
Fractal
In	mathematics,	a	fractal	is	an	abstract	object	used	to	describe	and	simulate	naturally	occurring	objects.
Artificially	 created	 fractals	 commonly	 exhibit	 similar	 patterns	 at	 increasingly	 small	 scales.[1]	 It	 is	 also
known	as	expanding	symmetry	or	evolving	symmetry.	If	the	replication	is	exactly	the	same	at	every
scale,	it	is	called	a	self-similar	pattern.	An	example	of	this	is	the	Menger	sponge.[2]	Fractals	can	also	be
nearly	 the	 same	 at	 different	 levels.	 This	 latter	 pattern	 is	 illustrated	 in	 small	 magnifications	 of	 the
Mandelbrot	set.[3][4][5][6]	Fractals	also	include	the	idea	of	a	detailed	pattern	that	repeats	itself.[3][4][7]

Fractals	are	different	from	other	geometric	figures	because	of	the	way	in	which	they	scale.	Doubling	the
edge	lengths	of	a	polygon	multiplies	 its	area	by	four,	which	is	two	(the	ratio	of	the	new	to	the	old	side
length)	raised	to	the	power	of	two	(the	dimension	of	the	space	the	polygon	resides	in).	Likewise,	 if	the
radius	of	a	sphere	 is	doubled,	 its	volume	scales	by	eight,	which	 is	 two	 (the	ratio	of	 the	new	to	 the	old
radius)	to	the	power	of	three	(the	dimension	that	the	sphere	resides	in).	But	if	a	fractal's	one-dimensional
lengths	 are	 all	 doubled,	 the	 spatial	 content	 of	 the	 fractal	 scales	by	 a	power	 that	 is	 not	 necessarily	 an
integer.[3]	This	power	 is	called	the	fractal	dimension	of	 the	 fractal,	and	 it	usually	exceeds	 the	 fractal's
topological	dimension.[8]

As	mathematical	equations,	 fractals	are	usually	nowhere	differentiable.[3][6][9]	 An	 infinite	 fractal	 curve
can	 be	 conceived	 of	 as	 winding	 through	 space	 differently	 from	 an	 ordinary	 line,	 still	 being	 a	 1-
dimensional	line	yet	having	a	fractal	dimension	indicating	it	also	resembles	a	surface.[3][8]

The	mathematical	roots	of	the	idea	of	fractals	have	been	traced	throughout	the	years	as	a	formal	path	of
published	works,	starting	in	the	17th	century	with	notions	of	recursion,	then	moving	through	increasingly
rigorous	 mathematical	 treatment	 of	 the	 concept	 to	 the	 study	 of	 continuous	 but	 not	 differentiable
functions	 in	 the	 19th	 century	 by	 the	 seminal	 work	 of	 Bernard	Bolzano,	 Bernhard	 Riemann,	 and	 Karl
Weierstrass,[10]	 and	 on	 to	 the	 coining	 of	 the	 word	 fractal	 in	 the	 20th	 century	 with	 a	 subsequent
burgeoning	 of	 interest	 in	 fractals	 and	 computer-based	modelling	 in	 the	 20th	 century.[11][12]	 The	 term
"fractal"	was	first	used	by	mathematician	Benoit	Mandelbrot	 in	1975.	Mandelbrot	based	it	on	the	Latin
frāctus	 meaning	 "broken"	 or	 "fractured",	 and	 used	 it	 to	 extend	 the	 concept	 of	 theoretical	 fractional
dimensions	to	geometric	patterns	in	nature.[3]:405[7]

There	is	some	disagreement	amongst	authorities	about	how	the	concept	of	a	fractal	should	be	formally
defined.	 Mandelbrot	 himself	 summarized	 it	 as	 "beautiful,	 damn	 hard,	 increasingly	 useful.	 That's
fractals."[13]	More	formally,	in	1982	Mandelbrot	stated	that	"A	fractal	is	by	definition	a	set	for	which	the
Hausdorff-Besicovitch	dimension	strictly	exceeds	the	topological	dimension."[14]	Later,	seeing	this	as	too
restrictive,	he	simplified	and	expanded	the	definition	to:	"A	fractal	is	a	shape	made	of	parts	similar	to	the
whole	 in	 some	 way."[15]	 Still	 later,	 Mandelbrot	 settled	 on	 this	 use	 of	 the	 language:	 "...to	 use	 fractal
without	 a	 pedantic	 definition,	 to	 use	 fractal	 dimension	 as	 a	 generic	 term	 applicable	 to	 all	 the
variants."[16]

The	 general	 consensus	 is	 that	 theoretical	 fractals	 are	 infinitely	 self-similar,	 iterated,	 and	 detailed
mathematical	constructs	having	fractal	dimensions,	of	which	many	examples	have	been	formulated	and
studied	 in	 great	 depth.[3][4][5]	 Fractals	 are	 not	 limited	 to	 geometric	 patterns,	 but	 can	 also	 describe
processes	 in	 time.[2][6][17][18][19][20]	 Fractal	 patterns	with	 various	 degrees	 of	 self-similarity	 have	 been
rendered	 or	 studied	 in	 images,	 structures	 and	 sounds[21]	 and	 found	 in	 nature,[22][23][24][25][26]

technology,[27][28][29][30]	art,[31][32]	architecture[33]	and	 law.[34]	Fractals	are	of	particular	 relevance
in	the	field	of	chaos	theory,	since	the	graphs	of	most	chaotic	processes	are	fractals.[35]

Introduction
History
Characteristics
Brownian	motion
Common	techniques	for	generating	fractals
Simulated	fractals
Natural	phenomena	with	fractal	features
In	creative	works
Physiological	responses
Ion	production	capabilities
Applications	in	technology

Mandelbrot	set:	Self-similarity
illustrated	by	image
enlargements.	This	panel,	no
magnification.

The	same	fractal	as	above,
magnified	6-fold.	Same
patterns	reappear,	making
the	exact	scale	being
examined	difficult	to
determine.

The	same	fractal	as	above,
magnified	100-fold.

The	same	fractal	as	above,
magnified	2000-fold,	where
the	Mandelbrot	set	fine	detail
resembles	the	detail	at	low
magnification.

Sierpinski	carpet	(to	level	6),	a
fractal	with	a	topological
dimension	of	2	and	a	Hausdorff
dimension	of	1.893
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The	word	"fractal"	often	has	different	connotations	for	laypeople	than	for	mathematicians,	where	the	layperson	is	more	likely	to	be	familiar
with	fractal	art	than	a	mathematical	conception.	The	mathematical	concept	is	difficult	to	define	formally	even	for	mathematicians,	but	key
features	can	be	understood	with	little	mathematical	background.

The	feature	of	"self-similarity",	for	instance,	is	easily	understood	by	analogy	to	zooming	in	with	a	lens	or	other	device	that	zooms	in	on	digital
images	to	uncover	finer,	previously	invisible,	new	structure.	If	this	is	done	on	fractals,	however,	no	new	detail	appears;	nothing	changes	and
the	same	pattern	repeats	over	and	over,	or	for	some	fractals,	nearly	the	same	pattern	reappears	over	and	over.[1]	Self-similarity	itself	is	not
necessarily	counter-intuitive	 (e.g.,	people	have	pondered	self-similarity	 informally	such	as	 in	 the	 infinite	regress	 in	parallel	mirrors	or	 the
homunculus,	 the	 little	man	inside	the	head	of	the	 little	man	inside	the	head	 ...).	The	difference	for	 fractals	 is	 that	the	pattern	reproduced
must	be	detailed.[3]:166;	18[4][7]

This	 idea	 of	 being	 detailed	 relates	 to	 another	 feature	 that	 can	 be	 understood	without	mathematical	 background:	Having	 a	 fractional	 or
fractal	dimension	greater	than	its	topological	dimension,	for	instance,	refers	to	how	a	fractal	scales	compared	to	how	geometric	shapes	are
usually	perceived.	A	regular	line,	for	instance,	is	conventionally	understood	to	be	1-dimensional;	if	such	a	curve	is	divided	into	pieces	each
1/3	the	length	of	the	original,	there	are	always	3	equal	pieces.	In	contrast,	consider	the	Koch	snowflake.	It	is	also	1-dimensional	for	the	same
reason	as	the	ordinary	line,	but	it	has,	in	addition,	a	fractal	dimension	greater	than	1	because	of	how	its	detail	can	be	measured.	The	fractal
curve	 divided	 into	 parts	 1/3	 the	 length	 of	 the	 original	 line	 becomes	 4	 pieces	 rearranged	 to	 repeat	 the	 original	 detail,	 and	 this	 unusual
relationship	is	the	basis	of	its	fractal	dimension.

This	also	leads	to	understanding	a	third	feature,	that	fractals	as	mathematical	equations	are	"nowhere	differentiable".	In	a	concrete	sense,
this	means	fractals	cannot	be	measured	in	traditional	ways.[3][6][9]	To	elaborate,	in	trying	to	find	the	length	of	a	wavy	non-fractal	curve,	one
could	find	straight	segments	of	some	measuring	tool	small	enough	to	lay	end	to	end	over	the	waves,	where	the	pieces	could	get	small	enough
to	be	considered	to	conform	to	the	curve	in	the	normal	manner	of	measuring	with	a	tape	measure.	But	in	measuring	a	wavy	fractal	curve
such	as	the	Koch	snowflake,	one	would	never	find	a	small	enough	straight	segment	to	conform	to	the	curve,	because	the	wavy	pattern	would
always	re-appear,	albeit	at	a	smaller	size,	essentially	pulling	a	little	more	of	the	tape	measure	into	the	total	length	measured	each	time	one
attempted	to	fit	it	tighter	and	tighter	to	the	curve.[3]

The	 history	 of	 fractals	 traces	 a	 path	 from	 chiefly	 theoretical	 studies	 to	 modern	 applications	 in	 computer
graphics,	with	several	notable	people	contributing	canonical	fractal	forms	along	the	way.[11][12]	According	to
Pickover,	the	mathematics	behind	fractals	began	to	take	shape	in	the	17th	century	when	the	mathematician
and	 philosopher	 Gottfried	 Leibniz	 pondered	 recursive	 self-similarity	 (although	 he	 made	 the	 mistake	 of
thinking	that	only	the	straight	line	was	self-similar	 in	 this	 sense).[36]	 In	his	writings,	Leibniz	used	 the	 term
"fractional	exponents",	but	 lamented	 that	 "Geometry"	did	not	yet	know	of	 them.[3]:405	 Indeed,	according	 to
various	historical	accounts,	after	that	point	few	mathematicians	tackled	the	issues,	and	the	work	of	those	who
did	 remained	 obscured	 largely	 because	 of	 resistance	 to	 such	 unfamiliar	 emerging	 concepts,	 which	 were
sometimes	referred	to	as	mathematical	"monsters".[9][11][12]	Thus,	it	was	not	until	two	centuries	had	passed
that	 on	 July	 18,	 1872	Karl	Weierstrass	presented	 the	 first	 definition	 of	 a	 function	with	 a	graph	 that	 would
today	be	considered	a	fractal,	having	the	non-intuitive	property	of	being	everywhere	continuous	but	nowhere
differentiable	 at	 the	 Royal	 Prussian	 Academy	 of	 Sciences.[11]:7[12]	 In	 addition,	 the	 quotient	 difference
becomes	arbitrarily	 large	as	the	summation	index	increases.[37]	Not	 long	after	that,	 in	1883,	Georg	Cantor,
who	attended	lectures	by	Weierstrass,[12]	published	examples	of	subsets	of	the	real	line	known	as	Cantor	sets,
which	 had	 unusual	 properties	 and	 are	 now	 recognized	 as	 fractals.[11]:11–24	 Also	 in	 the	 last	 part	 of	 that
century,	Felix	Klein	 and	Henri	Poincaré	 introduced	 a	 category	 of	 fractal	 that	 has	 come	 to	 be	 called	 "self-
inverse"	fractals.[3]:166

One	of	the	next	milestones	came	in	1904,	when	Helge	von	Koch,	extending	ideas	of	Poincaré	and	dissatisfied	with	Weierstrass's	abstract	and
analytic	 definition,	 gave	 a	 more	 geometric	 definition	 including	 hand	 drawn	 images	 of	 a	 similar	 function,	 which	 is	 now	 called	 the	 Koch
snowflake.[11]:25[12]	Another	milestone	came	a	decade	later	in	1915,	when	Wacław	Sierpiński	constructed	his	famous	triangle	then,	one	year
later,	 his	 carpet.	 By	 1918,	 two	French	mathematicians,	 Pierre	Fatou	and	Gaston	 Julia,	 though	working	 independently,	 arrived	 essentially
simultaneously	 at	 results	 describing	 what	 are	 now	 seen	 as	 fractal	 behaviour	 associated	 with	 mapping	 complex	 numbers	 and	 iterative
functions	and	leading	to	further	ideas	about	attractors	and	repellors	(i.e.,	points	that	attract	or	repel	other	points),	which	have	become	very
important	 in	 the	 study	 of	 fractals.[6][11][12]	 Very	 shortly	 after	 that	 work	 was	 submitted,	 by	 March	 1918,	 Felix	 Hausdorff	 expanded	 the
definition	of	"dimension",	significantly	for	the	evolution	of	the	definition	of	fractals,	to	allow	for	sets	to	have	noninteger	dimensions.[12]	The
idea	of	self-similar	curves	was	taken	further	by	Paul	Lévy,	who,	in	his	1938	paper	Plane	or	Space	Curves	and	Surfaces	Consisting	of	Parts
Similar	to	the	Whole	described	a	new	fractal	curve,	the	Lévy	C	curve.[notes	1]
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A	Koch	snowflake	is	a
fractal	that	begins	with
an	equilateral	triangle
and	then	replaces	the
middle	third	of	every	line
segment	with	a	pair	of
line	segments	that	form
an	equilateral	bump



Different	researchers	have	postulated	that	without	the	aid	of	modern	computer	graphics,	early	investigators
were	limited	to	what	they	could	depict	in	manual	drawings,	so	lacked	the	means	to	visualize	the	beauty	and
appreciate	some	of	the	implications	of	many	of	the	patterns	they	had	discovered	(the	Julia	set,	for	instance,
could	 only	 be	 visualized	 through	 a	 few	 iterations	 as	 very	 simple	 drawings).[3]:179[9][12]	 That	 changed,
however,	 in	 the	1960s,	when	Benoit	Mandelbrot	started	writing	about	self-similarity	 in	papers	such	as	How
Long	Is	the	Coast	of	Britain?	Statistical	Self-Similarity	and	Fractional	Dimension,[38][39]	which	built	on	earlier
work	 by	 Lewis	 Fry	 Richardson.	 In	 1975[7]	 Mandelbrot	 solidified	 hundreds	 of	 years	 of	 thought	 and
mathematical	 development	 in	 coining	 the	 word	 "fractal"	 and	 illustrated	 his	 mathematical	 definition	 with
striking	computer-constructed	visualizations.	These	images,	such	as	of	his	canonical	Mandelbrot	set,	captured
the	popular	imagination;	many	of	them	were	based	on	recursion,	leading	to	the	popular	meaning	of	the	term
"fractal".[40][9][11][36]

In	1980,	Loren	Carpenter	gave	a	presentation	at	the	SIGGRAPH	where	he	introduced	his	software	for
generating	and	rendering	fractally	generated	landscapes.[41]

One	often	cited	description	 that	Mandelbrot	published	 to	describe	geometric	 fractals	 is	 "a	 rough	or
fragmented	geometric	shape	 that	can	be	split	 into	parts,	each	of	which	 is	 (at	 least	approximately)	a
reduced-size	copy	of	the	whole";[3]	this	is	generally	helpful	but	limited.	Authors	disagree	on	the	exact
definition	 of	 fractal,	 but	most	 usually	 elaborate	 on	 the	 basic	 ideas	 of	 self-similarity	 and	 an	 unusual
relationship	with	the	space	a	fractal	is	embedded	in.[2][3][4][6][42]	One	point	agreed	on	is	that	fractal
patterns	are	characterized	by	fractal	dimensions,	but	whereas	these	numbers	quantify	complexity	(i.e.,
changing	 detail	 with	 changing	 scale),	 they	 neither	 uniquely	 describe	 nor	 specify	 details	 of	 how	 to
construct	particular	fractal	patterns.[43]	In	1975	when	Mandelbrot	coined	the	word	"fractal",	he	did	so
to	 denote	 an	 object	 whose	 Hausdorff–Besicovitch	 dimension	 is	 greater	 than	 its	 topological
dimension.[7]	 It	has	been	noted	 that	 this	dimensional	 requirement	 is	not	met	by	 fractal	 space-filling	 curves
such	as	the	Hilbert	curve.[notes	2]

According	 to	 Falconer,	 rather	 than	 being	 strictly	 defined,	 fractals	 should,	 in	 addition	 to	 being	 nowhere
differentiable	and	able	to	have	a	 fractal	dimension,	be	generally	characterized	by	a	gestalt	 of	 the	 following
features;[4]

Self-similarity,	which	may	be	manifested	as:

Exact	self-similarity:	identical	at	all	scales;	e.g.	Koch	snowflake
Quasi	self-similarity:	approximates	the	same	pattern	at	different	scales;	may	contain	small	copies	of
the	entire	fractal	in	distorted	and	degenerate	forms;	e.g.,	the	Mandelbrot	set's	satellites	are
approximations	of	the	entire	set,	but	not	exact	copies.
Statistical	self-similarity:	repeats	a	pattern	stochastically	so	numerical	or	statistical	measures	are
preserved	across	scales;	e.g.,	randomly	generated	fractals;	the	well-known	example	of	the	coastline
of	Britain,	for	which	one	would	not	expect	to	find	a	segment	scaled	and	repeated	as	neatly	as	the
repeated	unit	that	defines,	for	example,	the	Koch	snowflake[6]
Qualitative	self-similarity:	as	in	a	time	series[17]
Multifractal	scaling:	characterized	by	more	than	one	fractal	dimension	or	scaling	rule

Fine	or	detailed	structure	at	arbitrarily	small	scales.	A	consequence	of	this	structure	is	fractals	may	have
emergent	properties[44]	(related	to	the	next	criterion	in	this	list).
Irregularity	locally	and	globally	that	is	not	easily	described	in	traditional	Euclidean	geometric	language.	For
images	of	fractal	patterns,	this	has	been	expressed	by	phrases	such	as	"smoothly	piling	up	surfaces"	and
"swirls	upon	swirls".[8]
Simple	and	"perhaps	recursive"	definitions	see	Common	techniques	for	generating	fractals

As	a	group,	these	criteria	form	guidelines	for	excluding	certain	cases,	such	as	those	that	may	be	self-similar
without	 having	 other	 typically	 fractal	 features.	 A	 straight	 line,	 for	 instance,	 is	 self-similar	 but	 not	 fractal
because	it	lacks	detail,	 is	easily	described	in	Euclidean	language,	has	the	same	Hausdorff	dimension
as	topological	dimension,	and	is	fully	defined	without	a	need	for	recursion.[3][6]

A	 path	 generated	 by	 a	 one	 dimensional	 Wiener	 process	 is	 a	 fractal	 curve	 of	 dimension	 1.5,	 and
Brownian	motion	is	a	finite	version	of	this.[45]

Images	 of	 fractals	 can	be	 created	by	 fractal	 generating	programs.	Because	 of	 the	butterfly	 effect	 a
small	change	in	a	single	variable	can	have	a	unpredictable	outcome.

Iterated	function	systems	–	use	fixed	geometric	replacement	rules;	may	be	stochastic	or	deterministic;[46]	e.g.,	Koch	snowflake,	Cantor	set,
Haferman	carpet,[47]	Sierpinski	carpet,	Sierpinski	gasket,	Peano	curve,	Harter-Heighway	dragon	curve,	T-Square,	Menger	sponge
Strange	attractors	–	use	iterations	of	a	map	or	solutions	of	a	system	of	initial-value	differential	or	difference	equations	that	exhibit	chaos

A	Julia	set,	a	fractal
related	to	the
Mandelbrot	set

A	Sierpinski	triangle	can	be
generated	by	a	fractal	tree.

A	strange	attractor	that
exhibits	multifractal
scaling

Uniform	mass	center
triangle	fractal

2x	120	degrees	recursive	IFS

Characteristics

Brownian	motion

Common	techniques	for	generating	fractals



(e.g.,	see	multifractal	image,	or	the	logistic	map)
L-systems	–	use	string	rewriting;	may	resemble	branching	patterns,	such	as	in	plants,	biological	cells	(e.g.,	neurons	and	immune	system
cells[26]),	blood	vessels,	pulmonary	structure,[48]	etc.	or	turtle	graphics	patterns	such	as	space-filling	curves	and	tilings
Escape-time	fractals	–	use	a	formula	or	recurrence	relation	at	each	point	in	a	space	(such	as	the	complex	plane);	usually	quasi-self-similar;
also	known	as	"orbit"	fractals;	e.g.,	the	Mandelbrot	set,	Julia	set,	Burning	Ship	fractal,	Nova	fractal	and
Lyapunov	fractal.	The	2d	vector	fields	that	are	generated	by	one	or	two	iterations	of	escape-time	formulae
also	give	rise	to	a	fractal	form	when	points	(or	pixel	data)	are	passed	through	this	field	repeatedly.
Random	fractals	–	use	stochastic	rules;	e.g.,	Lévy	flight,	percolation	clusters,	self	avoiding	walks,	fractal
landscapes,	trajectories	of	Brownian	motion	and	the	Brownian	tree	(i.e.,	dendritic	fractals	generated	by
modeling	diffusion-limited	aggregation	or	reaction-limited	aggregation	clusters).[6]

Finite	subdivision	rules	use	a	recursive	topological	algorithm	for	refining	tilings[49]	and	they	are	similar	to
the	process	of	cell	division.[50]	The	iterative	processes	used	in	creating	the	Cantor	set	and	the	Sierpinski
carpet	are	examples	of	finite	subdivision	rules,	as	is	barycentric	subdivision.

Fractal	patterns	have	been	modeled	extensively,	albeit	within	a	range	of	scales	rather	than	infinitely,	owing	to
the	practical	limits	of	physical	time	and	space.	Models	may	simulate	theoretical	fractals	or	natural	phenomena
with	 fractal	 features.	 The	 outputs	 of	 the	modelling	 process	may	 be	 highly	 artistic	 renderings,	 outputs	 for
investigation,	 or	 benchmarks	 for	 fractal	 analysis.	 Some	 specific	 applications	 of	 fractals	 to	 technology	 are
listed	elsewhere.	Images	and	other	outputs	of	modelling	are	normally	referred	to	as	being	"fractals"	even	if
they	do	not	have	strictly	fractal	characteristics,	such	as	when	it	is	possible	to	zoom	into	a	region	of	the	fractal
image	 that	 does	 not	 exhibit	 any	 fractal	 properties.	 Also,	 these	may	 include	 calculation	 or	 display	 artifacts
which	are	not	characteristics	of	true	fractals.

Modeled	 fractals	 may	 be	 sounds,[21]	 digital	 images,	 electrochemical	 patterns,	 circadian	 rhythms,[51]	 etc.
Fractal	patterns	have	been	reconstructed	in	physical	3-dimensional	space[29]:10	and	virtually,	often	called	"in
silico"	 modeling.[48]	 Models	 of	 fractals	 are	 generally	 created	 using	 fractal-generating	 software	 that
implements	 techniques	 such	 as	 those	 outlined	 above.[6][17][29]	 As	 one	 illustration,	 trees,	 ferns,	 cells	 of	 the
nervous	system,[26]	blood	and	lung	vasculature,[48]	and	other	branching	patterns	in	nature	can	be	modeled	on
a	 computer	 by	 using	 recursive	 algorithms	 and	 L-systems	 techniques.[26]	 The	 recursive	 nature	 of	 some
patterns	is	obvious	in	certain	examples—a	branch	from	a	tree	or	a	frond	from	a	fern	is	a	miniature	replica	of
the	whole:	not	 identical,	but	similar	 in	nature.	Similarly,	random	fractals	have	been	used	to	describe/create
many	 highly	 irregular	 real-world	 objects.	 A	 limitation	 of	modeling	 fractals	 is	 that	 resemblance	 of	 a	 fractal
model	to	a	natural	phenomenon	does	not	prove	that	the	phenomenon	being	modeled	is	formed	by	a	process
similar	to	the	modeling	algorithms.

Approximate	 fractals	 found	 in	 nature	 display	 self-similarity	 over	 extended,	 but	 finite,	 scale	 ranges.	 The
connection	between	fractals	and	leaves,	for	instance,	is	currently	being	used	to	determine	how	much	carbon	is
contained	in	trees.[52]	Phenomena	known	to	have	fractal	features	include:

River	networks
Fault	lines
Mountain	ranges
Craters
Lightning	bolts
Coastlines
Mountain	goat	horns
Trees
Algae
Geometrical	optics[53]
Animal	coloration	patterns
Romanesco	broccoli
Pineapple
Heart	rates[22]
Heart	sounds[23]
Earthquakes[30][54]
Snowflakes[55]
Psychological	subjective	perception[56]
Crystals[57]
Blood	vessels	and	pulmonary	vessels[48]
Ocean	waves[58]
DNA
Soil	pores[59]
Rings	of	Saturn[60][61]
Proteins[62]
Surfaces	in	turbulent	flows[63][64]

Self-similar	branching
pattern	modeled	in	silico
using	L-systems
principles[26]

A	fractal	generated	by	a
finite	subdivision	rule	for
an	alternating	link

Simulated	fractals

A	fractal	flame

Natural	phenomena	with	fractal	features



Frost	crystals
occurring	naturally
on	cold	glass	form
fractal	patterns	

Fractal	basin
boundary	in	a
geometrical	optical
system[53]	

A	fractal	is	formed
when	pulling	apart
two	glue-covered
acrylic	sheets	

High	voltage
breakdown	within	a
4	in	(100	mm)	block
of	acrylic	creates	a
fractal	Lichtenberg
figure	

Romanesco
broccoli,	showing
self-similar	form
approximating	a
natural	fractal	

Fractal	defrosting
patterns,	polar
Mars.	The	patterns
are	formed	by
sublimation	of
frozen	CO2.	Width
of	image	is	about	a
kilometer.	

Slime	mold
Brefeldia	maxima
growing	fractally	on
wood	

A	fractal	that	models
the	surface	of	a
mountain	(animation)	

3D	recursive	image	

Since	1999,	more	than	10	scientific	groups	have	performed	fractal	analysis	on	over	50	of	Jackson	Pollock's	(1912–1956)	paintings	which	were
created	by	pouring	paint	directly	onto	his	horizontal	canvases[65][66][67][68][69][70][71][72][73][74][75][76][77]	Recently,	fractal	analysis	has	been
used	 to	achieve	a	93%	success	rate	 in	distinguishing	real	 from	 imitation	Pollocks.[78]	Cognitive	neuroscientists	have	shown	that	Pollock's
fractals	induce	the	same	stress-reduction	in	observers	as	computer-generated	fractals	and	Nature's	fractals.[79]

Decalcomania,	a	technique	used	by	artists	such	as	Max	Ernst,	can	produce	fractal-like	patterns.[80]	It	involves	pressing	paint	between	two
surfaces	and	pulling	them	apart.

Cyberneticist	Ron	Eglash	has	suggested	that	fractal	geometry	and	mathematics	are	prevalent	in	African	art,	games,	divination,	 trade,	and
architecture.	Circular	houses	appear	in	circles	of	circles,	rectangular	houses	in	rectangles	of	rectangles,	and	so	on.	Such	scaling	patterns
can	also	be	found	in	African	textiles,	sculpture,	and	even	cornrow	hairstyles.[32][81]	Hokky	Situngkir	also	suggested	the	similar	properties	in
Indonesian	traditional	art,	batik,	and	ornaments	found	in	traditional	houses.[82][83]

In	a	1996	interview	with	Michael	Silverblatt,	David	Foster	Wallace	admitted	that	the	structure	of	the	first	draft	of	Infinite	Jest	he	gave	to	his
editor	Michael	Pietsch	was	 inspired	by	 fractals,	 specifically	 the	Sierpinski	 triangle	 (a.k.a.	 Sierpinski	 gasket),	 but	 that	 the	 edited	 novel	 is
"more	like	a	lopsided	Sierpinsky	Gasket".[31]

In	creative	works



Recursive	fractal
butterfly	image	

Humans	 appear	 to	 be	 especially	well-adapted	 to	 processing	 fractal	 patterns	with	 D	 values	 between	 1.3	 and	 1.5.[84]	 When	 humans	 view
fractal	patterns	with	D	values	between	1.3	and	1.5,	this	tends	to	reduce	physiological	stress.[85][86]

If	a	circle	boundary	is	drawn	around	the	two-dimensional	view	of	a	fractal,	the	fractal	will	never	cross	the	boundary,	this	is	due	to	the	scaling
of	each	successive	iteration	of	the	fractal	being	smaller.	When	fractals	are	iterated	many	times,	the	perimeter	of	the	fractal	increases,	while
the	 area	will	 never	 exceed	a	 certain	 value.	A	 fractal	 in	 three-dimensional	 space	 is	 similar,	 however,	 a	 difference	between	 fractals	 in	 two
dimensions	and	three	dimensions,	 is	 that	a	three	dimensional	 fractal	will	 increase	 in	surface	area,	but	never	exceed	a	certain	volume.[87]

This	can	be	utilized	to	maximize	the	efficiency	of	ion	propulsion,	when	choosing	electron	emitter	construction	and	material.	If	done	correctly,
the	efficiency	of	the	emission	process	can	be	maximized.[88]

Fractal	antennas[89]
Fractal	transistor[90]
Fractal	heat	exchangers[91]
Digital	imaging
Architecture[33]
Urban	growth[92][93]
Classification	of	histopathology	slides
Fractal	landscape	or	Coastline	complexity
Detecting	'life	as	we	don't	know	it'	by	fractal	analysis[94]
Enzymes	(Michaelis-Menten	kinetics)
Generation	of	new	music
Signal	and	image	compression
Creation	of	digital	photographic	enlargements
Fractal	in	soil	mechanics
Computer	and	video	game	design
Computer	Graphics
Organic	environments
Procedural	generation
Fractography	and	fracture	mechanics
Small	angle	scattering	theory	of	fractally	rough	systems
T-shirts	and	other	fashion
Generation	of	patterns	for	camouflage,	such	as	MARPAT
Digital	sundial
Technical	analysis	of	price	series
Fractals	in	networks
Medicine[29]
Neuroscience[24][25]
Diagnostic	Imaging[28]
Pathology[95][96]
Geology[97]
Geography[98]
Archaeology[99][100]
Soil	mechanics[27]
Seismology[30]
Search	and	rescue[101]
Technical	analysis[102]
Morton	order	space	filling	curves	for	GPU	cache	coherency	in	texture	mapping,[103][104][105]	rasterisation[106][107]	and	indexing	of
turbulence	data.[108][109]

Physiological	responses

Ion	production	capabilities

Applications	in	technology



Banach	fixed	point	theorem
Bifurcation	theory
Box	counting
Chaos	Theory
Cymatics
Diamond-square	algorithm
Droste	effect
Feigenbaum	function
Form	constant
Fractal	cosmology
Fractal	derivative
Fractalgrid
Fractal	string
Fracton
Graftal
Greeble
Lacunarity
List	of	fractals	by	Hausdorff	dimension
Mandelbulb
Mandelbox
Macrocosm	and	microcosm
Multifractal	system
Multiplicative	calculus
Newton	fractal
Percolation
Power	law
Publications	in	fractal	geometry
Random	walk
Self-reference
Systems	theory
Strange	loop
Turbulence
Wiener	process
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