

# **Sewage Treatment**

The wastes generated by some 60% of the U.S. population are collected in sewer systems and carried along by some 14 billion gallons (~53 billion liters) of water a day. Of this enormous volume, some 10% is allowed to pass untreated into rivers, streams, and the ocean. The rest receives some form of treatment to improve the quality of the water (which makes up 99.9% of sewage) before it is released for reuse.

#### Index to this page

- Biochemical Oxygen Demand (BOD)
- Primary Treatment
- Secondary Treatment
- Advanced Waste Treatment

### **Biochemical Oxygen Demand (BOD)**

The BOD is an important measure of water quality. It is a measure of the amount of oxygen needed (in milligrams per liter or <u>parts per million</u>) by bacteria and other microorganisms to oxidize the organic matter present in a water sample over a period of 5 days. The BOD of drinking water should be less than 1. That of raw sewage may run to several hundred. It is also called the "biological" oxygen demand.

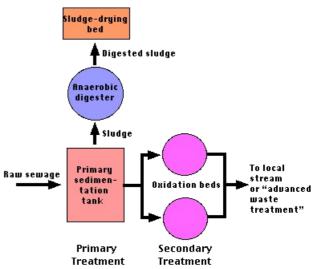
## **Primary Treatment**

The simplest, and least effective, method of treatment is to allow the undissolved solids in raw sewage to settle out of suspension forming **sludge**. Such **primary treatment** removes only one-third of the **BOD** and virtually none of the dissolved minerals.

Attempts to use digested sludge as a fertilizer have been hampered by its frequent contamination by toxic chemicals derived from industrial wastes.

## **Secondary Treatment**

However, many treatment plants in North America then pass the effluent from primary treatment to **secondary treatment**. Here the effluent is brought in contact with oxygen and <u>aerobic</u> microorganisms. They break down much of the organic matter to harmless substances such as carbon dioxide.


Primary and secondary treatment together can remove up to 90% of the BOD. After <u>chlorination</u> to remove its content of bacteria, the effluent from secondary treatment is returned to the local surface water.

#### **Advanced Waste Treatment**

The combination of primary and secondary treatment removes most of the organic matter in sewage and thus lowers the BOD. However, most of the **nitrogen** and **phosphorus** in sewage remains in the effluent from secondary treatment. These inorganic nutrients can cause <u>eutrophication</u> of surface water receiving the effluent causing blooms of algae. To avoid this, a few communities add a third stage of treatment called tertiary or advanced waste treatment.

Several techniques are available to remove dissolved salts from sewage effluent, but all are quite expensive.

Welcome&Next Search

