Docs » Software Unit Test Policy

Software Unit Test Policy

Introduction

Unit testing validates the implementation of all objects from the lowest level defined in the detailed
design (classes and functions) up to and including the lowest level in the architectural design
(equivalent to the WBS components). The next layer of testing, known as integration testing, tests
the interfaces between the architectural design objects (i.e. WBS components). This Policy only
addresses Unit Testing. Refer to Introduction into testing or why testing is worth the effort (John R.
Phillips, 2006) for a short, but good discussion on Unit Testing and its transition into Integration
Testing.

Types of Unit Tests

Unit tests should be developed from the detailed design of the baseline, i.e. from either the structure
diagrams or the class/function definitions. The type of tests performed during unit testing include:

White-box Tests
These tests are designed by examining the internal logic of each module and defining the input
data sets that force the execution of different paths through the logic. Each input data set is a test
case.

Black-box Tests
These tests are designed by examining the specification of each module and defining input data
sets that will result in different behavior (e.g. outputs). Black-box tests should be designed to
exercise the software for its whole range of inputs. Each input data set is a test case.

Performance Tests
If the detailed design placed resource constraints on the performance of a module, compliance
with these constraints should be tested. Each input data set is a test case.

The collection of a module’s white-box, black-box, and performance tests is known as a Unit Test
suite. A rough measure of a Unit Test suite’s quality is the percentage of the module’s code whichis
exercised when the test suite is executed.

Responsibility for Implementation

Due to the nature of white box testing, it is best if the original developer of an object creates the test
suite validating that object. During later object modification, the current developer should update
the test suite to validate the changed internals.

O Important

LSST DM developers are responsible for creating test suites to unit test all objects they
implement. Additionally, they are responsible for updating an object’s test suite after modifying
the object’s source code.

The division of responsibility between DM developer groups is highlighted in the diagram below. In
essence, the Applications group, which is responsible for all science algorithm development, also
develops the unit testers for: algorithm components, a stage wrapped algorithm, and the sequences
of stage wrapped algorithms comprising a simple-stage-tester algorithm pipeline (i.e. without
parallel processing job management). The Middleware group, so named because it is responsible for

all low level framework software, develops the unit testers for those framework modules. Finally, the
SQA team is responsible for the higher level testers for integration, system performance, and
acceptance testing.

MW Developer

App Developer . Unit Test

Unit test

through

WCS e Si-

component / Pipeline
_ UnitTest

SQA Developer

Test Development Responsibility

Testing Frameworks

Test suite execution should be managed by a testing framework, also known as a test harness, which
monitors the execution status of individual test cases.

C++: boost.test
LSST DM developers should use the single-header variant of the Boost Unit Test Framework.
When unit testing C++ private functions using the Boost util test macros, refer to the standard
methods described in private function testing.

Python: unittest

LSST DM developers should use Python'’s unittest framework.

lsst.utils.tests provides several utilities for writing Python tests that developers should make
use of. In particular, 1sst.utils.tests.MemoryTestCase isused todetect memory leaksin C++
objects. MemoryTestCase should be used in all tests, even if C++ code is not explicitly referenced.

This example shows the basic structure of an LSST Python unit test module, including

lsst.utils.tests.MemoryTestCase

import unittest

import lsst.utils.tests as utilsTests

class DemoTestCase(utilsTests.TestCase):
"""Demo test case."""

def testDemo(self):
assert True

def suite():
"""Returns a suite containing all the test cases in this module."""
utilsTests.init()

suites = []

Test suites for this module here

suites += unittest.makeSuite(DemoTestCase)

MemoryTestCase to find C++ memory leaks

suites += unittest.makeSuite(utilsTests.MemoryTestCase)
return unittest.TestSuite(suites)

def run(exit=False):
WuuRUN the tests"""
utilsTests.run(suite(), exit)

if name_ == " main_":
run(True)

Note that MemoryTestCase must always be the final test suite.

Unit Testing Composite Objects

Data Management uses a bottom-up testing method where validated objects are tested with, then
added to, a validated baseline. That baseline, in turn, is used as the new validated baseline for further
iterative testing. When developing test suites for composite objects, the developer should first
ensure that adequate test suites exist for the base objects.

Automated Nightly and On-Demand Testing

Jenkins is a system which automates the compile/load/test cycle required to validate code changes.
In particular, Jenkins automatically performs unit builds and unit tests expedites the module’s repair
and, hopefully, limits the time other developers are impacted by the failure. For details, refer to the
workflow documentation on Testing with Jenkins.

Verifying Test Quality

Since Unit Tests are used to validate the implementation of detailed design objects through
comprehensive testing, it's important to measure the thoroughness of the test suite. Coverage
analysis does this by executing an instrumented code which records the complete execution path
through the code and then calculating metrics indicative of the coverage achieved during execution.

See Coverage Analysis for more information.

