
Next	Page Up	One	Level

Lecture	Slides	available:	PDF	PowerPoint

Database	Analysis
Contents

Introduction
Database	Analysis	Life	Cycle
Three-level	Database	Model
Basics

Entities
Attribute

Keys
Relationships

Degree	of	a	Relationship
Degree	of	a	Relationship
Replacing	ternary	relationships
Cardinality
Optionality
Entity	Sets
Confirming	Correctness
Deriving	the	relationship	parameters
Redundant	relationships
Redundant	relationships	example
Splitting	n:m	Relationships
Splitting	n:m	Relationships	-	Example
Constructing	an	ER	model

This	unit	it	concerned	with	the	process	of	taking	a	database	specification	from	a
customer	and	implementing	the	underlying	database	structure	necessary	to	support
that	specification.

Introduction
Data	analysis	is	concerned	with	the	NATURE	and	USE	of	data.	It	involves	the
identification	of	the	data	elements	which	are	needed	to	support	the	data	processing
system	of	the	organization,	the	placing	of	these	elements	into	logical	groups	and	the
definition	of	the	relationships	between	the	resulting	groups.

Other	approaches,	e.g.	D.F.Ds	and	Flowcharts,	have	been	concerned	with	the	flow	of
data-dataflow	methodologies.	Data	analysis	is	one	of	several	data	structure	based
methodologies		Jackson	SP/D	is	another.

Systems	analysts	often,	in	practice,	go	directly	from	fact	finding	to	implementation
dependent	data	analysis.	Their	assumptions	about	the	usage	of	properties	of	and
relationships	between	data	elements	are	embodied	directly	in	record	and	file	designs
and	computer	procedure	specifications.	The	introduction	of	Database	Management
Systems	(DBMS)	has	encouraged	a	higher	level	of	analysis,	where	the	data	elements
are	defined	by	a	logical	model	or	`schema'	(conceptual	schema).	When	discussing	the
schema	in	the	context	of	a	DBMS,	the	effects	of	alternative	designs	on	the	efficiency
or	ease	of	implementation	is	considered,	i.e.	the	analysis	is	still	somewhat
implementation	dependent.	If	we	consider	the	data	relationships,	usages	and
properties	that	are	important	to	the	business	without	regard	to	their	representation
in	a	particular	computerised	system	using	particular	software,	we	have	what	we	are
concerned	with,	implementationindependent	data	analysis.

It	is	fair	to	ask	why	data	analysis	should	be	done	if	it	is	possible,	in	practice	to	go
straight	to	a	computerised	system	design.	Data	analysis	is	time	consuming;	it	throws

Database	Notes
Online	Notes
Reference	Pages

Tutorial	Activities
Online	SQL
Online	Quiz
Discussion	Forum

Future	Stuff			
Online	Relational
Algebra
News

http://db.grussell.org/section004.html Go MAR APR JUN

19
2015 2016 2017

204	captures
	 	
	

� ⍰❎
f �

6	Jul	2004	-	13	Sep	2017 ▾	About	this	capture



up	a	lot	of	questions.	Implementation	may	be	slowed	down	while	the	answers	are
sought.	It	is	more	expedient	to	have	an	experienced	analyst	`get	on	with	the	job'	and
come	up	with	a	design	straight	away.	The	main	difference	is	that	data	analysis	is	more
likely	to	result	in	a	design	which	meets	both	present	and	future	requirements,	being
more	easily	adapted	to	changes	in	the	business	or	in	the	computing	equipment.	It	can
also	be	argued	that	it	tends	to	ensure	that	policy	questions	concerning	the
organisations'	data	are	answered	by	the	managers	of	the	organisation,	not	by	the
systems	analysts.	Data	analysis	may	be	thought	of	as	the	`slow	and	careful'	approach,
whereas	omitting	this	step	is	`quick	and	dirty'.

From	another	viewpoint,	data	analysis	provides	useful	insights	for	general	design
principals	which	will	benefit	the	trainee	analyst	even	if	he	finally	settles	for	a	`quick
and	dirty'	solution.

The	development	of	techniques	of	data	analysis	have	helped	to	understand	the
structure	and	meaning	of	data	in	organisations.	Data	analysis	techniques	can	be	used
as	the	first	step	of	extrapolating	the	complexities	of	the	real	world	into	a	model	that
can	be	held	on	a	computer	and	be	accessed	by	many	users.	The	data	can	be	gathered
by	conventional	methods	such	as	interviewing	people	in	the	organisation	and	studying
documents.	The	facts	can	be	represented	as	objects	of	interest.	There	are	a	number	of
documentation	tools	available	for	data	analysis,	such	as	entityrelationship	diagrams.
These	are	useful	aids	to	communication,	help	to	ensure	that	the	work	is	carried	out	in
a	thorough	manner,	and	ease	the	mapping	processes	that	follow	data	analysis.	Some
of	the	documents	can	be	used	as	source	documents	for	the	data	dictionary.

In	data	analysis	we	analyse	the	data	and	build	a	systems	representation	in	the	form	of
a	data	model	(conceptual).	A	conceptual	data	model	specifies	the	structure	of	the	data
and	the	processes	which	use	that	data.

Data	Analysis	=	establishing	the	nature	of	data.

Functional	Analysis	=	establishing	the	use	of	data.

However,	since	Data	and	Functional	Analysis	are	so	intermixed,	we	shall	use	the	term
Data	Analysis	to	cover	both.

Building	a	model	of	an	organisation	is	not	easy.	The	whole	organisation	is	too	large	as
there	will	be	too	many	things	to	be	modelled.	It	takes	too	long	and	does	not	achieve
anything	concrete	like	an	information	system,	and	managers	want	tangible	results
fairly	quickly.	It	is	therefore	the	task	of	the	data	analyst	to	model	a	particular	view	of
the	organisation,	one	which	proves	reasonable	and	accurate	for	most	applications	and
uses.	Data	has	an	intrinsic	structure	of	its	own,	independent	of	processing,	reports
formats	etc.	The	data	model	seeks	to	make	explicit	that	structure

Data	analysis	was	described	as	establishing	the	nature	and	use	of	data.

Database	Analysis	Life	Cycle

Figure	:	Database	Analysis	Life	Cycle

When	a	database	designer	is	approaching	the	problem	of	constructing	a	database



system,	the	logical	steps	followed	is	that	of	the	database	analysis	life	cycle:

Database	study	-	here	the	designer	creates	a	written	specification	in	words	for
the	database	system	to	be	built.	This	involves:

analysing	the	company	situation	-	is	it	an	expanding	company,	dynamic	in	its
requirements,	mature	in	nature,	solid	background	in	employee	training	for
new	internal	products,	etc.	These	have	an	impact	on	how	the	specification	is
to	be	viewed.
define	problems	and	constraints	-	what	is	the	situation	currently?	How	does
the	company	deal	with	the	task	which	the	new	database	is	to	perform.	Any
issues	around	the	current	method?	What	are	the	limits	of	the	new	system?
define	objectives	-	what	is	the	new	database	system	going	to	have	to	do,	and
in	what	way	must	it	be	done.	What	information	does	the	company	want	to
store	specifically,	and	what	does	it	want	to	calculate.	How	will	the	data
evolve.
define	scope	and	boundaries	-	what	is	stored	on	this	new	database	system,
and	what	it	stored	elsewhere.	Will	it	interface	to	another	database?

Database	Design	-	conceptual,	logical,	and	physical	design	steps	in	taking
specifications	to	physical	implementable	designs.	This	is	looked	at	more	closely
in	a	moment.
Implementation	and	loading	-	it	is	quite	possible	that	the	database	is	to	run
on	a	machine	which	as	yet	does	not	have	a	database	management	system
running	on	it	at	the	moment.	If	this	is	the	case	one	must	be	installed	on	that
machine.	Once	a	DBMS	has	been	installed,	the	database	itself	must	be	created
within	the	DBMS.	Finally,	not	all	databases	start	completely	empty,	and	thus
must	be	loaded	with	the	initial	data	set	(such	as	the	current	inventory,	current
staff	names,	current	customer	details,	etc).
Testing	and	evaluation	-	the	database,	once	implemented,	must	be	tested
against	the	specification	supplied	by	the	client.	It	is	also	useful	to	test	the
database	with	the	client	using	mock	data,	as	clients	do	not	always	have	a	full
understanding	of	what	they	thing	they	have	specified	and	how	it	differs	from
what	they	have	actually	asked	for!	In	addition,	this	step	in	the	life	cycle	offers
the	chance	to	the	designer	to	fine-tune	the	system	for	best	performance.	Finally,
it	is	a	good	idea	to	evaluate	the	database	in-situ,	along	with	any	linked
applications.
Operation	-	this	step	is	where	the	system	is	actually	in	real	usage	by	the
company.
Maintenance	and	evolution	-	designers	rarely	get	everything	perfect	first
time,	and	it	may	be	the	case	that	the	company	requests	changes	to	fix	problems
with	the	system	or	to	recommend	enhancements	or	new	requirements.

Commonly	development	takes	place	without	change	to	the	database
structure.	In	elderly	systems	the	DB	structure	becomes	fossilised.

Three-level	Database	Model
Often	referred	to	as	the	three-level	model,	this	is	where	the	design	moves	from	a
written	specification	taken	from	the	real-world	requirements	to	a	physically-
implementable	design	for	a	specific	DBMS.	The	three	levels	commonly	referred	to	are
`Conceptual	Design',	`Data	Model	Mapping',	and	`Physical	Design'.

Figure	:	Logic	behind	the	three	level	architecture

The	specification	is	usually	in	the	form	of	a	written	document	containing	customer
requirements,	mock	reports,	screen	drawings	and	the	like,	written	by	the	client	to
indicate	the	requirements	which	the	final	system	is	to	have.	Often	such	data	has	to	be
collected	together	from	a	variety	of	internal	sources	to	the	company	and	then
analysed	to	see	if	the	requirements	are	necessary,	correct,	and	efficient.



Once	the	Database	requirements	have	been	collated,	the	Conceptual	Design	phase
takes	the	requirements	and	produces	a	high-level	data	model	of	the	database
structure.	In	this	module,	we	use	ER	modelling	to	represent	high-level	data	models,
but	there	are	other	techniques.	This	model	is	independent	of	the	final	DBMS	which
the	database	will	be	installed	in.

Next,	the	Conceptual	Design	phase	takes	the	high-level	data	model	it	taken	and
converted	into	a	conceptual	schema,	which	is	specific	to	a	particular	DBMS	class	(e.g.
relational).	For	a	relational	system,	such	as	Oracle,	an	appropriate	conceptual	schema
would	be	relations.

Finally,	in	the	Physical	Design	phase	the	conceptual	schema	is	converted	into
database	internal	structures.	This	is	specific	to	a	particular	DBMS	product.

Basics
Entity	Relationship	(ER)	modelling

is	a	design	tool
is	a	graphical	representation	of	the	database	system
provides	a	high-level	conceptual	data	model
supports	the	user's	perception	of	the	data
is	DBMS	and	hardware	independent
had	many	variants
is	composed	of	entities,	attributes,	and	relationships

Entities

An	entity	is	any	object	in	the	system	that	we	want	to	model	and	store	information
about
Individual	objects	are	called	entities
Groups	of	the	same	type	of	objects	are	called	entity	types	or	entity	sets
Entities	are	represented	by	rectangles	(either	with	round	or	square	corners)

Figure:	Entities

There	are	two	types	of	entities;	weak	and	strong	entity	types.

Attribute

All	the	data	relating	to	an	entity	is	held	in	its	attributes.
An	attribute	is	a	property	of	an	entity.
Each	attribute	can	have	any	value	from	its	domain.
Each	entity	within	an	entity	type:

May	have	any	number	of	attributes.
Can	have	different	attribute	values	than	that	in	any	other	entity.
Have	the	same	number	of	attributes.

Attributes	can	be
simple	or	composite
single-valued	or	multi-valued
Attributes	can	be	shown	on	ER	models
They	appear	inside	ovals	and	are	attached	to	their	entity.
Note	that	entity	types	can	have	a	large	number	of	attributes...	If	all	are	shown
then	the	diagrams	would	be	confusing.	Only	show	an	attribute	if	it	adds
information	to	the	ER	diagram,	or	clarifies	a	point.

Figure	:	Attributes



Keys

A	key	is	a	data	item	that	allows	us	to	uniquely	identify	individual	occurrences	or
an	entity	type.
A	candidate	key	is	an	attribute	or	set	of	attributes	that	uniquely	identifies
individual	occurrences	or	an	entity	type.
An	entity	type	may	have	one	or	more	possible	candidate	keys,	the	one	which	is
selected	is	known	as	the	primary	key.
A	composite	key	is	a	candidate	key	that	consists	of	two	or	more	attributes
The	name	of	each	primary	key	attribute	is	underlined.

Relationships

A	relationship	type	is	a	meaningful	association	between	entity	types
A	relationship	is	an	association	of	entities	where	the	association	includes	one
entity	from	each	participating	entity	type.
Relationship	types	are	represented	on	the	ER	diagram	by	a	series	of	lines.
As	always,	there	are	many	notations	in	use	today...
In	the	original	Chen	notation,	the	relationship	is	placed	inside	a	diamond,	e.g.
managers	manage	employees:

Figure	:	Chens	notation	for	relationships

For	this	module,	we	will	use	an	alternative	notation,	where	the	relationship	is	a
label	on	the	line.	The	meaning	is	identical

Figure	:	Relationships	used	in	this	document

Degree	of	a	Relationship
The	number	of	participating	entities	in	a	relationship	is	known	as	the	degree	of
the	relationship.
If	there	are	two	entity	types	involved	it	is	a	binary	relationship	type

Figure	:	Binary	Relationships

If	there	are	three	entity	types	involved	it	is	a	ternary	relationship	type

Figure	:	Ternary	relationship

It	is	possible	to	have	a	n-ary	relationship	(e.g.	quaternary	or	unary).
Unary	relationships	are	also	known	as	a	recursive	relationship.



Figure	:	Recursive	relationship

It	is	a	relationship	where	the	same	entity	participates	more	than	once	in
different	roles.
In	the	example	above	we	are	saying	that	employees	are	managed	by	employees.
If	we	wanted	more	information	about	who	manages	whom,	we	could	introduce	a
second	entity	type	called	manager.

Degree	of	a	Relationship
It	is	also	possible	to	have	entities	associated	through	two	or	more	distinct
relationships.

Figure	:	Multiple	relationships

In	the	representation	we	use	it	is	not	possible	to	have	attributes	as	part	of	a
relationship.	To	support	this	other	entity	types	need	to	be	developed.

Replacing	ternary	relationships
When	ternary	relationships	occurs	in	an	ER	model	they	should	always	be	removed
before	finishing	the	model.	Sometimes	the	relationships	can	be	replaced	by	a	series	of
binary	relationships	that	link	pairs	of	the	original	ternary	relationship.

Figure	:	A	ternary	relationship	example

This	can	result	in	the	loss	of	some	information	-	It	is	no	longer	clear	which	sales
assistant	sold	a	customer	a	particular	product.
Try	replacing	the	ternary	relationship	with	an	entity	type	and	a	set	of	binary
relationships.

Relationships	are	usually	verbs,	so	name	the	new	entity	type	by	the	relationship	verb
rewritten	as	a	noun.

The	relationship	sells	can	become	the	entity	type	sale.

Figure	:	Replacing	a	ternary	relationship

So	a	sales	assistant	can	be	linked	to	a	specific	customer	and	both	of	them	to	the
sale	of	a	particular	product.
This	process	also	works	for	higher	order	relationships.

Cardinality
Relationships	are	rarely	one-to-one
For	example,	a	manager	usually	manages	more	than	one	employee
This	is	described	by	the	cardinality	of	the	relationship,	for	which	there	are	four
possible	categories.
One	to	one	(1:1)	relationship
One	to	many	(1:m)	relationship
Many	to	one	(m:1)	relationship
Many	to	many	(m:n)	relationship



On	an	ER	diagram,	if	the	end	of	a	relationship	is	straight,	it	represents	1,	while	a
"crow's	foot"	end	represents	many.
A	one	to	one	relationship	-	a	man	can	only	marry	one	woman,	and	a	woman	can
only	marry	one	man,	so	it	is	a	one	to	one	(1:1)	relationship

Figure	:	One	to	One	relationship	example

A	one	to	may	relationship	-	one	manager	manages	many	employees,	but	each
employee	only	has	one	manager,	so	it	is	a	one	to	many	(1:n)	relationship

Figure	:	One	to	Many	relationship	example

A	many	to	one	relationship	-	many	students	study	one	course.	They	do	not	study
more	than	one	course,	so	it	is	a	many	to	one	(m:1)	relationship

Figure	:	Many	to	One	relationship	example

A	many	to	many	relationship	-	One	lecturer	teaches	many	students	and	a	student
is	taught	by	many	lecturers,	so	it	is	a	many	to	many	(m:n)	relationship

Figure	:	Many	to	Many	relationship	example

Optionality
A	relationship	can	be	optional	or	mandatory.

If	the	relationship	is	mandatory
an	entity	at	one	end	of	the	relationship	must	be	related	to	an	entity	at	the	other
end.
The	optionality	can	be	different	at	each	end	of	the	relationship
For	example,	a	student	must	be	on	a	course.	This	is	mandatory.	To	the
relationship	`student	studies	course'	is	mandatory.
But	a	course	can	exist	before	any	students	have	enrolled.	Thus	the	relationship
`course	is_studied_by	student'	is	optional.
To	show	optionality,	put	a	circle	or	`0'	at	the	`optional	end'	of	the	relationship.
As	the	optional	relationship	is	`course	is_studied_by	student',	and	the	optional
part	of	this	is	the	student,	then	the	`O'	goes	at	the	student	end	of	the
relationship	connection.

Figure	:	Optionality	example

It	is	important	to	know	the	optionality	because	you	must	ensure	that	whenever
you	create	a	new	entity	it	has	the	required	mandatory	links.

Entity	Sets
Sometimes	it	is	useful	to	try	out	various	examples	of	entities	from	an	ER	model.	One
reason	for	this	is	to	confirm	the	correct	cardinality	and	optionality	of	a	relationship.
We	use	an	`entity	set	diagram'	to	show	entity	examples	graphically.	Consider	the
example	of	`course	is_studied_by	student'.



Figure	:	Entity	set	example

Confirming	Correctness

Figure	:	Entity	set	confirming	errors

Use	the	diagram	to	show	all	possible	relationship	scenarios.
Go	back	to	the	requirements	specification	and	check	to	see	if	they	are	allowed.
If	not,	then	put	a	cross	through	the	forbidden	relationships
This	allows	you	to	show	the	cardinality	and	optionality	of	the	relationship

Deriving	the	relationship	parameters
To	check	we	have	the	correct	parameters	(sometimes	also	known	as	the	degree)	of	a
relationship,	ask	two	questions:

1.	 One	course	is	studied	by	how	many	students?	Answer	=	`zero	or	more'.
This	gives	us	the	degree	at	the	`student'	end.
The	answer	`zero	or	more'	needs	to	be	split	into	two	parts.
The	`more'	part	means	that	the	cardinality	is	`many'.
The	`zero'	part	means	that	the	relationship	is	`optional'.
If	the	answer	was	`one	or	more',	then	the	relationship	would	be
`mandatory'.

2.	 One	student	studies	how	many	courses?	Answer	=	`One'
This	gives	us	the	degree	at	the	`course'	end	of	the	relationship.
The	answer	`one'	means	that	the	cardinality	of	this	relationship	is	1,	and	is
`mandatory'
If	the	answer	had	been	`zero	or	one',	then	the	cardinality	of	the	relationship
would	have	been	1,	and	be	`optional'.

Redundant	relationships
Some	ER	diagrams	end	up	with	a	relationship	loop.

check	to	see	if	it	is	possible	to	break	the	loop	without	losing	info
Given	three	entities	A,	B,	C,	where	there	are	relations	A-B,	B-C,	and	C-A,	check	if
it	is	possible	to	navigate	between	A	and	C	via	B.	If	it	is	possible,	then	A-C	was	a
redundant	relationship.
Always	check	carefully	for	ways	to	simplify	your	ER	diagram.	It	makes	it	easier
to	read	the	remaining	information.

Redundant	relationships	example
Consider	entities	`customer'	(customer	details),	`address'	(the	address	of	a
customer)	and	`distance'	(distance	from	the	company	to	the	customer	address).



Figure	:	Redundant	relationship

Splitting	n:m	Relationships
A	many	to	many	relationship	in	an	ER	model	is	not	necessarily	incorrect.	They	can	be
replaced	using	an	intermediate	entity.	This	should	only	be	done	where:

the	m:n	relationship	hides	an	entity
the	resulting	ER	diagram	is	easier	to	understand.

Splitting	n:m	Relationships	-	Example
Consider	the	case	of	a	car	hire	company.	Customers	hire	cars,	one	customer	hires
many	card	and	a	car	is	hired	by	many	customers.

Figure	:	Many	to	Many	example

The	many	to	many	relationship	can	be	broken	down	to	reveal	a	`hire'	entity,	which
contains	an	attribute	`date	of	hire'.

Figure	:	Splitting	the	Many	to	Many	example

Constructing	an	ER	model
Before	beginning	to	draw	the	ER	model,	read	the	requirements	specification	carefully.
Document	any	assumptions	you	need	to	make.

1.	 Identify	entities	-	list	all	potential	entity	types.	These	are	the	object	of	interest	in
the	system.	It	is	better	to	put	too	many	entities	in	at	this	stage	and	them	discard
them	later	if	necessary.

2.	 Remove	duplicate	entities	-	Ensure	that	they	really	separate	entity	types	or	just
two	names	for	the	same	thing.

Also	do	not	include	the	system	as	an	entity	type
e.g.	if	modelling	a	library,	the	entity	types	might	be	books,	borrowers,	etc.
The	library	is	the	system,	thus	should	not	be	an	entity	type.

3.	 List	the	attributes	of	each	entity	(all	properties	to	describe	the	entity	which	are
relevant	to	the	application).

Ensure	that	the	entity	types	are	really	needed.
are	any	of	them	just	attributes	of	another	entity	type?
if	so	keep	them	as	attributes	and	cross	them	off	the	entity	list.
Do	not	have	attributes	of	one	entity	as	attributes	of	another	entity!

4.	 Mark	the	primary	keys.
Which	attributes	uniquely	identify	instances	of	that	entity	type?
This	may	not	be	possible	for	some	weak	entities.

5.	 Define	the	relationships
Examine	each	entity	type	to	see	its	relationship	to	the	others.

6.	 Describe	the	cardinality	and	optionality	of	the	relationships
Examine	the	constraints	between	participating	entities.

7.	 Remove	redundant	relationships
Examine	the	ER	model	for	redundant	relationships.

ER	modelling	is	an	iterative	process,	so	draw	several	versions,	refining	each	one	until
you	are	happy	with	it.	Note	that	there	is	no	one	right	answer	to	the	problem,	but
some	solutions	are	better	than	others!



Next	Page Up	One	Level


