4.2.1 Array-Based Stacks
	4.2.2 Linked Stacks
	4.2.3 Comparison of Array-Based and Linked Stacks
	4.2.4 Implementing Recursion

	4.3 Queues
	4.3.1 Array-Based Queues
	4.3.2 Linked Queues
	4.3.3 Comparison of Array-Based and Linked Queues

	4.4 Dictionaries
	4.5 Further Reading
	4.6 Exercises
	4.7 Projects

	5 Binary Trees
	5.1 Definitions and Properties
	5.1.1 The Full Binary Tree Theorem
	5.1.2 A Binary Tree Node ADT

	5.2 Binary Tree Traversals
	5.3 Binary Tree Node Implementations
	5.3.1 Pointer-Based Node Implementations
	5.3.2 Space Requirements
	5.3.3 Array Implementation for Complete Binary Trees

	5.4 Binary Search Trees
	5.5 Heaps and Priority Queues
	5.6 Huffman Coding Trees
	5.6.1 Building Huffman Coding Trees
	5.6.2 Assigning and Using Huffman Codes
	5.6.3 Search in Huffman Trees

	5.7 Further Reading
	5.8 Exercises
	5.9 Projects

	6 Non-Binary Trees
	6.1 General Tree Definitions and Terminology
	6.1.1 An ADT for General Tree Nodes
	6.1.2 General Tree Traversals

	6.2 The Parent Pointer Implementation
	6.3 General Tree Implementations
	6.3.1 List of Children
	6.3.2 The Left-Child/Right-Sibling Implementation
	6.3.3 Dynamic Node Implementations
	6.3.4 Dynamic ``Left-Child/Right-Sibling'' Implementation

	6.4 K-ary Trees
	6.5 Sequential Tree Implementations
	6.6 Further Reading
	6.7 Exercises
	6.8 Projects

	III Sorting and Searching
	7 Internal Sorting
	7.1 Sorting Terminology and Notation
	7.2 Three (n2) Sorting Algorithms
	7.2.1 Insertion Sort
	7.2.2 Bubble Sort
	7.2.3 Selection Sort
	7.2.4 The Cost of Exchange Sorting

	7.3 Shellsort
	7.4 Mergesort
	7.5 Quicksort
	7.6 Heapsort
	7.7 Binsort and Radix Sort
	7.8 An Empirical Comparison of Sorting Algorithms
	7.9 Lower Bounds for Sorting
	7.10 Further Reading
	7.11 Exercises
	7.12 Projects

	8 File Processing and External Sorting
	8.1 Primary versus Secondary Storage
	8.2 Disk Drives
	8.2.1 Disk Drive Architecture
	8.2.2 Disk Access Costs

	8.3 Buffers and Buffer Pools
	8.4 The Programmer's View of Files
	8.5 External Sorting
	8.5.1 Simple Approaches to External Sorting
	8.5.2 Replacement Selection
	8.5.3 Multiway Merging

	8.6 Further Reading
	8.7 Exercises
	8.8 Projects

	9 Searching
	9.1 Searching Unsorted and Sorted Arrays
	9.2 Self-Organizing Lists
	9.3 Bit Vectors for Representing Sets
	9.4 Hashing
	9.4.1 Hash Functions
	9.4.2 Open Hashing
	9.4.3 Closed Hashing
	9.4.4 Analysis of Closed Hashing
	9.4.5 Deletion

	9.5 Further Reading
	9.6 Exercises
	9.7 Projects

	10 Indexing
	10.1 Linear Indexing
	10.2 ISAM
	10.3 Tree-based Indexing
	10.4 2-3 Trees
	10.5 B-Trees
	10.5.1 B+-Trees
	10.5.2 B-Tree Analysis

	10.6 Further Reading
	10.7 Exercises
	10.8 Projects

	IV Advanced Data Structures
	11 Graphs
	11.1 Terminology and Representations
	11.2 Graph Implementations
	11.3 Graph Traversals
	11.3.1 Depth-First Search
	11.3.2 Breadth-First Search
	11.3.3 Topological Sort

	11.4 Shortest-Paths Problems
	11.4.1 Single-Source Shortest Paths

	11.5 Minimum-Cost Spanning Trees
	11.5.1 Prim's Algorithm
	11.5.2 Kruskal's Algorithm

	11.6 Further Reading
	11.7 Exercises
	11.8 Projects

	12 Lists and Arrays Revisited
	12.1 Multilists
	12.2 Matrix Representations
	12.3 Memory Management
	12.3.1 Dynamic Storage Allocation
	12.3.2 Failure Policies and Garbage Collection

	12.4 Further Reading
	12.5 Exercises
	12.6 Projects

	13 Advanced Tree Structures
	13.1 Tries
	13.2 Balanced Trees
	13.2.1 The AVL Tree
	13.2.2 The Splay Tree

	13.3 Spatial Data Structures
	13.3.1 The K-D Tree
	13.3.2 The PR quadtree
	13.3.3 Other Point Data Structures
	13.3.4 Other Spatial Data Structures

	13.4 Further Reading
	13.5 Exercises
	13.6 Projects

	V Theory of Algorithms
	14 Analysis Techniques
	14.1 Summation Techniques
	14.2 Recurrence Relations
	14.2.1 Estimating Upper and Lower Bounds
	14.2.2 Expanding Recurrences
	14.2.3 Divide and Conquer Recurrences
	14.2.4 Average-Case Analysis of Quicksort

	14.3 Amortized Analysis
	14.4 Further Reading
	14.5 Exercises
	14.6 Projects

	15 Lower Bounds
	15.1 Introduction to Lower Bounds Proofs
	15.2 Lower Bounds on Searching Lists
	15.2.1 Searching in Unsorted Lists
	15.2.2 Searching in Sorted Lists

	15.3 Finding the Maximum Value
	15.4 Adversarial Lower Bounds Proofs
	15.5 State Space Lower Bounds Proofs
	15.6 Finding the ith Best Element
	15.7 Optimal Sorting
	15.8 Further Reading
	15.9 Exercises
	15.10 Projects

	16 Patterns of Algorithms
	16.1 Dynamic Programming
	16.1.1 The Knapsack Problem
	16.1.2 All-Pairs Shortest Paths

	16.2 Randomized Algorithms
	16.2.1 Randomized algorithms for finding large values
	16.2.2 Skip Lists

	16.3 Numerical Algorithms
	16.3.1 Exponentiation
	16.3.2 Largest Common Factor
	16.3.3 Matrix Multiplication
	16.3.4 Random Numbers
	16.3.5 The Fast Fourier Transform

	16.4 Further Reading
	16.5 Exercises
	16.6 Projects

	17 Limits to Computation
	17.1 Reductions
	17.2 Hard Problems
	17.2.1 The Theory of NP-Completeness
	17.2.2 NP-Completeness Proofs
	17.2.3 Coping with NP-Complete Problems

	17.3 Impossible Problems
	17.3.1 Uncountability
	17.3.2 The Halting Problem Is Unsolvable

	17.4 Further Reading
	17.5 Exercises
	17.6 Projects

	VI APPENDIX
	A Utility Functions
	Bibliography
	Index

