
CS	537
Lecture	Notes,	Part	8
Segmentation
Previous	More	About	Paging	
Next	Disks	
Contents

Segmentation
Multics
Intel	x86

Segmentation
[	Silberschatz,	Galvin,	and	Gagne,	Section	9.5	]

In	accord	with	the	beautification	principle,	paging	makes	the	main	memory	of	the	computer	look	more	“beautiful”
in	several	ways.

It	gives	each	process	its	own	virtual	memory,	which	looks	like	a	private	version	of	the	main	memory	of	the
computer.	In	this	sense,	paging	does	for	memory	what	the	process	abstraction	does	for	the	CPU.	Even	though
the	computer	hardware	may	have	only	one	CPU	(or	perhaps	a	few	CPUs),	each	“user”	can	have	his	own
private	virtual	CPU	(process).	Similarly,	paging	gives	each	process	its	own	virtual	memory,	which	is	separate
from	the	memories	of	other	processes	and	protected	from	them.
Each	virtual	memory	looks	like	a	linear	array	of	bytes,	with	addresses	starting	at	zero.	This	feature	simplifies
relocation:	Every	program	can	be	compiled	under	the	assumption	that	it	will	start	at	address	zero.
It	makes	the	memory	look	bigger,	by	keeping	infrequently	used	portions	of	the	virtual	memory	space	of	a
process	on	disk	rather	than	in	main	memory.	This	feature	both	promotes	more	efficient	sharing	of	the	scarce
memory	resource	among	processes	and	allows	each	process	to	treat	its	memory	as	essentially	unbounded	in
size.	Just	as	a	process	doesn't	have	to	worry	about	doing	some	operation	that	may	block	because	it	knows	that
the	OS	will	run	some	other	process	while	it	is	waiting,	it	doesn't	have	to	worry	about	allocating	lots	of	space
to	a	rarely	(or	sparsely)	used	data	structure	because	the	OS	will	only	allocate	real	memory	to	the	part	that's
actually	being	used.

Segmentation	caries	this	feature	one	step	further	by	allowing	each	process	to	have	multiple	“simulated	memories.”
Each	of	these	memories	(called	a	segment)	starts	at	address	zero,	is	independently	protected,	and	can	be
separately	paged.	In	a	segmented	system,	a	memory	address	has	two	parts:	a	segment	number	and	a	segment
offset.	Most	systems	have	some	sort	of	segementation,	but	often	it	is	quite	limited.	Unix	has	exactly	three
segments	per	process.	One	segment	(called	the	text	segment)	holds	the	executable	code	of	the	process.	It	is
generally1	read-only,	fixed	in	size	when	the	process	starts,	and	shared	among	all	processes	running	the	same
program.	Sometimes	read-only	data	(such	as	constents)	are	also	placed	in	this	segment.	Another	segment	(the	data
segment)	holds	the	memory	used	for	global	variables.	Its	protection	is	read/write	(but	usually	not	executable),	and
is	normally	not	shared	between	processes.2	There	is	a	special	system	call	to	extend	the	size	of	the	data	segment	of
a	process.	The	third	segment	is	the	stack	segment.	As	the	name	implies,	it	is	used	for	the	process'	stack,	which	is
used	to	hold	information	used	in	procedure	calls	and	returns	(return	address,	saved	contents	of	registers,	etc.)	as
well	as	local	variables	of	procedures.	Like	the	data	segment,	the	stack	is	read/write	but	usually	not	executable.	The
stack	is	automatically	extended	by	the	OS	whenever	the	process	causes	a	fault	by	referencing	an	address	beyond
the	current	size	of	the	stack	(usually	in	the	course	of	a	procedure	call).	It	is	not	shared	between	processes.	Some
variants	of	Unix	have	a	fourth	segment,	which	contains	part	of	the	OS	data	structures.	It	is	read-only	and	shared
by	all	processes.

Many	application	programs	would	be	easier	to	write	if	they	could	have	as	many	segments	as	they	liked.	As	an
example	of	an	application	program	that	might	want	multiple	segments,	consider	a	compiler.	In	addition	to	the
usual	text,	data,	and	stack	segments,	it	could	use	one	segment	for	the	source	of	the	program	being	compiled,	one
for	the	symbol	table,	etc.	(see	Fig	9.18	on	page	287).	Breaking	the	address	space	up	into	segments	also	helps
sharing	(see	Fig.	9.19	on	page	288).	For	example,	most	programs	in	Unix	include	the	library	program	printf.	If	the
executable	code	of	printf	were	in	a	separate	segment,	that	segment	could	easily	be	shared	by	multiple	processes,
allowing	(slightly)	more	efficient	sharing	of	physical	memory.3

If	you	think	of	the	virtual	address	as	being	the	concatenation	of	the	segment	number	and	the	segment	offset,
segmentation	looks	superficially	like	paging.	The	main	difference	is	that	the	application	programmer	is	aware	of
the	segment	boundaries,	but	can	ignore	the	fact	that	the	address	space	is	divided	up	into	pages.

The	implementation	of	segmentation	is	also	superficially	similar	to	the	implementation	of	paging	(see	Fig	9.17	on
page	286).	The	segment	number	is	used	to	index	into	a	table	of	“segment	descriptors,”	each	of	which	contains	the
length	and	starting	address	of	a	segment	as	well	as	protection	information.	If	the	segment	offset	not	less	than	the



segment	length,	the	MMU	traps	with	a	segmentation	violation.	Otherwise,	the	segment	offset	is	added	to	the
starting	address	in	the	descriptor	to	get	the	resulting	physical	address.	There	are	several	differences	between	the
implementation	of	segments	and	pages,	all	derived	from	the	fact	that	the	size	of	a	segment	is	variable,	while	the
size	of	a	page	is	“built-in.”

The	size	of	the	segment	is	stored	in	the	segment	descriptor	and	compared	with	the	segment	offset.	The	size	of
a	page	need	not	be	stored	anywhere	because	it	is	always	the	same.	It	is	always	a	power	of	two	and	the	page
offset	has	just	enough	bits	to	represent	any	legal	offset,	so	it	is	impossible	for	the	page	offset	to	be	out	of
bounds.	For	example,	if	the	page	size	is	4k	(4096)	bytes,	the	page	offset	is	a	12-bit	field,	which	can	only
contain	numbers	in	the	range	0...4095.
The	segment	descriptor	contains	the	physical	address	of	the	start	of	the	segment.	Since	all	page	frames	are
required	to	start	at	an	address	that	is	a	multiple	of	the	page	size,	which	is	a	power	of	two,	the	low-order	bits
of	the	physical	address	of	a	frame	are	always	zero.	For	example,	if	pages	are	4k	bytes,	the	physical	address	of
each	page	frame	ends	with	12	zeros.	Thus	a	page	table	entry	contains	a	frame	number,	which	is	just	the
higher-order	bits	of	the	physical	address	of	the	frame,	and	the	MMU	concatenates	the	frame	number	with	the
page	offset,	as	contrasted	with	adding	the	physical	address	of	a	segment	with	the	segment	offset.

Multics
One	of	the	advantages	of	segmentation	is	that	each	segment	can	be	large	and	can	grow	dynamically.	To	get	this
effect,	we	have	to	page	each	segment.	One	way	to	do	this	is	to	have	each	segment	descriptor	contain	the	(physical)
address	of	a	page	table	for	the	segment	rather	than	the	address	of	the	segment	itself.	This	is	the	way	segmentation
works	in	Multics,	the	granddaddy	of	all	modern	operating	systems	and	a	pioneer	of	the	idea	of	segmentation.
Multics	ran	on	the	General	Electric	(later	Honeywell)	635	computer,	which	was	a	36-bit	word-addressable
machine,	which	means	that	memory	is	divided	into	36-bit	words,	with	consecutive	words	having	addresses	that
differ	by	1	(there	were	no	bytes).	A	virtual	address	was	36	bits	long,	with	the	high	18	bits	interpreted	as	the
segment	number	and	the	low	18	bits	as	segment	offset.	Although	18	bits	allows	a	maximum	size	of	218	=	262,144
words,	the	software	enforced	a	maximum	segment	size	of	216	=	65,536	words.	Thus	the	segment	offset	is
effectively	16	bits	long.	Associated	with	each	process	is	a	table	called	the	descriptor	segment.	There	is	a	register
called	the	Descriptor	Segment	Base	Register	(DSBR)	that	points	to	it	and	a	register	called	the	Descriptor	Segment
Length	Register	(DSLR)	that	indicates	the	number	of	entries	in	the	descriptor	segment.

First	the	segment	number	in	the	virtual	address	is	used	to	index	into	the	descriptor	segment	to	find	the
appropriate	descriptor.	(If	the	segment	number	is	too	large,	a	fault	occurs).	The	descriptor	contains	permission
information,	which	is	checked	to	see	if	the	current	process	has	rights	to	access	the	segment	as	requested.	If	that
check	succeeds,	the	memory	address	of	a	page	table	for	the	segment	is	found	in	the	descriptor.	Since	each	page	is
1024	words	long,	the	16-bit	segment	offset	is	interpreted	as	a	6-bit	page	number	and	a	10-bit	offset	within	the
page.	The	page	number	is	used	to	index	into	the	page	table	to	get	an	entry	containing	a	valid	bit	and	frame
number.	If	the	valid	bit	is	set,	the	physical	address	of	the	desired	word	is	found	by	concatenating	the	frame	number
with	the	10-bit	page	offset	from	the	virtual	address.

Actually,	I've	left	out	one	important	detail	to	simplify	the	description.	The	“descriptor	segment”	really	is	a	segment,
which	means	it	really	is	paged,	just	like	any	other	segment.	Thus	there	is	another	page	table	that	is	the	page	table
for	the	descriptor	segment.	The	18-bit	segment	number	from	the	virtual	address	is	split	into	an	8-bit	page	number
and	a	10-bit	offset.	The	page	number	is	used	to	select	an	entry	from	the	decriptor	segment's	page	table.	That	entry
contains	the	(physical)	address	of	a	page	of	the	descriptor	segment,	and	the	page-offset	field	of	the	segment
number	is	used	to	index	into	that	page	to	get	the	descriptor	itself.	The	rest	of	the	translation	occurs	as	described	in
the	preceding	paragraph.	In	total,	each	memory	reference	turns	into	four	accesses	to	memory.

1.	 one	to	retrieve	an	entry	from	the	descriptor	segment's	page	table,
2.	 one	to	retrieve	the	descriptor	itself,
3.	 one	to	retrieve	an	entry	from	the	page	table	for	the	desired	segment,	and
4.	 one	to	load	or	store	the	desired	data.

Multics	used	a	TLB	mapping	the	segment	number	and	page	number	within	the	segment	to	a	page	frame	to	avoid
three	of	these	accesses	in	most	cases.



Intel	x86
[	Silberschat,	Galvin,	and	Gagne,	Section	9.6	]

The	Intex	386	(and	subsequent	members	of	the	X86	family	used	in	personal	computers)	uses	a	different	approach
to	combining	paging	with	segmentation.	A	virtual	address	consists	of	a	16-bit	segment	selector	and	a	16	or	32-bit
segment	offset.	The	selector	is	used	to	fetch	a	segment	descriptor	from	a	table	(actually,	there	are	two	tables	and
one	of	the	bits	of	the	selector	is	used	to	choose	which	table).	The	64-bit	descriptor	contains	the	32-bit	address	of
the	segment	(called	the	segment	base)	21	bits	indicating	its	length,	and	miscellaneous	bits	indicating	protections
and	other	options.	The	segment	length	is	indicated	by	a	20-bit	limit	and	one	bit	to	indicate	whether	the	limit	should
be	interpreted	as	bytes	or	pages.	(The	segment	base	and	limit	“fields”	are	actually	scattered	around	the	descriptor
to	provide	compatibility	with	earlier	version	of	the	hardware.)	If	the	offset	from	the	original	virtual	address	does
not	exceed	the	segment	length,	it	is	added	to	the	base	to	get	a	“physical”	address	called	the	linear	address	(see	Fig
9.20	on	page	292).	If	paging	is	turned	off,	the	linear	address	really	is	the	physical	address.	Otherwise,	it	is
translated	by	a	two-level	page	table	as	described	previously,	with	the	32-bit	address	divided	into	two	10-bit	page
numbers	and	a	12	bit	offset	(a	page	is	4K	on	this	machine).

Previous	More	About	Paging	
Next	Disks	
Contents

1I	have	to	say	“generally”	here	and	elsewhere	when	I	talk	about	Unix	because	there	are	many	variants	of	Unix	in
existence.	Sometimes	I	will	use	the	term	“classic	Unix”	to	decribe	the	features	that	were	in	Unix	before	it	spread	to
many	distinct	dialects.	Features	in	classic	Unix	are	generally	found	in	all	of	its	dialects.	Sometimes	features
introduced	in	one	variant	became	so	popular	that	they	were	widely	immitated	and	are	now	available	in	most
dialects.

2This	a	good	example	of	one	of	those	“popular”	features	not	in	classic	Unix	but	in	most	modern	variants:	System	V
(an	AT&T	variant	of	Unix)	introduced	the	ability	to	map	a	chunk	of	virtual	memory	into	the	address	spaces	of
multiple	processes	at	some	offset	in	the	data	segment	(perhaps	a	different	offset	in	each	process).	This	chunk	is
called	a	“shared	memory	segment,”	but	is	not	a	segment	in	the	sense	we	are	using	the	term	here.	So-called
“System	V	shared	memory”	is	available	in	most	current	versions	of	Unix.

3Many	variants	of	Unix	get	a	similar	effect	with	so-called	“shared	libraries,”	which	are	implemented	with	shared
memory	but	without	general-purpose	segmentation	support.

solomon@cs.wisc.edu	
Tue	Jan	16	14:33:41	CST	2007

Copyright	©	1996-2007	by	Marvin	Solomon.	All	rights	reserved.


