
Previous	Page Up	One	Level

Lecture	Slides	available:	PDF	PowerPoint

Introduction
Contents

The	Database	Approach
User	Types
Database	Architecture

Three	level	database	architecture
External	View
Conceptual	View
Internal	View
Mappings

DBMS
Database	Administrator
Facilities	and	Limitations

Data	Independence
Data	Redundancy
Data	Integrity

Relational	database	systems	have	become	increasingly	popular	since	the	late	1970's.
They	offer	a	powerful	method	for	storing	data	in	an	application-independent	manner.
This	means	that	for	many	enterprises	the	database	is	at	the	core	of	the	I.T.	strategy.
Developments	can	progress	around	a	relatively	stable	database	structure	which	is
secure,	reliable,	efficient,	and	transparent.

In	early	systems,	each	suite	of	application	programs	had	its	own	independent	master
file.	The	duplication	of	data	over	master	files	could	lead	to	inconsistent	data.

Efforts	to	use	a	common	master	file	for	a	number	of	application	programs	resulted	in
problems	of	integrity	and	security.	The	production	of	new	application	programs	could
require	amendments	to	existing	application	programs,	resulting	in	`unproductive
maintenance'.

Data	structuring	techniques,	developed	to	exploit	random	access	storage	devices,
increased	the	complexity	of	the	insert,	delete	and	update	operations	on	data.	As	a
first	step	towards	a	DBMS,	packages	of	subroutines	were	introduced	to	reduce
programmer	effort	in	maintaining	these	data	structures.	However,	the	use	of	these
packages	still	requires	knowledge	of	the	physical	organization	of	the	data.

The	Database	Approach
A	database	system	is	a	computer-based	system	to	record	and	maintain	information.
The	information	concerned	can	be	anything	of	significance	to	the	organisation	for
whose	use	it	is	intended.

The	contents	of	a	database	can	hold	a	variety	of	different	things.	To	make	database
design	more	straight-forward,	databases	contents	are	divided	up	into	two	concepts:

Schema
Data

The	Schema	is	the	structure	of	data,	whereas	the	Data	are	the	"facts".	Schema	can	be
complex	to	understand	to	begin	with,	but	really	indicates	the	rules	which	the	Data
must	obey.

Imagine	a	case	where	we	want	to	store	facts	about	employees	in	a	company.	Such
facts	could	include	their	name,	address,	date	of	birth,	and	salary.	In	a	database	all	the

Database	Notes
Online	Notes
Reference	Pages

Tutorial	Activities
Online	SQL
Online	Quiz
Discussion	Forum

Future	Stuff			
Online	Relational
Algebra
News

http://db.grussell.org/section002.html Go FEB MAR JUN

10
2015 2016 2017

144	captures
	 	
	

� ⍰❎
f �

6	Sep	2004	-	19	Feb	2017 ▾	About	this	capture



information	on	all	employees	would	be	held	in	a	single	storage	"container",	called	a
table.	This	table	is	a	tabular	object	like	a	spreadsheet	page,	with	different	employees
as	the	rows,	and	the	facts	(e.g.	their	names)	as	columns...	Let's	call	this	table	EMP,
and	it	could	look	something	like:

Name Address Date	of	Birth Salary
Jim	Smith 1	Apple	Lane 1/3/1991 11000
Jon	Greg 5	Pear	St 7/9/1992 13000
Bob	Roberts 2	Plumb	Road 3/2/1990 12000

From	this	information	the	schema	would	define	that	EMP	has	four	components,
"NAME","ADDRESS","DOB","SALARY".	As	designers	we	can	call	the	columns	what	we
like,	but	making	them	meaningful	helps.	In	addition	to	the	name,	we	want	to	try	and
make	sure	that	people	dont	accidentally	store	a	name	in	the	DOB	column,	or	some
other	silly	error.	Protecting	the	database	against	rubbish	data	is	one	of	the	most
important	database	design	steps,	and	is	what	much	of	this	course	is	about.	From	what
we	know	about	the	facts,	we	can	say	things	like:

NAME	is	a	string,	and	needs	to	hold	at	least	12	characters.
ADDRESS	is	a	string,	and	needs	to	hold	at	least	12	characters.
DOB	is	a	date...	The	company	forbids	people	over	100	years	old	or	younger	than
18	years	old	working	for	them.
SALARY	is	a	number.	It	must	be	greater	than	zero.

Such	rules	can	be	enforced	by	a	database.	During	the	design	phase	of	a	database
schema	these	and	more	complex	rules	are	identified	and	where	possible
implemented.	The	more	rules	the	harder	it	is	to	enter	poor	quality	data.

User	Types
When	considering	users	of	a	Database	system,	there	are	three	broad	classes	to
consider:

1.	 the	application	programmer,	responsible	for	writing	programs	in	some	high-level
language	such	as	COBOL,	C++,	etc.

2.	 the	end-user,	who	accesses	the	database	via	a	query	language
3.	 the	database	administrator	(DBA),	who	controls	all	operations	on	the	database

Database	Architecture
DBMSs	do	not	all	conform	to	the	same	architecture.

The	three-level	architecture	forms	the	basis	of	modern	database	architectures.
this	is	in	agreement	with	the	ANSI/SPARC	study	group	on	Database	Management
Systems.
ANSI/SPARC	is	the	American	National	Standards	Institute/Standard	Planning
and	Requirement	Committee).
The	architecture	for	DBMSs	is	divided	into	three	general	levels:
external
conceptual
internal

Three	level	database	architecture



Figure	1:	Three	level	architecture

1.	 the	external	level	:	concerned	with	the	way	individual	users	see	the	data
2.	 the	conceptual	level	:	can	be	regarded	as	a	community	user	view	​	a	formal

description	of	data	of	interest	to	the	organisation,	independent	of	any	storage
considerations.

3.	 the	internal	level	:	concerned	with	the	way	in	which	the	data	is	actually	stored

Figure	:	How	the	three	level	architecture	works

External	View

A	user	is	anyone	who	needs	to	access	some	portion	of	the	data.	They	may	range	from
application	programmers	to	casual	users	with	ad​hoc	queries.	Each	user	has	a
language	at	his/her	disposal.

The	application	programmer	may	use	a	high	level	language	(	e.g.	COBOL)	while	the
casual	user	will	probably	use	a	query	language.

Regardless	of	the	language	used,	it	will	include	a	data	sub​language	DSL	which	is	that
subset	of	the	language	which	is	concerned	with	storage	and	retrieval	of	information
in	the	database	and	may	or	may	not	be	apparent	to	the	user.

A	DSL	is	a	combination	of	two	languages:

a	data	definition	language	(DDL)	-	provides	for	the	definition	or	description	of
database	objects
a	data	manipulation	language	(DML)	-	supports	the	manipulation	or	processing
of	database	objects.

Each	user	sees	the	data	in	terms	of	an	external	view:	Defined	by	an	external	schema,
consisting	basically	of	descriptions	of	each	of	the	various	types	of	external	record	in
that	external	view,	and	also	a	definition	of	the	mapping	between	the	external	schema
and	the	underlying	conceptual	schema.

Conceptual	View

An	abstract	representation	of	the	entire	information	content	of	the	database.



It	is	in	general	a	view	of	the	data	as	it	actually	is,	that	is,	it	is	a	`model'	of	the
`real​world'.
It	consists	of	multiple	occurrences	of	multiple	types	of	conceptual	record,
defined	in	the	conceptual	schema.
To	achieve	data	independence,	the	definitions	of	conceptual	records	must	involve
information	content	only.
storage	structure	is	ignored
access	strategy	is	ignored
In	addition	to	definitions,	the	conceptual	schema	contains	authorisation	and
validation	procedures.

Internal	View

The	internal	view	is	a	low-level	representation	of	the	entire	database	consisting	of
multiple	occurrences	of	multiple	types	of	internal	(stored)	records.

It	is	however	at	one	remove	from	the	physical	level	since	it	does	not	deal	in	terms	of
physical	records	or	blocks	nor	with	any	device	specific	constraints	such	as	cylinder	or
track	sizes.	Details	of	mapping	to	physical	storage	is	highly	implementation	specific
and	are	not	expressed	in	the	three-level	architecture.

The	internal	view	described	by	the	internal	schema:

defines	the	various	types	of	stored	record
what	indices	exist
how	stored	fields	are	represented
what	physical	sequence	the	stored	records	are	in

In	effect	the	internal	schema	is	the	storage	structure	definition.

Mappings

The	conceptual/internal	mapping:
defines	conceptual	and	internal	view	correspondence
specifies	mapping	from	conceptual	records	to	their	stored	counterparts

An	external/conceptual	mapping:
defines	a	particular	external	and	conceptual	view	correspondence

A	change	to	the	storage	structure	definition	means	that	the	conceptual/internal
mapping	must	be	changed	accordingly,	so	that	the	conceptual	schema	may
remain	invariant,	achieving	physical	data	independence.
A	change	to	the	conceptual	definition	means	that	the	conceptual/external
mapping	must	be	changed	accordingly,	so	that	the	external	schema	may	remain
invariant,	achieving	logical	data	independence.

DBMS
The	database	management	system	(DBMS)	is	the	software	that:

handles	all	access	to	the	database
is	responsible	for	applying	the	authorisation	checks	and	validation	procedures

Conceptually	what	happens	is:

1.	 A	user	issues	an	access	request,	using	some	particular	DML.
2.	 The	DBMS	intercepts	the	request	and	interprets	it.
3.	 The	DBMS	inspects	in	turn	the	external	schema,	the	external/conceptual

mapping,	the	conceptual	schema,	the	conceptual	internal	mapping,	and	the
storage	structure	definition.

4.	 The	DBMS	performs	the	necessary	operations	on	the	stored	database.

Database	Administrator
The	database	administrator	(DBA)	is	the	person	(or	group	of	people)	responsible	for
overall	control	of	the	database	system.	The	DBA's	responsibilities	include	the
following:

deciding	the	information	content	of	the	database,	i.e.	identifying	the	entities	of
interest	to	the	enterprise	and	the	information	to	be	recorded	about	those
entities.	This	is	defined	by	writing	the	conceptual	schema	using	the	DDL
deciding	the	storage	structure	and	access	strategy,	i.e.	how	the	data	is	to	be
represented	by	writing	the	storage	structure	definition.	The	associated



internal/conceptual	schema	must	also	be	specified	using	the	DDL
liaising	with	users,	i.e.	to	ensure	that	the	data	they	require	is	available	and	to
write	the	necessary	external	schemas	and	conceptual/external	mapping	(again
using	DDL)
defining	authorisation	checks	and	validation	procedures.	Authorisation	checks
and	validation	procedures	are	extensions	to	the	conceptual	schema	and	can	be
specified	using	the	DDL
defining	a	strategy	for	backup	and	recovery.	For	example	periodic	dumping	of
the	database	to	a	backup	tape	and	procedures	for	reloading	the	database	for
backup.	Use	of	a	log	file	where	each	log	record	contains	the	values	for	database
items	before	and	after	a	change	and	can	be	used	for	recovery	purposes
monitoring	performance	and	responding	to	changes	in	requirements,	i.e.
changing	details	of	storage	and	access	thereby	organising	the	system	so	as	to
get	the	performance	that	is	`best	for	the	enterprise'

Facilities	and	Limitations
The	facilities	offered	by	DBMS	vary	a	great	deal,	depending	on	their	level	of
sophistication.	In	general,	however,	a	good	DBMS	should	provide	the	following
advantages	over	a	conventional	system:

Independence	of	data	and	program	-	This	is	a	prime	advantage	of	a	database.
Both	the	database	and	the	user	program	can	be	altered	independently	of	each
other	thus	saving	time	and	money	which	would	be	required	to	retain	consistency.
Data	shareability	and	non​redundance	of	data	-	The	ideal	situation	is	to	enable
applications	to	share	an	integrated	database	containing	all	the	data	needed	by
the	applications	and	thus	eliminate	as	much	as	possible	the	need	to	store	data
redundantly.
Integrity	-	With	many	different	users	sharing	various	portions	of	the	database,	it
is	impossible	for	each	user	to	be	responsible	for	the	consistency	of	the	values	in
the	database	and	for	maintaining	the	relationships	of	the	user	data	items	to	all
other	data	item,	some	of	which	may	be	unknown	or	even	prohibited	for	the	user
to	access.
Centralised	control	-	With	central	control	of	the	database,	the	DBA	can	ensure
that	standards	are	followed	in	the	representation	of	data.
Security	-	Having	control	over	the	database	the	DBA	can	ensure	that	access	to
the	database	is	through	proper	channels	and	can	define	the	access	rights	of	any
user	to	any	data	items	or	defined	subset	of	the	database.	The	security	system
must	prevent	corruption	of	the	existing	data	either	accidently	or	maliciously.
Performance	and	Efficiency	-	In	view	of	the	size	of	databases	and	of	demanding
database	accessing	requirements,	good	performance	and	efficiency	are	major
requirements.	Knowing	the	overall	requirements	of	the	organisation,	as	opposed
to	the	requirements	of	any	individual	user,	the	DBA	can	structure	the	database
system	to	provide	an	overall	service	that	is	`best	for	the	enterprise'.

Data	Independence

This	is	a	prime	advantage	of	a	database.	Both	the	database	and	the	user	program
can	be	altered	independently	of	each	other.
In	a	conventional	system	applications	are	data​dependent.	This	means	that	the
way	in	which	the	data	is	organised	in	secondary	storage	and	the	way	in	which	it
is	accessed	are	both	dictated	by	the	requirements	of	the	application,	and,
moreover,	that	knowledge	of	the	data	organisation	and	access	technique	is	built
into	the	application	logic.
For	example,	if	a	file	is	stored	in	indexed	sequential	form	then	an	application
must	know

that	the	index	exists
the	file	sequence	(as	defined	by	the	index)

The	internal	structure	of	the	application	will	be	built	around	this	knowledge.	If,	for
example,	the	file	was	to	be	replaced	by	a	hash-addressed	file,	major	modifications
would	have	to	be	made	to	the	application.

Such	an	application	is	data-dependent	-	it	is	impossible	to	change	the	storage
structure	(how	the	data	is	physically	recorded)	or	the	access	strategy	(how	it	is
accessed)	without	affecting	the	application,	probably	drastically.	The	portions	of	the
application	requiring	alteration	are	those	that	communicate	with	the	file	handling
software	-	the	difficulties	involved	are	quite	irrelevant	to	the	problem	the	application
was	written	to	solve.

it	is	undesirable	to	allow	applications	to	be	data-dependent	-	different



applications	will	need	different	views	of	the	same	data.
the	DBA	must	have	the	freedom	to	change	storage	structure	or	access	strategy
in	response	to	changing	requirements	without	having	to	modify	existing
applications.
Data	independence	can	be	defines	as
`The	immunity	of	applications	to	change	in	storage	structure	and	access
strategy'.

Data	Redundancy

In	non-database	systems	each	application	has	its	own	private	files.	This	can	often	lead
to	redundancy	in	stored	data,	with	resultant	waste	in	storage	space.	In	a	database	the
data	is	integrated.

The	database	may	be	thought	of	as	a	unification	of	several	otherwise	distinct	data
files,	with	any	redundancy	among	those	files	partially	or	wholly	eliminated.

Data	integration	is	generally	regarded	as	an	important	characteristic	of	a	database.
The	avoidance	of	redundancy	should	be	an	aim,	however,	the	vigour	with	which	this
aim	should	be	pursued	is	open	to	question.

Redundancy	is

direct	if	a	value	is	a	copy	of	another
indirect	if	the	value	can	be	derived	from	other	values:

simplifies	retrieval	but	complicates	update
conversely	integration	makes	retrieval	slow	and	updates	easier

Data	redundancy	can	lead	to	inconsistency	in	the	database	unless	controlled.
the	system	should	be	aware	of	any	data	duplication	-	the	system	is	responsible
for	ensuring	updates	are	carried	out	correctly.
a	DB	with	uncontrolled	redundancy	can	be	in	an	inconsistent	state	-	it	can	supply
incorrect	or	conflicting	information
a	given	fact	represented	by	a	single	entry	cannot	result	in	inconsistency	-	few
systems	are	capable	of	propagating	updates	i.e.	most	systems	do	not	support
controlled	redundancy.

Data	Integrity

This	describes	the	problem	of	ensuring	that	the	data	in	the	database	is	accurate...

inconsistencies	between	two	entries	representing	the	same	`fact'	give	an
example	of	lack	of	integrity	(caused	by	redundancy	in	the	database).
integrity	constraints	can	be	viewed	as	a	set	of	assertions	to	be	obeyed	when
updating	a	DB	to	preserve	an	error-free	state.
even	if	redundancy	is	eliminated,	the	DB	may	still	contain	incorrect	data.
integrity	checks	which	are	important	are	checks	on	data	items	and	record	types.

Integrity	checks	on	data	items	can	be	divided	into	4	groups:

1.	 type	checks
e.g.	ensuring	a	numeric	field	is	numeric	and	not	a	character	-	this	check
should	be	performed	automatically	by	the	DBMS.

2.	 redundancy	checks
direct	or	indirect	(see	data	redundancy)	-	this	check	is	not	automatic	in
most	cases.

3.	 range	checks
e.g.	to	ensure	a	data	item	value	falls	within	a	specified	range	of	values,	such
as	checking	dates	so	that	say	(age	>	0	AND	age	<	110).

4.	 comparison	checks
in	this	check	a	function	of	a	set	of	data	item	values	is	compared	against	a
function	of	another	set	of	data	item	values.	For	example,	the	max	salary	for
a	given	set	of	employees	must	be	less	than	the	min	salary	for	the	set	of
employees	on	a	higher	salary	scale.

A	record	type	may	have	constraints	on	the	total	number	of	occurrences,	or	on	the
insertions	and	deletions	of	records.	For	example	in	a	patient	database	there	may	be	a
limit	on	the	number	of	xray	results	for	each	patient	or	the	details	of	a	patients	visit	to
hospital	must	be	kept	for	a	minimum	of	5	years	before	it	can	be	deleted

Centralized	control	of	the	database	helps	maintain	integrity,	and	permits	the
DBA	to	define	validation	procedures	to	be	carried	out	whenever	any	update
operation	is	attempted	(update	covers	modification,	creation	and	deletion).
Integrity	is	important	in	a	database	system	-	an	application	run	without



validation	procedures	can	produce	erroneous	data	which	can	then	affect	other
applications	using	that	data.

Previous	Page Up	One	Level


