• Unit 7: Recursion

    In previous sections, we learned about sequences in a general sense. In this unit, we will take a look at a specific type known as a recursive sequence. The unit will first present a number of examples that demonstrate how one computes the terms of a recursive sequence and analyzes certain kinds of problems recursively in order to generate a general recursive sequence. We will then learn to use the proof method of induction to prove the validity or falsity of a recursive sequence.

    In this unit, we are going to rely on the Bender and Williamson reference as primary. Use the Devadas and Lehman reference as supplementary. Switching primary references exposes us to some differences in notation and perspective.

    Completing this unit should take you approximately 9 hours.

    • Unit 7 Assessment