
Next	Page Up	One	Level

Lecture	Slides	available:	PDF	PowerPoint

Relational	Algebra
Contents

Terminology
Operators	-	Write
Operators	-	Retrieval
Relational	SELECT
Relational	PROJECT
SELECT	and	PROJECT
Set	Operations	-	semantics
SET	Operations	-	requirements
UNION	Example
INTERSECTION	Example
DIFFERENCE	Example
CARTESIAN	PRODUCT
CARTESIAN	PRODUCT	example
JOIN	Operator
JOIN	Example
Natural	Join
OUTER	JOINs
OUTER	JOIN	example	1
OUTER	JOIN	example	2

In	order	to	implement	a	DBMS,	there	must	exist	a	set	of	rules	which	state	how	the
database	system	will	behave.	For	instance,	somewhere	in	the	DBMS	must	be	a	set	of
statements	which	indicate	than	when	someone	inserts	data	into	a	row	of	a	relation,	it
has	the	effect	which	the	user	expects.	One	way	to	specify	this	is	to	use	words	to	write
an	`essay'	as	to	how	the	DBMS	will	operate,	but	words	tend	to	be	imprecise	and	open
to	interpretation.	Instead,	relational	databases	are	more	usually	defined	using
Relational	Algebra.

Relational	Algebra	is	:

the	formal	description	of	how	a	relational	database	operates
an	interface	to	the	data	stored	in	the	database	itself
the	mathematics	which	underpin	SQL	operations

Operators	in	relational	algebra	are	not	necessarily	the	same	as	SQL	operators,	even	if
they	have	the	same	name.	For	example,	the	SELECT	statement	exists	in	SQL,	and	also
exists	in	relational	algebra.	These	two	uses	of	SELECT	are	not	the	same.	The	DBMS
must	take	whatever	SQL	statements	the	user	types	in	and	translate	them	into
relational	algebra	operations	before	applying	them	to	the	database.

Terminology
Relation	-	a	set	of	tuples.
Tuple	-	a	collection	of	attributes	which	describe	some	real	world	entity.
Attribute	-	a	real	world	role	played	by	a	named	domain.
Domain	-	a	set	of	atomic	values.
Set	-	a	mathematical	definition	for	a	collection	of	objects	which	contains	no
duplicates.

Operators	-	Write

Database	Notes
Online	Notes
Reference	Pages

Tutorial	Activities
Online	SQL
Online	Quiz
Discussion	Forum

Future	Stuff			
Online	Relational
Algebra
News

http://db.grussell.org/section010.html Go FEB MAR APR

08
2015 2016 2017

167	captures
	 	

	
6	Sep	2004	-	12	Sep	2017 	About	this	capture



INSERT	-	provides	a	list	of	attribute	values	for	a	new	tuple	in	a	relation.	This
operator	is	the	same	as	SQL.
DELETE	-	provides	a	condition	on	the	attributes	of	a	relation	to	determine	which
tuple(s)	to	remove	from	the	relation.	This	operator	is	the	same	as	SQL.
MODIFY	-	changes	the	values	of	one	or	more	attributes	in	one	or	more	tuples	of
a	relation,	as	identified	by	a	condition	operating	on	the	attributes	of	the	relation.
This	is	equivalent	to	SQL	UPDATE.

Operators	-	Retrieval
There	are	two	groups	of	operations:

Mathematical	set	theory	based	relations:
UNION,	INTERSECTION,	DIFFERENCE,	and	CARTESIAN	PRODUCT.
Special	database	operations:
SELECT	(not	the	same	as	SQL	SELECT),	PROJECT,	and	JOIN.

Relational	SELECT
SELECT	is	used	to	obtain	a	subset	of	the	tuples	of	a	relation	that	satisfy	a	select
condition.

For	example,	find	all	employees	born	after	1st	Jan	1950:

	SELECTdob	'01/JAN/1950'(employee)

Relational	PROJECT
The	PROJECT	operation	is	used	to	select	a	subset	of	the	attributes	of	a	relation	by
specifying	the	names	of	the	required	attributes.

For	example,	to	get	a	list	of	all	employees	surnames	and	employee	numbers:

	PROJECTsurname,empno(employee)

SELECT	and	PROJECT
SELECT	and	PROJECT	can	be	combined	together.	For	example,	to	get	a	list	of
employee	numbers	for	employees	in	department	number	1:

Figure	:	Mapping	select	and	project

Set	Operations	-	semantics
Consider	two	relations	R	and	S.

UNION	of	R	and	S
the	union	of	two	relations	is	a	relation	that	includes	all	the	tuples	that	are	either
in	R	or	in	S	or	in	both	R	and	S.	Duplicate	tuples	are	eliminated.
INTERSECTION	of	R	and	S
the	intersection	of	R	and	S	is	a	relation	that	includes	all	tuples	that	are	both	in	R
and	S.
DIFFERENCE	of	R	and	S
the	difference	of	R	and	S	is	the	relation	that	contains	all	the	tuples	that	are	in	R
but	that	are	not	in	S.

SET	Operations	-	requirements
For	set	operations	to	function	correctly	the	relations	R	and	S	must	be	union
compatible.	Two	relations	are	union	compatible	if

they	have	the	same	number	of	attributes



the	domain	of	each	attribute	in	column	order	is	the	same	in	both	R	and	S.

UNION	Example

Figure	:	UNION

INTERSECTION	Example

Figure	:	Intersection

DIFFERENCE	Example

Figure	:	DIFFERENCE

CARTESIAN	PRODUCT
The	Cartesian	Product	is	also	an	operator	which	works	on	two	sets.	It	is	sometimes
called	the	CROSS	PRODUCT	or	CROSS	JOIN.

It	combines	the	tuples	of	one	relation	with	all	the	tuples	of	the	other	relation.



CARTESIAN	PRODUCT	example

Figure	:	CARTESIAN	PRODUCT

JOIN	Operator
JOIN	is	used	to	combine	related	tuples	from	two	relations:

In	its	simplest	form	the	JOIN	operator	is	just	the	cross	product	of	the	two
relations.
As	the	join	becomes	more	complex,	tuples	are	removed	within	the	cross	product
to	make	the	result	of	the	join	more	meaningful.
JOIN	allows	you	to	evaluate	a	join	condition	between	the	attributes	of	the
relations	on	which	the	join	is	undertaken.

The	notation	used	is

	R	JOINjoin	condition	S

JOIN	Example

Figure	:	JOIN

Natural	Join
Invariably	the	JOIN	involves	an	equality	test,	and	thus	is	often	described	as	an	equi-
join.	Such	joins	result	in	two	attributes	in	the	resulting	relation	having	exactly	the
same	value.	A	`natural	join'	will	remove	the	duplicate	attribute(s).

In	most	systems	a	natural	join	will	require	that	the	attributes	have	the	same
name	to	identify	the	attribute(s)	to	be	used	in	the	join.	This	may	require	a
renaming	mechanism.
If	you	do	use	natural	joins	make	sure	that	the	relations	do	not	have	two
attributes	with	the	same	name	by	accident.

OUTER	JOINs
Notice	that	much	of	the	data	is	lost	when	applying	a	join	to	two	relations.	In	some
cases	this	lost	data	might	hold	useful	information.	An	outer	join	retains	the
information	that	would	have	been	lost	from	the	tables,	replacing	missing	data	with
nulls.

There	are	three	forms	of	the	outer	join,	depending	on	which	data	is	to	be	kept.



LEFT	OUTER	JOIN	-	keep	data	from	the	left-hand	table
RIGHT	OUTER	JOIN	-	keep	data	from	the	right-hand	table
FULL	OUTER	JOIN	-	keep	data	from	both	tables

OUTER	JOIN	example	1

Figure	:	OUTER	JOIN	(left/right)

OUTER	JOIN	example	2

Figure	:	OUTER	JOIN	(full)

Next	Page Up	One	Level


