
Next	Page Up	One	Level

Lecture	Slides	available:	PDF	PowerPoint

Normalisation
Contents

What	is	normalisation?
Integrity	Constraints
Understanding	Data

Student	#2	-	Flattened	Table
First	Normal	Form
Flatten	table	and	Extend	Primary	Key

Insertion	anomaly:
Update	anomaly
Deletion	anomaly

Decomposing	the	relation
Second	Normal	Form
Third	Normal	Form
Summary:	1NF
Summary:	2NF
Summary:	3NF

What	is	normalisation?
Normalisation	is	the	process	of	taking	data	from	a	problem	and	reducing	it	to	a	set	of
relations	while	ensuring	data	integrity	and	eliminating	data	redundancy

Data	integrity	-	all	of	the	data	in	the	database	are	consistent,	and	satisfy	all
integrity	constraints.
Data	redundancy	–	if	data	in	the	database	can	be	found	in	two	different	locations
(direct	redundancy)	or	if	data	can	be	calculated	from	other	data	items	(indirect
redundancy)	then	the	data	is	said	to	contain	redundancy.

Data	should	only	be	stored	once	and	avoid	storing	data	that	can	be	calculated	from
other	data	already	held	in	the	database.	During	the	process	of	normalisation
redundancy	must	be	removed,	but	not	at	the	expense	of	breaking	data	integrity	rules.

If	redundancy	exists	in	the	database	then	problems	can	arise	when	the	database	is	in
normal	operation:

When	data	is	inserted	the	data	must	be	duplicated	correctly	in	all	places	where
there	is	redundancy.	For	instance,	if	two	tables	exist	for	in	a	database,	and	both
tables	contain	the	employee	name,	then	creating	a	new	employee	entry	requires
that	both	tables	be	updated	with	the	employee	name.
When	data	is	modified	in	the	database,	if	the	data	being	changed	has
redundancy,	then	all	versions	of	the	redundant	data	must	be	updated
simultaneously.	So	in	the	employee	example	a	change	to	the	employee	name
must	happen	in	both	tables	simultaneously.

The	removal	of	redundancy	helps	to	prevent	insertion,	deletion,	and	update	errors,
since	the	data	is	only	available	in	one	attribute	of	one	table	in	the	database.

The	data	in	the	database	can	be	considered	to	be	in	one	of	a	number	of	`normal
forms'.	Basically	the	normal	form	of	the	data	indicates	how	much	redundancy	is	in
that	data.	The	normal	forms	have	a	strict	ordering:

1.	 1st	Normal	Form
2.	 2nd	Normal	Form

Database	Notes
Online	Notes
Reference	Pages

Tutorial	Activities
Online	SQL
Online	Quiz
Discussion	Forum

Future	Stuff			
Online	Relational
Algebra
News

http://db.grussell.org/section008.html Go FEB MAR APR

10
2015 2016 2017

159	captures
	 	
	

� ⍰❎
f �

6	Sep	2004	-	14	Sep	2017 ▾	About	this	capture



3.	 3rd	Normal	Form
4.	 BCNF

There	are	other	normal	forms,	such	as	4th	and	5th	normal	forms.	They	are	rarely
utilised	in	system	design	and	are	not	considered	further	here.

To	be	in	a	particular	form	requires	that	the	data	meets	the	criteria	to	also	be	in	all
normal	forms	before	that	form.	Thus	to	be	in	2nd	normal	form	the	data	must	meet	the
criteria	for	both	2nd	normal	form	and	1st	normal	form.	The	higher	the	form	the	more
redundancy	has	been	eliminated.

Integrity	Constraints
An	integrity	constraint	is	a	rule	that	restricts	the	values	that	may	be	present	in	the
database.	The	relational	data	model	includes	constraints	that	are	used	to	verify	the
validity	of	the	data	as	well	as	adding	meaningful	structure	to	it:

entity	integrity	:

The	rows	(or	tuples)	in	a	relation	represent	entities,	and	each	one	must	be	uniquely
identified.	Hence	we	have	the	primary	key	that	must	have	a	unique	non-null	value	for
each	row.

referential	integrity	:

This	constraint	involves	the	foreign	keys.	Foreign	keys	tie	the	relations	together,	so	it
is	vitally	important	that	the	links	are	correct.	Every	foreign	key	must	either	be	null	or
its	value	must	be	the	actual	value	of	a	key	in	another	relation.

Understanding	Data
Sometimes	the	starting	point	for	understanding	data	is	given	in	the	form	of	relations
and	functional	dependancies.	This	would	be	the	case	where	the	starting	point	in	the
process	was	a	detailed	specification	of	the	problem.	We	already	know	what	relations
are.	Functional	dependancies	are	rules	stating	that	given	a	certain	set	of	attributes
(the	determinant)	determines	a	second	set	of	attributes.

The	definition	of	a	functional	dependency	looks	like	A->B.	In	this	case	B	is	a	single
attribute	but	it	can	be	as	many	attributes	as	required	(for	instance,	X->J,K,L,M).	In
the	functional	dependency,	the	determinant	(the	left	hand	side	of	the	->	sign)	can
determine	the	set	of	attributes	on	the	right	hand	side	of	the	->	sign.	This	basically
means	that	A	selects	a	particular	value	for	B,	and	that	A	is	unique.	In	the	second
example	X	is	unique	and	selects	a	particular	set	of	values	for	J,K,L,	and	M.	It	can	also
be	said	that	B	is	functionally	dependent	on	A.	In	addition,	a	particular	value	of	A
ALWAYS	gives	you	a	particular	value	for	B,	but	not	vice-versa.

Consider	this	example:

R(matric_no,	firstname,	surname,	tutor_number,	tutor_name)

tutor_number	->	tutor_name

Here	there	is	a	relation	R,	and	a	functional	dependency	that	indicates	that:

instances	of	tutor_number	are	unique	in	the	data
from	the	data,	given	a	tutor_number,	it	is	always	possible	to	work	out	the
tutor_name.
As	an	example	tutor	number	1	may	be	“Mr	Smith”,	but	tutor	number	10	may	also
be	“Mr	Smith”.	Given	a	tutor	number	of	1,	this	is	ALWAYS	“Mr	Smith”.	However,
given	the	name	“Mr	Smith”	it	is	not	possible	to	work	out	if	we	are	talking	about
tutor	1	or	tutor	10.

There	is	actually	a	second	functional	dependency	for	this	relation,	which	can	be
worked	out	from	the	relation	itself.	As	the	relation	has	a	primary	key,	then	given	this
attribute	you	can	determine	all	the	other	attributes	in	R.	This	is	an	implied	functional
dependency	and	is	not	normally	listed	in	the	list	of	functional	dependents.

Extracting	understanding

It	is	possible	that	the	relations	and	the	determinants	have	not	yet	been	defined	for	a
problem,	and	therefore	must	be	calculated	from	examples	of	the	data.	Consider	the
following	Student	table.



Student	-	an	unnormalised	tablewith	repeating	groups

matric_no Name date_of_birth subject grade

960100 Smith,	J 14/11/1977
Databases
Soft_Dev
ISDE

C
A
D

960105 White,	A 10/05/1975 Soft_Dev
ISDE

B
B

960120 Moore,	T 11/03/1970
Databases
Soft_Dev
Workshop

A
B
C

960145 Smith,	J 09/01/1972 Databases B

960150 Black,	D 21/08/1973
Databases
Soft_Dev
ISDE
Workshop

B
D
C
D

The	subject/grade	pair	is	repeated	for	each	student.	960145	has	1	pair	while	960150
has	four.	Repeating	groups	are	placed	inside	another	set	of	parentheses.	From	the
table	the	following	relation	is	generated:

	Student(matric_no,	name,	date_of_birth,	(	subject,	grade	)	)

The	repeating	group	needs	a	key	in	order	that	the	relation	can	be	correctly	defined.
Looking	at	the	data	one	can	see	that	grade	repeats	within	matric_no	(for	instance,	for
960150,	the	student	has	2	D	grades).	However,	subject	never	seems	to	repeat	for	a
single	matric_no,	and	therefore	is	a	candidate	key	in	the	repeating	group.

Whenever	keys	or	dependencies	are	extracted	from	example	data,	the	information
extracted	is	only	as	good	as	the	data	sample	examined.	It	could	be	that	another	data
sample	disproves	some	of	the	key	selections	made	or	dependencies	extracted.	What	is
important	however	is	that	the	information	extracted	during	these	exercises	is	correct
for	the	data	being	examined.

Looking	at	the	data	itself,	we	can	see	that	the	same	name	appears	more	than	once	in
the	name	column.	The	name	in	conjunction	with	the	date_of_birth	seems	to	be	unique,
suggesting	a	functional	dependency	of:

	name,	date_of_birth	->	matric_no

This	implies	that	not	only	is	the	matric_no	sufficient	to	uniquely	identify	a	student,	the
student’s	name	combined	with	the	date	of	birth	is	also	sufficient	to	uniquely	identify	a
student.	It	is	therefore	possible	to	have	the	relation	Student	written	as:

	Student(matric_no,	name,	date_of_birth,	(	subject,	grade	)	)

As	guidance	in	cases	where	a	variety	of	keys	could	be	selected	one	should	try	to
select	the	relation	with	the	least	number	of	attributes	defined	as	primary	keys.

Flattened	Tables

Note	that	the	student	table	shown	above	explicitly	identifies	the	repeating	group.	It	is
also	possible	that	the	table	presented	will	be	what	is	called	a	flat	table,	where	the
repeating	group	is	not	explicitly	shown:

Student	#2	-	Flattened	Table

matric_no name date_of_birth Subject grade



960100 Smith,	J 14/11/1977 Databases C

960100 Smith,	J 14/11/1977 Soft_Dev A

960100 Smith,	J 14/11/1977 ISDE D

960105 White,	A 10/05/1975 Soft_Dev B

960105 White,	A 10/05/1975 ISDE B

960120 Moore,	T 11/03/1970 Databases A

960120 Moore,	T 11/03/1970 Soft_Dev B

960120 Moore,	T 11/03/1970 Workshop C

960145 Smith,	J 09/01/1972 Databases B

960150 Black,	D 21/08/1973 Databases B

960150 Black,	D 21/08/1973 Soft_Dev D

960150 Black,	D 21/08/1973 ISDE C

960150 Black,	D 21/08/1973 Workshop B

The	table	still	shows	the	same	data	as	the	previous	example,	but	the	format	is
different.	We	have	removed	the	repeating	group	(which	is	good)	but	we	have
introduced	redundancy	(which	is	bad).

Sometimes	you	will	miss	spotting	the	repeating	group,	so	you	may	produce	something
like	the	following	relation	for	the	Student	data.

	Student(matric_no,	name,	date_of_birth,	subject,	grade	)

	matric_no	->	name,	date_of_birth
	name,	date_of_birth	->	matric_no

This	data	does	not	explicitly	identify	the	repeating	group,	but	as	you	will	see	the
result	of	the	normalisation	process	on	this	relation	produces	exactly	the	same
relations	as	the	normalisation	of	the	version	that	explicitly	does	have	a	repeating
group.

First	Normal	Form
First	normal	form	(1NF)	deals	with	the	`shape'	of	the	record	type
A	relation	is	in	1NF	if,	and	only	if,	it	contains	no	repeating	attributes	or	groups	of
attributes.
Example:
The	Student	table	with	the	repeating	group	is	not	in	1NF
It	has	repeating	groups,	and	it	is	called	an	`unnormalised	table'.

Relational	databases	require	that	each	row	only	has	a	single	value	per	attribute,	and
so	a	repeating	group	in	a	row	is	not	allowed.

To	remove	the	repeating	group,	one	of	two	things	can	be	done:

either	flatten	the	table	and	extend	the	key,	or
decompose	the	relation-	leading	to	First	Normal	Form



Flatten	table	and	Extend	Primary	Key
The	Student	table	with	the	repeating	group	can	be	written	as:

Student(matric_no,	name,	date_of_birth,	(	subject,	grade	)	)

If	the	repeating	group	was	flattened,	as	in	the	Student	#2	data	table,	it	would	look
something	like:

Student(matric_no,	name,	date_of_birth,	subject,	grade	)

Although	this	is	an	improvement,	we	still	have	a	problem.	matric_no	can	no	longer	be
the	primary	key	-	it	does	not	have	an	unique	value	for	each	row.	So	we	have	to	find	a
new	primary	key	-	in	this	case	it	has	to	be	a	compound	key	since	no	single	attribute
can	uniquely	identify	a	row.	The	new	primary	key	is	a	compound	key	(matrix_no	+
subject).

We	have	now	solved	the	repeating	groups	problem,	but	we	have	created	other
complications.	Every	repetition	of	the	matric_no,	name,	and	data_of_birth	is
redundant	and	liable	to	produce	errors.

With	the	relation	in	its	flattened	form,	strange	anomalies	appear	in	the	system.
Redundant	data	is	the	main	cause	of	insertion,	deletion,	and	updating	anomalies.

Insertion	anomaly:

With	the	primary	key	including	subject,	we	cannot	enter	a	new	student	until	they
have	at	least	one	subject	to	study.	We	are	not	allowed	NULLs	in	the	primary	key	so	we
must	have	an	entry	in	both	matric_no	and	subject	before	we	can	create	a	new	record.

This	is	known	as	the	insertion	anomaly.	It	is	difficult	to	insert	new	records	into
the	database.
On	a	practical	level,	it	also	means	that	it	is	difficult	to	keep	the	data	up	to	date.

Update	anomaly

If	the	name	of	a	student	were	changed	for	example	Smith,	J.	was	changed	to	Green,	J.
this	would	require	not	one	change	but	many	one	for	every	subject	that	Smith,	J.
studied.

Deletion	anomaly

If	all	of	the	records	for	the	`Databases'	subject	were	deleted	from	the	table,we	would
inadvertently	lose	all	of	the	information	on	the	student	with	matric_no	960145.	This
would	be	the	same	for	any	student	who	was	studying	only	one	subject	and	the	subject
was	deleted.	Again	this	problem	arises	from	the	need	to	have	a	compound	primary
key.

Decomposing	the	relation
The	alternative	approach	is	to	split	the	table	into	two	parts,	one	for	the	repeating
groups	and	one	of	the	non-repeating	groups.
the	primary	key	for	the	original	relation	is	included	in	both	of	the	new	relations

Record

matric_no subject grade

960100 Databases C

960100 Soft_Dev A

960100 ISDE D



960105 Soft_Dev B

960105 ISDE B

... ... ...

960150 Workshop B

Student

matric_no name date_of_birth

960100 Smith,J 14/11/1977

960105 White,A 10/05/1975

960120 Moore,T 11/03/1970

960145 Smith,J 09/01/1972

960150 Black,D 21/08/1973

We	now	have	two	relations,	Student	and	Record.
Student	contains	the	original	non-repeating	groups
Record	has	the	original	repeating	groups	and	the	matric_no

Student(matric_no,	name,	date_of_birth	)
Record(matric_no,	subject,	grade	)

Matric_no	remains	the	key	to	the	Student	relation.	It	cannot	be	the	complete	key	to
the	new	Record	relation	-	we	end	up	with	a	compound	primary	key	consisting	of
matric_no	and	subject.	The	matric_no	is	the	link	between	the	two	tables	-	it	will	allow
us	to	find	out	which	subjects	a	student	is	studying	.	So	in	the	Record	relation,
matric_no	is	the	foreign	key.

This	method	has	eliminated	some	of	the	anomalies.	It	does	not	always	do	so,	it
depends	on	the	example	chosen

In	this	case	we	no	longer	have	the	insertion	anomaly
It	is	now	possible	to	enter	new	students	without	knowing	the	subjects	that	they
will	be	studying
They	will	exist	only	in	the	Student	table,	and	will	not	be	entered	in	the	Record
table	until	they	are	studying	at	least	one	subject.
We	have	also	removed	the	deletion	anomaly
If	all	of	the	`databases'	subject	records	are	removed,	student	960145	still	exists
in	the	Student	table.
We	have	also	removed	the	update	anomaly

Student	and	Record	are	now	in	First	Normal	Form.

Second	Normal	Form
Second	normal	form	(or	2NF)	is	a	more	stringent	normal	form	defined	as:

A	relation	is	in	2NF	if,	and	only	if,	it	is	in	1NF	and	every	non-key	attribute	is	fully
functionally	dependent	on	the	whole	key.

Thus	the	relation	is	in	1NF	with	no	repeating	groups,	and	all	non-key	attributes	must
depend	on	the	whole	key,	not	just	some	part	of	it.	Another	way	of	saying	this	is	that
there	must	be	no	partial	key	dependencies	(PKDs).



The	problems	arise	when	there	is	a	compound	key,	e.g.	the	key	to	the	Record	relation
-	matric_no,	subject.	In	this	case	it	is	possible	for	non-key	attributes	to	depend	on	only
part	of	the	key	-	i.e.	on	only	one	of	the	two	key	attributes.	This	is	what	2NF	tries	to
prevent.

Consider	again	the	Student	relation	from	the	flattened	Student	#2	table:

	Student(matric_no,	name,	date_of_birth,	subject,	grade	)
	

There	are	no	repeating	groups
The	relation	is	already	in	1NF
However,	we	have	a	compound	primary	key	-	so	we	must	check	all	of	the	non-key
attributes	against	each	part	of	the	key	to	ensure	they	are	functionally	dependent
on	it.
matric_no	determines	name	and	date_of_birth,	but	not	grade.
subject	together	with	matric_no	determines	grade,	but	not	name	or
date_of_birth.
So	there	is	a	problem	with	potential	redundancies

A	dependency	diagram	is	used	to	show	how	non-key	attributes	relate	to	each	part	or
combination	of	parts	in	the	primary	key.

Figure	:	Dependency	Diagram

This	relation	is	not	in	2NF
It	appears	to	be	two	tables	squashed	into	one.
the	solution	is	to	split	the	relation	up	into	its	component	parts.
separate	out	all	the	attributes	that	are	solely	dependent	on	matric_no
put	them	in	a	new	Student_details	relation,	with	matric_no	as	the	primary	key
separate	out	all	the	attributes	that	are	solely	dependent	on	subject.
in	this	case	no	attributes	are	solely	dependent	on	subject.
separate	out	all	the	attributes	that	are	solely	dependent	on	matric_no	+	subject
put	them	into	a	separate	Student	relation,	keyed	on	matric_no	+	subject

			

All	attributes	in	each	relation	are
fully	functionally	dependent	upon	its

primary	key

These	relations	are	now	in	2NF

Figure	:	Dependencies	after	splitting

Interestingly	this	is	the	same	set	of	relations	as	when	we	recognized	that	there	were
repeating	terms	in	the	table	and	directly	removed	the	repeating	terms.	It	should	not
really	matter	what	process	you	followed	when	normalizing,	as	the	end	result	should
be	similar	relations.

Third	Normal	Form
3NF	is	an	even	stricter	normal	form	and	removes	virtually	all	the	redundant	data	:

A	relation	is	in	3NF	if,	and	only	if,	it	is	in	2NF	and	there	are	no	transitive
functional	dependencies
Transitive	functional	dependencies	arise:
when	one	non-key	attribute	is	functionally	dependent	on	another	non-key
attribute:
FD:	non-key	attribute	->	non-key	attribute
and	when	there	is	redundancy	in	the	database



By	definition	transitive	functional	dependency	can	only	occur	if	there	is	more	than
one	non-key	field,	so	we	can	say	that	a	relation	in	2NF	with	zero	or	one	non-key	field
must	automatically	be	in	3NF.

project_no manager address

p1 Black,B 32	High	Street

p2 Smith,J 11	New	Street

p3 Black,B 32	High	Street

p4 Black,B 32	High	Street

			 Project	has	more	than	one	non-key	field	so
we	must	check	for	transitive	dependency:

address	depends	on	the	value	in	the	manager	column
every	time	B	Black	is	listed	in	the	manager	column,	the	address	column	has	the
value	`32	High	Street'.	From	this	the	relation	and	functional	dependency	can	be
implied	as:

Project(project_no,	manager,	address)

			manager	->	address
in	this	case	address	is	transitively	dependent	on	manager.	Manager	is	the
determinant	-	it	determines	the	value	of	address.	It	is	transitive	functional
dependency	only	if	all	attributes	on	the	left	of	the	“->”	are	not	in	the	key	but	are
all	in	the	relation,	and	all	attributes	to	the	right	of	the	“->”	are	not	in	the	key
with	at	least	one	actually	being	in	the	relation.
Data	redundancy	arises	from	this
we	duplicate	address	if	a	manager	is	in	charge	of	more	than	one	project
causes	problems	if	we	had	to	change	the	address-	have	to	change	several
entries,	and	this	could	lead	to	errors.
The	solution	is	to	eliminate	transitive	functional	dependency	by	splitting	the
table
create	two	relations	-	one	with	the	transitive	dependency	in	it,	and	another	for
all	of	the	remaining	attributes.
split	Project	into	Project	and	Manager.
the	determinant	attribute	becomes	the	primary	key	in	the	new	relation
manager	becomes	the	primary	key	to	the	Manager	relation
the	original	key	is	the	primary	key	to	the	remaining	non-transitive	attributes
in	this	case,	project_no	remains	the	key	to	the	new	Projects	table.

Project
project_no manager

p1 Black,B

p2 Smith,J

p3 Black,B

p4 Black,B

Manager
manager address

Black,B 32	High	Street



Smith,J 11	New	Street

Now	we	need	to	store	the	address	only	once
If	we	need	to	know	a	manager's	address	we	can	look	it	up	in	the	Manager
relation
The	manager	attribute	is	the	link	between	the	two	tables,	and	in	the	Projects
table	it	is	now	a	foreign	key.
These	relations	are	now	in	third	normal	form.

Summary:	1NF
A	relation	is	in	1NF	if	it	contains	no	repeating	groups
To	convert	an	unnormalised	relation	to	1NF	either:
Flatten	the	table	and	change	the	primary	key,	or
Decompose	the	relation	into	smaller	relations,	one	for	the	repeating	groups	and
one	for	the	non-repeating	groups.
Remember	to	put	the	primary	key	from	the	original	relation	into	both	new
relations.
This	option	is	liable	to	give	the	best	results.

Summary:	2NF
A	relation	is	in	2NF	if	it	contains	no	repeating	groups	and	no	partial	key
functional	dependencies
Rule:	A	relation	in	1NF	with	a	single	key	field	must	be	in	2NF
To	convert	a	relation	with	partial	functional	dependencies	to	2NF.	create	a	set	of
new	relations:
One	relation	for	the	attributes	that	are	fully	dependent	upon	the	key.
One	relation	for	each	part	of	the	key	that	has	partially	dependent	attributes

Summary:	3NF
A	relation	is	in	3NF	if	it	contains	no	repeating	groups,	no	partial	functional
dependencies,	and	no	transitive	functional	dependencies
To	convert	a	relation	with	transitive	functional	dependencies	to	3NF,	remove	the
attributes	involved	in	the	transitive	dependency	and	put	them	in	a	new	relation
Rule:	A	relation	in	2NF	with	only	one	non-key	attribute	must	be	in	3NF
In	a	normalised	relation	a	non-key	field	must	provide	a	fact	about	the	key,	the
whole	key	and	nothing	but	the	key.
Relations	in	3NF	are	sufficient	for	most	practical	database	design	problems.
However,	3NF	does	not	guarantee	that	all	anomalies	have	been	removed.

Next	Page Up	One	Level


