
Entropy	rules!

What	is	entropy?

	

The	preceding	page	explained	how	the	tendency	of	thermal	energy	to
disperse	as	widely	as	possible	is	what	drives	all	spontaneous	processes,
including,	of	course	chemical	reactions.	We	now	need	to	understand	how
the	direction	and	extent	of	the	spreading	and	sharing	of	energy	can	be
related	to	measurable	thermodynamic	properties	of	substances—	that	is,	of
reactants	and	products.

You	will	recall	that	when	a	quantity	of	heat	q	flows	from	a	warmer	body	to	a
cooler	one,	permitting	the	available	thermal	energy	to	spread	into	and
populate	more	microstates,	that	the	ratio	q/T	measures	the	extent	of	this
energy	spreading.	It	turns	out	that	we	can	generalize	this	to	other	processes
as	well,	but	there	is	a	difficulty	with	using	q	because	it	is	not	a	state
function;	that	is,	its	value	is	dependent	on	the	pathway	or	manner	in	which	a
process	is	carried	out.	This	means,	of	course,	that	the	quotient	q/T	cannot	be
a	state	function	either,	so	we	are	unable	to	use	it	to	get	differences	between
reactants	and	products	as	we	do	with	the	other	state	functions.	The	way
around	this	is	to	restrict	our	consideration	to	a	special	class	of	pathways	that
are	described	as	reversible.

1		Reversible	and	irreversible	changes
A	change	is	said	to	occur	reversibly	when	it	can	be	carried	out	in	a
series	of	infinitessimal	steps,	each	one	of	which	can	be	undone	by
making	a	similarly	minute	change	to	the	conditions	that	bring	the

change	about.

For	example,	the	reversible	expansion	of	a	gas	can	be	achieved	by
reducing	the	external	pressure	in	a	series	of	infinitessimal	steps;
reversing	any	step	will	restore	the	system	and	the	surroundings	to
their	previous	state.	Similarly,	heat	can	be	transferred	reversibly
between	two	bodies	by	changing	the	temperature	difference
between	them	in	infinitessimal	steps	each	of	which	can	be	undone
by	reversing	the	temperature	difference.

The	most	widely	cited	example	of	an	irreversible	change	is	the	free
expansion	of	a	gas	into	a	vacuum.	Although	the	system	can	always	be
restored	to	its	original	state	by	recompressing	the	gas,	this	would	require
that	the	surroundings	perform	work	on	the	gas.	Since	the	gas	does	no	work
on	the	surrounding	in	a	free	expansion	(the	external	pressure	is	zero,	so	PΔV
=	0,)	there	will	be	a	permanent	change	in	the	surroundings.	Another
example	of	irreversible	change	is	the	conversion	of	mechanical	work	into
frictional	heat;	there	is	no	way,	by	reversing	the	motion	of	a	weight	along	a
surface,	that	the	heat	released	due	to	friction	can	be	restored	to	the	system.

Reversible	and	irreversible	gas	expansion	and	compression

These	diagrams	show	the	same	expansion	and	compression	±ΔV	carried	out	in
different	numbers	of	steps	ranging	from	a	single	step	at	the	top	to	an	"infinite"
number	of	steps	at	the	bottom.	As	the	number	of	steps	increases,	the	processes
become	less	irreversible;	that	is,	the	difference	between	the	work	done	in	expansion
and	that	required	to	re-compress	the	gas	diminishes.	In	the	limit	of	an	”infinite”
number	of	steps	(bottom),	these	work	terms	are	identical,	and	both	the	system	and
surroundings	(the	“world”)	are	unchanged	by	the	expansion-compression	cycle.	In	all
other	cases	the	system	(the	gas)	is	restored	to	its	initial	state,	but	the	surroundings
are	forever	changed.



	

A	reversible	change	is	one	carried	out	in	such	as	way	that,	when
undone,	both	the	system	and	surroundings	(that	is,	the	world)

remain	unchanged.

Reversible	=	impossible:	so	why	bother	?
It	should	go	without	saying,	of	course,	that	any	process	that	proceeds	in
infinitissimal	steps	would	take	infinitely	long	to	occur,	so	thermodynamic
reversibility	is	an	idealization	that	is	never	achieved	in	real	processes,
except	when	the	system	is	already	at	equilibrium,	in	which	case	no	change
will	occur	anyway!	So	why	is	the	concept	of	a	reversible	process	so
important?

The	answer	can	be	seen	by	recalling	that	the	change	in	the	internal	energy
that	characterizes	any	process	can	be	distributed	in	an	infinity	of	ways
between	heat	flow	across	the	boundaries	of	the	system	and	work	done	on	or
by	the	system,	as	expressed	by	the	First	Law	ΔU	=	q	+	w.	Each	combination
of	q	and	w	represents	a	different	pathway	between	the	initial	and	final
states.	It	can	be	shown	that	as	a	process	such	as	the	expansion	of	a	gas	is
carried	out	in	successively	longer	series	of	smaller	steps,	the	absolute	value
of	q	approaches	a	minimum,	and	that	of	w	approaches	a	maximum	that	is
characteristic	of	the	particular	process.

Thus	when	a	process	is	carried	out	reversibly,	the	w-term	in	the	First	Law
expression	has	its	greatest	possible	value,	and	the	q-term	is	at	its	smallest.
These	special	quantities	wmax	and	qmin	(which	we	denote	as	qrev	and
pronounce	“q-reversible”)	have	unique	values	for	any	given	process	and
are	therefore	state	functions.

Work	and	reversibility

Note	that
the

reversible	condition	implies	wmax	and	qmin.	The	impossibility	of	extracting	all	of
the	internal	energy	as	work	is	essentially	a	statement	of	the	Second	Law.

	

For	a	process	that	reversibly	exchanges	a	quantity	of	heat	qrev	with	the
surroundings,	the	entropy	change	is	defined	as
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See	Frank	Lamberts	articles	Entropy
is	Simple,	and	Teaching	Entropy.

This	is	the	basic	way	of	evalulating	ΔS	for	constant-temperature	processes
such	as	phase	changes,	or	the	isothermal	expansion	of	a	gas.	For	processes
in	which	the	temperature	is	not	constant	such	as	heating	or	cooling	of	a
substance,	the	equation	must	be	integrated	over	the	required	temperature
range,	as	in	Eq	(2-3)	further	on.

	

...but	if	no	real	process	can	take	place	reversibly,	what	use	is	an
expression	involving	qrev?	This	is	a	rather	fine	point	that	you	should
understand:	although	transfer	of	heat	between	the	system	and
surroundings	is	impossible	to	achieve	in	a	truly	reversible	manner,	this
idealized	pathway	is	only	crucial	for	the	definition	of	ΔS;	by	virtue	of	its
being	a	state	function,	the	same	value	of	ΔS	will	apply	when	the	system
undergoes	the	same	net	change	via	any	pathway.	For	example,	the	entropy
change	a	gas	undergoes	when	its	volume	is	doubled	at	constant
temperature	will	be	the	same	regardless	of	whether	the	expansion	is
carried	out	in	1000	tiny	steps	(as	reversible	as	patience	is	likely	to	allow)
or	by	a	single-step	(as	irreversible	a	pathway	as	you	can	get!)	expansion
into	a	vacuum.

2		The	physical	meaning	of	entropy

Entropy	is	a	measure	of	the	degree	of	spreading	and	sharing	of
thermal	energy
within	a	system.

This	“spreading	and	sharing”	can	be	spreading	of	the	thermal	energy	into	a
larger	volume	of	space	or	its	sharing	amongst	previously	inaccessible
microstates	of	the	system.	The	following	table	shows	how	this	concept
applies	to	a	number	of	common	processes.

system	and	process source	of	entropy	increase	of	system

A	deck	of	cards	is	shuffled,	or	100
coins,	initially	heads	up,	are
randomly	tossed.

This	has	nothing	to	do	with	entropy	because
macro	objects	are	unable	to	exchange	thermal	energy
with	the	surroundings	within	the	time	scale	of	the
process

Two	identical	blocks	of	copper,	one
at	20°C	and	the	other	at	40°C,	are
placed	in	contact.

The	cooler	block	contains	more	unoccupied
microstates,	so	heat	flows	from	the	warmer	block	until
equal	numbers	of	microstates	are	populated	in	the	two
blocks.

A	gas	expands	isothermally	to	twice
its	initial	volume.

A	constant	amount	of	thermal	energy	spreads	over	a
larger	volume	of	space

1	mole	of	water	is	heated	by	1C°.
The	increased	thermal	energy	makes	additional
microstates	accessible.	(The	increase	is	by	a	factor	of
about
1020,000,000,000,000,	000,000,000.)

Equal	volumes	of	two	gases	are
allowed	to	mix.

The	effect	is	the	same	as	allowing	each	gas	to	expand
to	twice	its	volume;	the	thermal	energy	in	each	is	now
spread	over	a	larger	volume.

One	mole	of	dihydrogen,	H2,	is
placed	in	a	container	and	heated	to
3000K.

Some	of	the	H2	dissociates	to	H	because	at	this
temperature	there	are	more	thermally	accessible
microstates	in	the	2	moles	of	H.	(See	the	diagram
relating	to	hydrogen	microstates	in	the	previous	lesson.

The	above	reaction	mixture	is
cooled	to	300K.

The	composition	shifts	back	to	virtually	all	H2	because
this	molecule	contains	more	thermally	accessible
microstates	at	low	temperatures.

Entropy	is	an	extensive	quantity;	that	is,	it	is	proportional	to	the	quantity	of
matter	in	a	system;	thus	100	g	of	metallic	copper	has	twice	the	entropy	of	50
g	at	the	same	temperature.	This	makes	sense	because	the	larger	piece	of
copper	contains	twice	as	many	quantized	energy	levels	able	to	contain	the
thermal	energy.

Entropy	and	"disorder"
Entropy	is	still	described,	particularly	in	older
textbooks,	as	a	measure	of	disorder.	In	a	narrow
technical	sense	this	is	correct,	since	the	spreading
and	sharing	of	thermal	energy	does	have	the	effect	of	randomizing	the
disposition	of	thermal	energy	within	a	system.	But	to	simply	equate	entropy
with	“disorder”	without	further	qualification	is	extremely	misleading
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because	it	is	far	too	easy	to	forget	that	entropy	(and	thermodynamics	in
general)	applies	only	to	molecular-level	systems	capable	of	exchanging
thermal	energy	with	the	surroundings.	Carrying	these	concepts	over	to
macro	systems	may	yield	compelling	analogies,	but	it	is	no	longer	science.	it
is	far	better	to	avoid	the	term	“disorder”	altogether	in	discussing	entropy.

Fig.	2-1	[source]

Yes,	it	happens,	but	it	has	nothing	to	do	with	thermodynamic
entropy!

See	Frank	Lambert's	page	"Shuffled	Cards,	Messy	Desks,	and	Disorderly	Dorm	Rooms	—
Examples	of	Entropy	Increase?	Nonsense!"

Entropy	and	probability
As	was	explained	in	the	preceding	lesson,	the	distribution	of	thermal	energy
in	a	system	is	characterized	by	the	number	of	quantized	microstates	that	are
accessible	(i.e.,	among	which	energy	can	be	shared);	the	more	of	these	there
are,	the	greater	the	entropy	of	the	system.	This	is	the	basis	of	an	alternative
(and	more	fundamental)	definition	of	entropy

S	=	k	ln	Ω

in	which	k	is	the	Boltzmann	constant	(the	gas	constant	per	molecule,	1.38
10–23	J	K–1)	and	Ω	(omega)	is	the	number	of	microstates	that	correspond	to	a
given	macrostate	of	the	system.	The	more	such	microstates,	the	greater	is
the	probability	of	the	system	being	in	the	corresponding	macrostate.	For	any
physically	realizable	macrostate,	the	quantity	Ω	is	an	unimaginably	large
number,	typically	around	 	for	one	mole.	By	comparison,	the	number	of
atoms	that	make	up	the	earth	is	about	1050.	But	even	though	it	is	beyond
human	comprehension	to	compare	numbers	that	seem	to	verge	on	infinity,
the	thermal	energy	contained	in	actual	physical	systems	manages	to
discover	the	largest	of	these	quantities	with	no	difficulty	at	all,	quickly
settling	in	to	the	most	probable	macrostate	for	a	given	set	of	conditions.

The	reason	S	depends	on	the	logarithm	of	Ω	is	easy	to	understand.
Suppose	we	have	two	systems	(containers	of	gas,	say)	with	S1,	Ω1	and	S2,
Ω2.	If	we	now	redefine	this	as	a	single	system	(without	actually	mixing	the
two	gases),	then	the	entropy	of	the	new	system	will	be	S	=	S1	+	S2	but	the
number	of	microstates	will	be	the	product	Ω1Ω2	because	for	each	state	of
system	1,	system	2	can	be	in	any	of	Ω2	states.	Because	ln(Ω1Ω2)	=	ln
Ω1	+	ln	Ω2,	the	additivity	of	the	entropy	is	preserved.

Entropy,	equilibrium,	and	the	direction	of	time
If	someone	could	make	a	movie	showing	the	motions	of	individual	atoms	of	a
gas	or	of	a	chemical	reaction	system	in	its	equilibrium	state,	there	is	no	way
you	could	determine,	on	watching	it,	whether	the	film	is	playing	in	the
forward	or	reverse	direction.	Physicists	describe	this	by	saying	that	such
systems	possess	time-reversal	symmetry;	neither	classical	nor	quantum
mechanics	offers	any	clue	to	the	direction	of	time.

But	when	a	movie	showing	changes	at	the	macroscopic	level	is	being	played
backward,	the	weirdness	is	starkly	apparent	to	anyone;	if	you	see	books
flying	off	of	a	table	top	or	tea	being	sucked	back	up	into	a	teabag	(or	a
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chemical	reaction	running	in	reverse),	you	will	immediatly	know	that
something	is	wrong.	At	this	level,	time	clearly	has	a	direction,	and	it	is	often
noted	that	because	the	entropy	of	the	world	as	a	whole	always	increases	and
never	decreases,	it	is	entropy	that	gives	time	its	direction.	It	is	for	this
reason	that	entropy	is	sometimes	referred	to	as	"time's	arrow"	(see	this
excellent	Wikipedia	article	on	the	subject.)

But	there	is	a	problem	here:	conventional	thermodynamics	is	able	to
define	entropy	change	only	for	reversible	processes	which,	as	we	know,
take	infinitely	long	to	perform.	So	we	are	faced	with	the	apparent
paradox	that	thermodynamics,	which	deals	only	with	differences	between
states	and	not	the	journeys	between	them,	is	unable	to	describe	the	very
process	of	change	by	which	we	are	aware	of	the	flow	of	time.

A	very	interesting	essay	by	Peter	Coveney	of	the	University	of	Wales
offers	a	possible	solution	to	this	problem.

The	direction	of	time	is	revealed	to	the	chemist	by	the	progress	of	a	reaction
toward	its	state	of	equilibrium;	once	equilibrium	is	reached,	the	net	change
that	leads	to	it	ceases,	and	from	the	standpoint	of	that	particular	system,	the
flow	of	time	stops.

If	we	extend	the	same	idea	to	the	much	larger	system	of	the	world	as	a
whole,	this	leads	to	the	concept	of	the	"heat	death	of	the	universe"	that
was	mentioned	briefly	in	the	previous	lesson.	(See	here	for	a	summary	of
the	various	interpretations	of	this	concept.)

	

3		Absolute	entropies
Energy	values,	as	you	know,	are	all	relative,	and	must	be	defined	on	a	scale
that	is	completely	arbitrary;	there	is	no	such	thing	as	the	absolute	energy	of
a	substance,	so	we	can	arbitrarily	define	the	enthalpy	or	internal	energy	of
an	element	in	its	most	stable	form	at	298K	and	1	atm	pressure	as	zero.

The	same	is	not	true	of	the	entropy;	since	entropy	is	a	measure	of	the
“dilution”	of	thermal	energy,	it	follows	that	the	less	thermal	energy	available
to	spread	through	a	system	(that	is,	the	lower	the	temperature),	the	smaller
will	be	its	entropy.	In	other	words,	as	the	absolute	temperature	of	a
substance	approaches	zero,	so	does	its	entropy.

This	principle	is	the	basis	of	the	Third	law	of	thermodynamics,	which
states	that	the	entropy	of	a	perfectly-ordered	solid	at	0°	K	is	zero.

How	entropies	are	measured
The	absolute	entropy	of	a	substance	at	any	temperature	above	0°	K	must
be	determined	by	calculating	the	increments	of	heat	q	required	to	bring	the
substance	from	0°	K	to	the	temperature	of	interest,	and	then	summing	the
ratios	q/T	.	Two	kinds	of	experimental	measurements	are	needed:

1.	 The	enthalpies	associated	with	any	phase	changes	the	substance	may
undergo	within	the	temperature	range	of	interest.	Melting	of	a	solid	and
vaporization	of	a	liquid	correspond	to	sizeable	increases	in	the	number	of
microstates	available	to	accept	thermal	energy,	so	as	these	processes	occur,
energy	will	flow	into	a	system,	filling	these	new	microstates	to	the	extent
required	to	maintain	a	constant	temperature	(the	freezing	or	boiling	point);
these	inflows	of	thermal	energy	correspond	to	the	heats	of	fusion	and
vaporization.	The	entropy	increase	associated	with	melting,	for	example,	is
just	ΔHfusion/Tm.

2.	 The	heat	capacity	C	of	a	phase	expresses	the	quantity	of	heat	required	to
change	the	temperature	by	a	small	amount	ΔT	,	or	more	precisely,	by	an
infinitessimal	amount	dT	.	Thus	the	entropy	increase	brought	about	by
warming	a	substance	over	a	range	of	temperatures	that	does	not	encompass
a	phase	transition	is	given	by	the	sum	of	the	quantities	C	dT/T	for	each
increment	of	temperature	dT	.	This	is	of	course	just	the	integral

<

Because	the	heat	capacity	is	itself	slightly	temperature	dependent,	the
most	precise	determinations	of	absolute	entropies	require	that	the
functional	dependence	of	C	on	T	be	used	in	the	above	integral	in	place	of
a	constant	C	.	When	this	is	not	known,	one	can	take	a	series	of	heat
capacity	measurements	over	narrow	temperature	increments	ΔT	and
measure	the	area	under	each	section	of	the	curve.

Fig	2-2		The	area	under	each	section	of	the	plot	represents	the	entropy	change
associated	with	heating	the	substance	through	an	interval	ΔT.	To	this	must	be
added	the	enthalpies	of	melting,	vaporization,	and	of	any	solid-solid	phase



changes.
Values	of	Cp
for
temperatures
near	zero	are
not	measured
directly,	but
must	be
estimated	from
quantum
theory.

	

Fig	2-3		The
cumulative
areas	from	0	K
to	any	given
temperature
(taken	from	the
experimental
plot	on	the	left)
are	then	plotted
as	a	function	of
T,	and	any
phase-change
entropies	such
as
Svap	=	Hvap	/	Tb
are	added	to
obtain	the
absolute
entropy	at
temperature	T.

	

How	the	entropy	changes	with	temperature

As	shown	in	Fig	2-3	above,	the	entropy	of	a	substance	increases	with
temperature,	and	it	does	so	for	two	reasons:

As	the	temperature	rises,	more	microstates	become	accessible,	allowing
thermal	energy	to	be	more	widely	dispersed.	This	is	reflected	in	the	gradual
increase	of	entropy	with	temperature.
The	molecules	of	solids,	liquids,	and	gases	have	increasingly	greater
freedom	to	move	around,	facilitating	the	spreading	and	sharing	of	thermal
energy.	Phase	changes	are	therefore	accompanied	by	massive	and
discontinuous	increase	in	the	entropy.

	

4		Standard	entropies	of	substances
The	standard	entropy	of	a	substance	is	its	entropy	at	1	atm	pressure.	The
values	found	in	tables	are	normally	those	for	298K,	and	are	expressed	in
units	of	J	K–1	mol–1.	The	table	below	shows	some	typical	values	for	gaseous
substances.

He 126 H2 131 CH4 186
Ne 146 N2 192 H2O(g) 187
Ar 155 CO 197 CO2 213
Kr 164 F2 203 C2H6 229
Xe 170 O2 205 n	-C3H8 270

Cl2 223 n	-C4H10 310

Table	1:	Standard	entropies	of	some	gases	at	298K,	J	K–1	mol–1

Note	especially	how	the	values	given	in	this	table	illustrate	these	important
points:

Although	the	standard	internal	energies	and	enthalpies	of	these	substances
would	be	zero,	the	entropies	are	not.	This	is	because	there	is	no	absolute
scale	of	energy,	so	we	conventionally	set	the	“energies	of	formation”	of
elements	in	their	standard	states	to	zero.	Entropy,	however,	measures	not
energy	itself,	but	its	dispersal	amongst	the	various	quantum	states	available
to	accept	it,	and	these	exist	even	in	pure	elements.
It	is	apparent	that	entropies	generally	increase	with	molecular	weight.	For
the	noble	gases,	this	is	of	course	a	direct	reflection	of	the	principle	that
translational	quantum	states	are	more	closely	packed	in	heavier	molecules,
allowing	of	them	to	be	occupied.
The	entropies	of	the	diatomic	and	polyatomic	molecules	show	the	additional
effects	of	rotational	quantum	levels.
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solid liquid gas
41 70 186

Table	3:	Entropy	of	water	at
298K,
J	K–1	mol–1

C(diamond) C(graphite) Fe Pb Na S(rhombic) Si W
2.5 5.7 27.1 51.0 64.9 32.0 18.9 33.5

Table	2:	Entropies	of	some	solid	elements	at	298	K,	J	K–1	mol–1

The	entropies	of	the	solid	elements	are	strongly	influenced	by	the	manner	in
which	the	atoms	are	bound	to	one	another.	The	contrast	between	diamond
and	graphite	is	particularly	striking;	graphite,	which	is	built	up	of	loosely-
bound	stacks	of	hexagonal	sheets,	appears	to	be	more	than	twice	as	good	at
soaking	up	thermal	energy	as	diamond,	in	which	the	carbon	atoms	are
tightly	locked	into	a	three-dimensional	lattice,	thus	affording	them	less
opportunity	to	vibrate	around	their	equilibrium	positions.	Looking	at	all	the
examples	in	the	above	table,	you	will	note	a	general	inverse	correlation
between	the	hardness	of	a	solid	and	its	entropy.	Thus	sodium,	which	can	be
cut	with	a	knife,	has	almost	twice	the	entropy	of	iron;	the	much	greater
entropy	of	lead	reflects	both	its	high	atomic	weight	and	the	relative	softness
of	this	metal.	These	trends	are	consistent	with	the	oft-expressed	principle
that	the	more	“disordered”	a	substance,	the	greater	its	entropy.

Gases,	which	serve	as	efficient	vehicles	for
spreading	thermal	energy	over	a	large
volume	of	space,	have	much	higher	entropies
than	condensed	phases.	Similarly,	liquids
have	higher	entropies	than	solids	owing	to
the	multiplicity	of	ways	in	which	the
molecules	can	interact	(that	is,	store	energy.)

How	entropy	depends	on	concentration
As	a	substance	becomes	more	dispersed	in	space,	the	thermal	energy	it
carries	is	also	spread	over	a	larger	volume,	leading	to	an	increase	in	its
entropy.

Because	entropy,	like	energy,	is	an	extensive	property,	a	dilute	solution	of
a	given	substance	may	well	possess	a	smaller	entropy	than	the	same
volume	of	a	more	concentrated	solution,	but	the	entropy	per	mole	of
solute	(the	molar	entropy)	will	of	course	always	increase	as	the	solution
becomes	more	dilute.

For	gaseous	substances,	the	volume	and	pressure	are	respectively	direct	and
inverse	measures	of	concentration.	For	an	ideal	gas	that	expands	at	a
constant	temperature	(meaning	that	it	absorbs	heat	from	the	surroundings
to	compensate	for	the	work	it	does	during	the	expansion),	the	increase	in
entropy	is	given	by

(If	the	gas	is	allowed	to	cool	during	the	expansion,	the	relation	becomes
more	complicated	and	will	best	be	discussed	in	a	more	advanced	course.)

Because	the	pressure	of	a	gas	is	inversely	proportional	to	its	volume,	we	can
easily	alter	the	above	relation	to	express	the	entropy	change	associated	with
a	change	in	the	pressure	of	a	perfect	gas:

Expressing	the	entropy	change	directly	in	concentrations,	we	have	the
similar	relation

Although	these	equations	strictly	apply	only	to	perfect	gases	and	cannot	be
used	at	all	for	liquids	and	solids,	it	turns	out	that	in	a	dilute	solution,	the
solute	can	often	be	treated	as	a	gas	dispersed	in	the	volume	of	the	solution,
so	the	last	equation	can	actually	give	a	fairly	accurate	value	for	the	entropy
of	dilution	of	a	solution.	We	will	see	later	that	this	has	important
consequences	in	determining	the	equilibrium	concentrations	in	a
homogeneous	reaction	mixture.

Summary:	the	key	concepts	developed	on
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(You	are	expected	to	be	able	to	define	and	explain	the	significance	of	terms	identified	in	green
type.)

A	reversible	process	is	one	carried	out	in	infinitessimal	steps	after	which,
when	undone,	both	the	system	and	surroundings	(that	is,	the	world)	remain
unchanged.	(See	the	example	of	gas	expansion-compression	given	above.)
Although	true	reversible	change	cannot	be	realized	in	practice,	it	can	always
be	approximated.
The	sum	of	the	heat	(q)	and	work	(w)	associated	with	a	process	is	a	state
function	defined	by	the	First	Law	ΔU	=	q	+	w.	Heat	and	work	themselves
are	not	state	functions,	and	therefore	depend	on	the	particular	pathway	in
which	a	process	is	carried	out.
As	a	process	is	carried	out	in	a	more	reversible	manner,	the	value	of	w
approaches	its	maximum	possible	value,	and	q	approaches	its	minimum
possible	value.
Although	q	is	not	a	state	function,	the	quotient	qrev/T	is,	and	is	known	as	the
entropy.
Entropy	is	a	measure	of	the	degree	of	the	spreading	and	sharing	of
thermal	energy	within	a	system.
The	entropy	of	a	substance	increases	with	its	molecular	weight	and
complexity	and	with	temperature.	The	entropy	also	increases	as	the
pressure	or	concentration	becomes	smaller.	Entropies	of	gases	are	much
larger	than	those	of	condensed	phases.
The	absolute	entropy	of	a	pure	substance	at	a	given	temperature	is	the
sum	of	all	the	entropy	it	would	acquire	on	warming	from	absolute	zero
(where	S=0)	to	the	particular	temperature.

Concept	Map
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