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Spruce	budworm	outbreak	model
The	spruce	budworm	(Choristoneura	fumiferana)	is	one	of	the	most	destructive
native	insects	in	the	northern	spruce	and	fir	forests	of	the	Eastern	United	States
and	Canada.	Most	of	the	time,	the	number	of	budworms	remains	at	a	low	level.
However,	every	forty	years	or	so,	the	population	of	budworms	explodes	to	huge
numbers,	devastating	the	forest	and	destroying	many	trees,	before	dropping
back	down	to	the	previous	low	level.	Evidence	suggests	these	outbreaks	have
been	recurring	regularly	for	hundreds,	if	not	thousands,	of	years.

As	these	outbreaks	have	caused	the	loss	of	millions	of	cords	of	spruce	and	fir,
the	wood	products	industry	would	like	to	understand	the	cycles	of	spruce
budworm	populations	as	a	first	step	toward	developing	effective	management	of
the	problem.	Here,	we	investigate	a	model	developed	by	D.	Ludwig,	D.	D.	Jones
and	C.S.	Holling,	scientists	from	the	University	of	British	Columbia,	that
explains	some	of	the	features	of	the	budworm	cycle.

The	model	for	budworm	population	size	is	a	modification	of	the	continuous	logistic	equation.	Let	 	be	time	in	some	arbitrary	scale	and	let	
be	the	budworm	population	size	at	time	 .	We	model	the	evolution	of	 	according	to	an	autonomous	differential	equation	of	the	form

with	low	density	growth	rate	 	and	carrying	capacity	 .	The	last	term	 	models	the	mortality	of	budworms	due	to	predatory	birds.	This
term	is	similar	to	the	harvesting	we	added	to	the	discrete	logistic	model.

The	rate	of	predation	 	depends	on	the	budworm	population	in	a	special	way.	First,	if	the	spruce	budworm	population	is	small,	the
predation	rate	is	very	low,	close	to	zero,	since	the	birds	will	opt	for	some	other	types	of	prey.	The	predation	rate	will	grow	as	the	budworms
become	more	numerous.	But	the	second	important	feature	is	that	the	predation	rate	cannot	grow	to	become	too	large.	Instead,	if	the	budworm
population	is	very	large,	the	rate	of	predation	reaches	some	maximum	value.

To	be	specific,	we	use	the	function

which	is	graphed	below.	The	function	saturates	for	large	population	size	 	to	the	maximum	value	of	1,	and	when	the	budworm	population	size
is	 ,	the	predation	level	 	is	one-half.	This	choice	of	 	is	a	quite	simplistic,	and	it	has	no	parameters	to	adjust	how	fast	the	birds
eat	the	budworms	as	the	population	size	increases.	It	turns	out	we	can	get	away	with	this	simple	form,	but	it	just	means	we	have	to	be	careful
about	how	we	interpret	the	growth	rate	 	and	carrying	capacity	 ,	as	well	as	the	scale	of	our	budworm	population	size	 	and	time	 . 	This
means,	for	example,	that	a	population	size	of	 	does	not	mean	that	there	is	just	one	budworm.	Instead,	 	indicates	the	budworm
population	size	where	the	birds	are	eating	budworms	at	half	their	maximum	rate.	However,	we	aren't	going	to	worry	about	such	details	here,
as	we	just	care	about	the	qualitative	behavior	of	this	system.

The	fact	that	the	predation	rate	 	saturates	to	the	maximum	value	of	1	has	an	important	consequence:	the	predators	can't	eat	the
budworms	fast	enough	to	stop	an	outbreak.	When	there	is	an	explosion	of	the	spruce	budworm	population,	the	birds	will	eat	the	budworms	at
their	maximal	rate,	but	it	won't	be	nearly	enough	to	bring	the	population	size	back	down.	Notice	that	 ,	or	90%	of	the	maximum.
Once	the	budworm	population	size	reaches	around	 ,	the	bird	can't	respond	to	additional	population	growth	by	eating	much	more.	If	the
birds	can't	bring	down	a	huge	population	of	budworms,	how	will	the	outbreak	come	to	an	end?	Let's	see	what	the	model	tells	us.

Model	analysis
Putting	the	predation	rate	into	the	model,	the	final	form	of	our	logistic	model	with	predation	is
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This	model	is	much	too	complicated	to	have	a	nice	formula	for	the	solution.	Instead,	we	will	seek	to	understand	the	behavior	of	the	spruce
budworm	population	size	 	using	graphical	methods,	as	well	as	approximations	to	the	solution	using	the	Forward	Euler	algorithm.

One	challenge	is	that	we	don't	have	values	for	the	parameters	 	and	 .	This	may	seem	like	an	inconvenience,	but	it	will	turn	out	that	allowing
the	parameters	to	take	on	different	values	will	be	key	to	understanding	the	behavior	of	the	outbreaks.

To	begin,	you	can	explore	the	behavior	of	the	model	using	the	following	applet.	In	the	left	panel,	you	can	study	the	plot	of	the	right	hand	side
of	equation	 ,	i.e.,

You	can	explore	how	this	function	depends	on	the	parameters	 	and	 .

Spruce	budworm	model.	Illustration	of	the	dynamical	system	modeling	an	outbreak	of	the	spruce	budworm	population.	The	evolution	of
the	budworm	population	 	is	modeled	by	the	autonomous	differential	equation	 ,	where

The	left	panel	shows	a	plot	of	 	(black	curve),	which	changes	depending	on	the	value	of	the	parameters	 	and	 	(changeable	via
sliders).	If	you	click	the	play	button	in	the	lower	left	corner	of	one	of	the	panels	or	increase	 	manually	via	the	red	slider	in	the	right
panel,	the	evolution	of	 	from	the	initial	condition	 	is	shown	by	the	blue	curves.	In	the	left	panel,	 	is	a	line	on	the
horizontal	axis.	In	the	right	panel,	 	is	plotted	versus	time	 .	The	direction	of	 	can	be	determined	by	the	sign	of	 	or	by
turning	on	the	vector	field	(with	check	box).	Equilibria	are	displayed	by	circles	in	the	left	panel	and	horizontal	lines	in	the	right	panel	if
you	check	the	box.

More	information	about	applet.

The	build-up	toward	the	insect	outbreak

Let's	explore	some	of	the	key	features	of	the	model	that	will	help	explain	the	spruce	budworm	outbreaks.	Set	the	parameters	back	to	their
initial	values:	 	and	 .	How	many	equilibria	does	the	equation	have?	What	are	their	values?	Are	they	stable	or	unstable?	For
each	stable	equilibrium,	determine	the	initial	conditions	for	which	the	solution	will	converge	to	the	equilibrium.

This	parameter	regime	should	correspond	to	a	low	level	of	insects.	Since	the	carrying	capacity	 	is	small,	we	could	think	of	the	forest	as	being
small.	Looking	at	the	above	plot	of	 ,	what	is	the	rate	of	bird	predation	when	the	budworm	population	is	at	this	stable	equilibrium?	Have
the	birds	gotten	to	their	maximum	predation	level?	You	should	see	that	the	birds	are	eating	at	a	moderate	level.	The	birds	are	able	to	keep	the
budworm	population	in	check.

Now,	let's	imagine	the	forest	is	growing	so	that	the	carrying	capacity	for	the	budworms	increases.	As	you	increase	 ,	do	you	notice	any	big
changes	in	the	graph	of	 ?	What	happens	just	as	you	bring	 	above	7.1	or	so?	When	 	is	around	7.5,	how	many	equilibria	does	the	equation
have?	What	are	their	values?	Are	they	stable	or	unstable?	For	each	stable	equilibrium,	determine	the	initial	conditions	for	which	the	solution
will	converge	to	the	equilibrium.

In	this	parameter	regime,	you	should	see	two	stable	equilibria.	One	is	at	a	low	budworm	population	size,	pretty	close	to	the	one	we	saw	above.
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But,	there	is	a	new	stable	equilibrium	at	a	larger	value	of	population	size	 .	That	equilibrium	corresponds	to	the	outbreak	of	spruce
budworms.	What	is	 	at	the	upper	equilibrium?	Have	the	predators	pretty	much	reached	their	capacity	at	this	population	size?

If	we	started	with	a	small	forest,	which	means	a	low	spruce	budworm	population,	and	the	forest	then	grew	to	this	size	( 	around	7.5),	which
equilibrium	would	you	expect	the	budworm	population	size	to	converge	to?	Would	the	budworms	be	at	the	lower	equilibrium	where	they	are
controlled	by	the	birds?	Or	the	upper	equilibrium	corresponding	to	the	outbreak?	This	question	can	be	resolved	from	your	knowledge	about
which	initial	conditions	converge	to	which	equilibrium.

If	you	further	increase	the	forest	size	to	give	a	carrying	capacity	around	 ,	you	shouldn't	see	any	qualitative	differences	from	the	
	case.	What	quantitative	difference	do	you	observe?	In	other	words,	what	has	changed	about	the	location	of	the	equilibria?	If	one

started	with	a	low	spruce	budworm	population	size,	would	the	population	size	be	exploding	or	would	the	population	size	still	be	kept	in	check
by	the	predators?

A	caution	with	using	numerical	tools

Since	we	cannot	analytically	find	the	solution	to	our	model	 ,	we	are	using	the	above	applet,	which	employs	numerical	methods	to
estimate	the	solution.	Although	these	tools	are	important	and	powerful,	we	can't	use	them	blindly.	We	must	understand	their
limitations	and	use	what	we	know	about	the	system	to	verify	the	results	of	such	tools.

The	applet	can	easily	give	a	bogus	result.	It	uses	a	primitive	method	(Forward	Euler)	to	estimate	the	solution	to	the	given	initial
conditions.	If,	for	example,	you	increase	the	growth	rate	 	to	the	largest	value	allowed	by	the	applet,	 ,	lower	carrying	capacity
to	around	 ,	and	set	the	initial	condition	to	 	near	30,	it	will	show	the	solution	jumping	down	past	the	equilibria	to	negative
values.	In	such	a	case,	the	time	step	(which	is	the	total	time	divided	by	1000)	is	too	large.	The	results	shown	by	the	applet	are
incorrect	in	this	case.	You	must	use	your	knowledge	of	differential	equations	(a	solution	can't	jump	over	an	equilibrium)	to	realize	you
shouldn't	believe	the	applet.

You	might	also	notice	that	the	applet	doesn't	always	catch	all	the	equilibria	when	they	are	close	together.

The	outbreak

If	the	situation	was	precarious	when	 ,	it	gets	downright	ugly	when	the	forest	grows	much	larger	and	increases	the	carrying	capacity.
Something	happens	to	the	equilibria	when	the	carrying	capacity	gets	much	larger	than	 .	Describe	the	situation	when	the	carrying
capacity	is	around	 .	How	many	equilibria	does	the	equation	have?	What	are	their	values?	Are	they	stable	or	unstable?	For	each	stable
equilibrium,	determine	the	initial	conditions	for	which	the	solution	will	converge	to	the	equilibrium.

Don't	blindly	trust	the	Forward	Euler	approximation	(blue	curve)	of	the	graph.	Use	the	Forward	Euler	approximation	as	a	guide,	but	also
estimate	a	solution	using	a	graphical	approach	based	on	the	graph	of	 .	If	the	blue	curve	seems	to	stop	where	it	shouldn't	(such	as	away
from	an	equilibrium),	you	can	try	increasing	the	total	time	 	of	the	simulation	to	see	if	you	can	get	the	blue	curve	to	behave	like	you	know	it
should	(based	on	the	analysis	of	the	graph	of	 ).

When	the	forest	is	large	enough	for	the	carrying	capacity	to	be	around	 	(and	the	growth	rate	is	fixed	at	 ),	you	should	have
discovered	that	there's	no	avoiding	the	population	explosion	in	the	spruce	budworm.	The	population	skyrockets	to	nearly	 .	There	are
budworms	everywhere,	and	they	are	busy	eating	the	leaves	off	the	trees,	decimating	the	forest.

Are	the	birds	doing	much	to	control	the	situation?	What	is	 	for	the	outbreak	equilibrium?	Is	it	much	larger	than	when	the	budworms
population	 	was	a	tenth	this	size?	The	birds	are	enjoying	their	feast,	but	only	putting	a	small	dent	into	the	budworm	population	size.

The	decline	of	the	outbreak

What	finally	puts	an	end	to	the	outbreak?	What	the	birds	couldn't	do,	the	budworms	do	to	themselves.	After	a	prolonged	outbreak,	the	spruce
budworms	cause	a	vast	defoliation	of	the	fir	and	spruce	trees.	This	decreases	the	amount	of	food	available	for	the	budworms,	effectively
decreasing	the	carrying	capacity	of	the	forest.	If	the	available	food	can't	support	the	huge	population	of	budworms,	many	of	them	will	die	of
starvation,	decreasing	the	population	size.	Let's	investigate	how	the	model	predicts	this	starvation	should	end	the	outbreak.

Imagine	that	the	defoliation	due	to	the	budworm	outbreak	decreased	the	carrying	capacity	back	down	to	 .	You	don't	need	to	analyze
the	equilibria	for	this	value	of	 	again;	you	did	all	the	work	already.	For	these	parameters,	you	should	have	showed	above	that	the	birds	could
keep	the	population	under	control	and	the	outbreak	was	prevented.	Therefore,	when	the	carrying	capacity	gets	back	down	to	 ,	the
outbreak	should	be	ended,	and	we	should	be	back	to	a	small	population	of	budworms,	right?

Do	you	agree	with	that	last	sentence?	If	we	start	with	a	huge	population	of	budworms	and	bring	the	carrying	capacity	down	to	 ,	which
equilibrium	should	the	budworm	population	size	converge	to?	Is	the	outbreak	still	occurring	or	has	it	ended?

Assuming	you	determine	that	the	outbreak	is	still	occurring,	then	the	budworms	should	continue	their	defoliation	of	the	trees,	dropping	the
carrying	capacity	even	further.	Even	when	the	carrying	capacity	drops	all	the	way	down	to	 ,	we	still	had	two	stable	equilibria.	One
corresponded	to	a	small	population	size	and	one	to	the	outbreak.	If	the	carrying	capacity	was	brought	down	to	 	by	feasting	budworms,
which	equilibrium	should	the	system	be	approaching?	Is	the	outbreak	still	occurring	or	has	it	ended?

Another	qualitative	change	occurs	by	the	time	the	carrying	capacity	drops	below	 .	What	is	the	dramatic	difference	between	the	situation
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when	 	is	around	7.5	and	the	situation	when	 	is	around	6.5?	Describe	what	is	different	about	the	equilibria.	When	a	large	population	brings
the	carrying	capacity	down	to	this	level,	what	must	finally	happen	to	the	budworm	population	size?

The	idea	is	that	when	the	carrying	capacity	gets	this	low,	most	of	the	budworms	that	don't	die	from	starvation	can	be	taken	care	of	by	the
birds.	The	budworms	managed	to	defoliate	a	large	portion	of	the	forest,	but	have	finally	been	brought	down	to	a	small	population	where	they
don't	do	much	damage.	That	is,	at	least	until	the	forest	grows	back	large	enough	so	that	the	population	can	explode	again.	But	that	will	take
40	or	so	more	years.

A	summary	figure
To	present	your	results	to	foresters	and	folks	in	the	wood	products	industry,	you	need	a	way	to	nicely	summarize	your	results.	One	way	to	do
this	would	be	to	make	a	movie	using	the	above	applet.	You	could	set	the	initial	condition	 	to	a	small	value	and	the	time	 	to	some	large
number	so	that	 	is	always	at	the	lower	stable	equilibrium.	As	the	forest	grows	and	the	carrying	capacity	 	slowly	increases,	the	budworm
population	size	would	track	the	lower	stable	equilibrium	until	that	equilibrium	suddenly	disappears,	and	the	population	explodes	to	the	upper
equilibrium.	For	the	second	half	of	the	movie,	set	the	initial	condition	to	a	large	value	so	that	 	is	at	the	upper	stable	equilibrium.	As	forest
dies	and	 	decreases,	the	population	size	stays	at	the	upper	equilibrium	until	that	equilibrium	suddenly	disappears	and	the	population	drops
back	down	to	low	levels.

An	example	of	such	a	movie	is	shown	below.	Click	the	play	button	(at	lower	left	of	one	of	panels)	to	get	it	started.	The	right	panel	plots	a	graph
of	the	population	size	versus	time.	(The	 	from	the	movie	is	slower	time	scale	than	the	 	in	the	first	applet.)

Spruce	budworm	outbreak	movie.	This	movie	illustrates	how	the	spruce	budworm	population	size	initially	stays	low	as	the	forest	grows,
until	finally	the	population	explodes	into	a	outbreak	of	the	budworms	which	decimates	the	forest.	Click	the	play	button	in	the	lower	left
corner	of	one	of	the	panels	to	start	the	animation.	The	left	panel	shows	a	plot	of	 ,	which	is	the	right
hand	side	of	the	spruce	budworm	model	 .	The	movie	does	not	show	the	evolution	of	this	differential	equation,	but	just	sets
that	the	budworm	size	to	be	a	stable	equilibrium	of	the	model.	(The	movie	assumes	that	the	evolution	to	the	equilibrium	happens	faster
than	the	time	scale	represented.)	The	right	panel	shows	how	the	population	size	 	and	the	carrying	capacity	 	of	the	forest	evolve	with
time	 .	When	the	budworm	population	is	low,	the	forest	grows	so	that	the	carrying	capacity	 	increases	steadily.	Then,	when	the
outbreak	occurs,	the	forest	dies	and	the	carrying	capacity	 	decreases	steadily.	The	rate	of	increase	and	decrease	of	 	is	arbitrary;	the
time	 	is	some	slow	time	scale	over	which	the	forest	evolves.

More	information	about	applet.

You	like	this	movie	but	realize	that	you	need	a	simpler	way	to	communicate	the	results.	You	decide	it	would	be	better	to	have	something	just
on	a	piece	of	paper	that	you	can	hand	out	to	people	and	that	allows	folks	to	see	the	whole	situation	with	just	one	glance.	Your	idea	is	that	you
could	capture	the	essence	of	the	whole	movie	with	a	plot	of	 	versus	the	carrying	capacity	 .

The	crux	of	the	idea	is	the	following.	Imagine	that	you	turn	off	the	view	of	the	function	(and	the	vector	field)	in	the	first	applet	and	just	show
the	equilibria	on	the	 	phase	line.	The	summary	figure	will	just	show	how	the	equilibria	on	the	 -axis	change	as	you	change	 .	Flip	the	 -axis
so	it	becomes	the	vertical	axis.	Make	the	horizontal	axis	be	the	 -axis.	Above	each	value	of	 ,	plot	the	values	of	the	equilibria.	Above	some
values	of	 	(such	as	 ),	you	would	just	plot	two	circles,	corresponding	to	the	positions	of	the	two	equilibria.	Above	other	values	of	 	(such
as	 ),	you	would	put	four	circles.	Since	the	location	of	the	circles	change	smoothly	as	you	change	 ,	the	track	of	the	circles	would	trace
out	smooth	curves	as	you	moved	from	left	to	right	(moved	from	small	values	of	 	to	large	values	of	 ).

In	fact,	the	plot	would	be	even	clear	if,	rather	than	plotting	the	individual	circles,	you	just	drew	the	smooth	curves	showing	how	the	equilibria
change	as	 	changes.	You	would	use	solid	lines	for	stable	equilibria	and	dash	lines	for	unstable	equilibria.	For	example,	you	would	have	a
straight	dashed	line	across	the	whole	diagram	at	 ,	since	that	unstable	equilibrium	is	there	for	all	values	of	 .	The	other	equilibria	move
around	as	you	change	 ,	so	they	would	be	represented	by	curves.	This	plot	is	a	bifurcation	diagram.	Don't	use	that	term	in	front	of	the
foresters,	though,	or	they	may	get	nervous	and	get	scared	of	the	mathematics.

Once	you	have	created	a	nice	bifurcation	diagram	representing	how	the	equilibria	depends	on	 ,	the	last	part	is	to	show	the	foresters	what
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happens	to	the	spruce	worm	population	 .	The	population	size	will	never	approach	an	unstable	equilibria,	of	course.	But,	it	will	stay	close
to	different	stable	equilibria	depending	on	the	situation.	Since	this	diagram	doesn't	show	time,	you	can	draw	how	 	and	 	evolved	in	the
movie	using	a	curve	(a	different	color?)	with	arrows	on	it.	The	arrows	will	distinguish	when	 	is	increasing	and	when	 	is	decreasing.	If	you
start	at	a	small	value	of	 	and	 ,	increase	 	through	the	catastrophic	outbreak.	Then,	once	 	jumps	up	to	the	outbreak	level,	bring	 	back
down	until	 	jumps	down	to	a	low	level.	The	curve	with	arrows	representing	this	sequence	of	events	should	trace	out	a	loop,	and	the	curve
should	be	on	the	stable	equilibria	from	the	bifurcation	diagram	except	at	the	points	where	it	jumps	and	and	down.	This	loop	is	how	you'll
explain	the	outbreak	to	the	foresters.	(It's	called	a	hysteresis	loop,	but	again,	keep	the	fancy	lingo	to	yourself.)	The	hysteresis	loop,	when
drawn	on	top	of	the	bifurcation	diagram,	succinctly	tells	the	story	of	the	above	movie	in	one	diagram.

When	you	make	this	summary	diagram,	with	 	on	the	horizontal	axis	and	 	on	the	vertical	axis,	be	sure	to	label	everything	clearly	so	the
foresters	can	understand	what	your	model	is	telling	them.	You	could	include	labels	from	the	movie,	if	you	like.	Use	this	diagram	to	tell	the
story	of	how	the	model	predicts	how	the	spruce	budworm	outbreak	initiates	and	is	terminated.	Remember,	the	foresters	may	not	understand
mathematics	very	well,	so	include	enough	description	so	that	they	can	follow	what	you	did.

Project
The	spruce	budworm	outbreak	project	page	gives	instructions	for	writing	up	a	project	report	based	on	this	analysis.

See	also
Solving	single	autonomous	differential	equations	using	graphical	methods
Introduction	to	bifurcations	of	a	differential	equation
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Harvest	of	natural	populations
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2.	 We	should	have	started	with	a	more	general	form	for	 	with	a	more	realistic	maximum	rate	of	predation,	and	we	should	be	able	to

adjust	how	large	the	budworm	population	size	needs	to	be	before	the	predation	to	gets	close	to	the	maximum	rate.	However,	it	turns	out
we	could	have	started	with	a	more	general	form	and	done	some	clever	nondimensionalization	to	end	up	with	our	simplistic	form.	When	we
start	with	the	more	complicated	model	and	turn	it	into	the	simple	form,	the	parameters	 	and	 	end	up	being	combinations	of	parameters
of	the	original	model.	The	variables	 	and	 	are	also	rescaled	by	parameters	of	the	original	model.

Cite	this	as
Nykamp	DQ,	“Spruce	budworm	outbreak	model.”	From	Math	Insight.	http://mathinsight.org/spruce_budworm_outbreak_model

Keywords:	bifurcation,	differential	equation,	dynamical	system,	ordinary	differential	equation

Spruce	budworm	outbreak	model	by	Duane	Q.	Nykamp	is	licensed	under	a	Creative	Commons	Attribution-Noncommercial-ShareAlike	4.0
License.	For	permissions	beyond	the	scope	of	this	license,	please	contact	us.

w(t)
a w

a a
a w a w a

w

a w

h(w)

r a
w t


