
HOME ABOUT	TCL/TK SOFTWARE CORE	DEVELOPMENT COMMUNITY

hosted	by

	 	

Scripting:	Higher	Level	Programming
for	the	21st	Century

John	K.	Ousterhout

Tcl	Developer	Xchange
2593	Coast	Ave.

Mountain	View,	CA	94043
ouster@interwoven.com

(This	article	appears	in	IEEE	Computer	magazine,	March	1998)

Abstract
Scripting	languages	such	as	Perl	and	Tcl	represent	a	very	different	style	of	programming	than	system
programming	languages	such	as	C	or	JavaTM.	Scripting	languages	are	designed	for	"gluing"	applications;
they	use	typeless	approaches	to	achieve	a	higher	level	of	programming	and	more	rapid	application
development	than	system	programming	languages.	Increases	in	computer	speed	and	changes	in	the
application	mix	are	making	scripting	languages	more	and	more	important	for	applications	of	the	future.
Keywords:	component	frameworks,	object-oriented	programming,	scripting,	strong	typing,	system
programming.

1	Introduction
For	the	last	fifteen	years	a	fundamental	change	has	been	occurring	in	the	way	people	write	computer
programs.	The	change	is	a	transition	from	system	programming	languages	such	as	C	or	C++	to	scripting
languages	such	as	Perl	or	Tcl.	Although	many	people	are	participating	in	the	change,	few	people	realize	that	it
is	occurring	and	even	fewer	people	know	why	it	is	happening.	This	article	is	an	opinion	piece	that	explains	why
scripting	languages	will	handle	many	of	the	programming	tasks	of	the	next	century	better	than	system
programming	languages.
Scripting	languages	are	designed	for	different	tasks	than	system	programming	languages,	and	this	leads	to
fundamental	differences	in	the	languages.	System	programming	languages	were	designed	for	building	data	structures
and	algorithms	from	scratch,	starting	from	the	most	primitive	computer	elements	such	as	words	of	memory.	In
contrast,	scripting	languages	are	designed	for	gluing:	they	assume	the	existence	of	a	set	of	powerful	components	and
are	intended	primarily	for	connecting	components	together.	System	programming	languages	are	strongly	typed	to	help
manage	complexity,	while	scripting	languages	are	typeless	to	simplify	connections	between	components	and	provide
rapid	application	development.

Scripting	languages	and	system	programming	languages	are	complementary,	and	most	major	computing	platforms
since	the	1960's	have	provided	both	kinds	of	languages.	The	languages	are	typically	used	together	in	component
frameworks,	where	components	are	created	with	system	programming	languages	and	glued	together	with	scripting
languages.	However,	several	recent	trends,	such	as	faster	machines,	better	scripting	languages,	the	increasing
importance	of	graphical	user	interfaces	and	component	architectures,	and	the	growth	of	the	Internet,	have	greatly
increased	the	applicability	of	scripting	languages.	These	trends	will	continue	over	the	next	decade,	with	more	and
more	new	applications	written	entirely	in	scripting	languages	and	system	programming	languages	used	primarily	for
creating	components.

2	System	programming	languages
In	order	to	understand	the	differences	between	scripting	languages	and	system	programming	languages,	it	is
important	to	understand	how	system	programming	languages	evolved.	System	programming	languages	were
introduced	as	an	alternative	to	assembly	languages.	In	assembly	languages,	virtually	every	aspect	of	the
machine	is	reflected	in	the	program.	Each	statement	represents	a	single	machine	instruction	and
programmers	must	deal	with	low-level	details	such	as	register	allocation	and	procedure	calling	sequences.	As
a	result,	it	is	difficult	to	write	and	maintain	large	programs	in	assembly	language.
By	the	late	1950's	higher	level	languages	such	as	Lisp,	Fortran,	and	Algol	began	to	appear.	In	these	languages
statements	no	longer	correspond	exactly	to	machine	instructions;	a	compiler	translates	each	statement	in	the	source
program	into	a	sequence	of	binary	instructions.	Over	time	a	series	of	system	programming	languages	evolved	from
Algol,	including	such	languages	as	PL/1,	Pascal,	C,	C++,	and	Java.	System	programming	languages	are	less	efficient
then	assembly	languages	but	they	allow	applications	to	be	developed	much	more	quickly.	As	a	result,	they	have
almost	completely	replaced	assembly	languages	for	the	development	of	large	applications.

System	programming	languages	differ	from	assembly	languages	in	two	ways:	they	are	higher	level	and	they	are
strongly	typed.	The	term	"higher	level"	means	that	many	details	are	handled	automatically	so	that	programmers	can
write	less	code	to	get	the	same	job	done.	For	example:

Register	allocation	is	handled	by	the	compiler	so	that	programmers	need	not	write	code	to	move	information	between
registers	and	memory.
Procedure	calling	sequences	are	generated	automatically:	programmers	need	not	worry	about	moving	arguments	to	and
from	the	call	stack.

DOCUMENTATION

http://www.tcl.tk/doc/scripting.html Go NOV DEC FEB

16
2012 2013 2015

209	captures
	 	
	

� ⍰❎
f �

17	Jun	2002	-	2	Nov	2017 ▾	About	this	capture

Programmers	can	use	simple	keywords	such	as	while	and	if	for	control	structures;	the	compiler	generates	all	the	detailed
instructions	to	implement	the	control	structures.

On	average,	each	line	of	code	in	a	system	programming	language	translates	to	about	five	machine
instructions,	compared	to	one	instruction	per	line	in	assembly	language	(in	an	informal	analysis	of	eight	C	files
written	by	five	different	people,	I	found	that	the	ratio	ranged	from	about	3	to	7	instructions	per	line[7];	in	a
study	of	numerous	languages	Capers	Jones	found	that	for	a	given	task,	assembly	languages	require	about	3-6
times	as	many	lines	of	code	as	system	programming	languages[3]).	Programmers	can	write	roughly	the	same
number	of	lines	of	code	per	year	regardless	of	language[1],	so	system	programming	languages	allow
applications	to	be	written	much	more	quickly	than	assembly	language.
The	second	difference	between	assembly	language	and	system	programming	languages	is	typing.	I	use	the	term
"typing"	to	refer	to	the	degree	to	which	the	meaning	of	information	is	specified	in	advance	of	its	use.	In	a	strongly
typed	language	the	programmer	declares	how	each	piece	of	information	will	be	used	and	the	language	prevents	the
information	from	being	used	in	any	other	way.	In	a	weakly	typed	language	there	are	no	a	priori	restrictions	on	how
information	can	be	used:	the	meaning	of	information	is	determined	solely	by	the	way	it	is	used,	not	by	any	initial
promises.1

Modern	computers	are	fundamentally	typeless:	any	word	in	memory	can	hold	any	kind	of	value,	such	as	an	integer,	a
floating-point	number,	a	pointer,	or	an	instruction.	The	meaning	of	a	value	is	determined	by	how	it	is	used:	if	the
program	counter	points	at	a	word	of	memory	then	it	is	treated	as	an	instruction;	if	a	word	is	referenced	by	an	integer
add	instruction	then	it	is	treated	as	an	integer;	and	so	on.	The	same	word	can	be	used	in	different	ways	at	different
times.

In	contrast,	today's	system	programming	languages	are	strongly	typed.	For	example:
Each	variable	in	a	system	programming	language	must	be	declared	with	a	particular	type	such	as	integer	or	pointer	to
string,	and	it	must	be	used	in	ways	that	are	appropriate	for	the	type.
Data	and	code	are	totally	segregated:	it	is	difficult	or	impossible	to	create	new	code	on	the	fly.
Variables	can	be	collected	into	structures	or	objects	with	well-defined	substructure	and	procedures	or	methods	to
manipulate	them;	an	object	of	one	type	cannot	be	used	where	an	object	of	a	different	type	is	expected.

Typing	has	several	advantages.	First,	it	makes	large	programs	more	manageable	by	clarifying	how	things	are
used	and	differentiating	between	things	that	must	be	treated	differently.	Second,	compilers	can	use	type
information	to	detect	certain	kinds	of	errors,	such	as	an	attempt	to	use	a	floating-point	value	as	a	pointer.
Third,	typing	improves	performance	by	allowing	compilers	to	generate	specialized	code.	For	example,	if	a
compiler	knows	that	a	variable	always	holds	an	integer	value	then	it	can	generate	integer	instructions	to
manipulate	the	variable;	if	the	compiler	doesn't	know	the	type	of	a	variable	then	it	must	generate	additional
instructions	to	check	the	variable's	type	at	runtime.
To	summarize,	system	programming	languages	are	designed	to	handle	the	same	tasks	as	assembly	languages,	namely
creating	applications	from	scratch.	System	programming	languages	are	higher	level	and	much	more	strongly	typed
than	assembly	languages.	This	allows	applications	to	be	created	more	rapidly	and	managed	more	easily	with	only	a
slight	loss	in	performance.	See	Figure	1	for	a	graphical	comparison	of	assembly	language	and	several	system
programming	languages.

3	Scripting	languages
Scripting	languages	such	as	Perl[9],	Python[4],	Rexx[6],	Tcl[8],	Visual	Basic,	and	the	Unix	shells	represent	a
very	different	style	of	programming	than	system	programming	languages.	Scripting	languages	assume	that
there	already	exists	a	collection	of	useful	components	written	in	other	languages.	Scripting	languages	aren't
intended	for	writing	applications	from	scratch;	they	are	intended	primarily	for	plugging	together	components.
For	example,	Tcl	and	Visual	Basic	can	be	used	to	arrange	collections	of	user	interface	controls	on	the	screen,
and	Unix	shell	scripts	are	used	to	assemble	filter	programs	into	pipelines.	Scripting	languages	are	often	used
to	extend	the	features	of	components	but	they	are	rarely	used	for	complex	algorithms	and	data	structures;
features	like	these	are	usually	provided	by	the	components.	Scripting	languages	are	sometimes	referred	to	as
glue	languages	or	system	integration	languages.
In	order	to	simplify	the	task	of	connecting	components,	scripting	languages	tend	to	be	typeless:	all	things	look	and
behave	the	same	so	that	they	are	interchangeable.	For	example,	in	Tcl	or	Visual	Basic	a	variable	can	hold	a	string	one
moment	and	an	integer	the	next.	Code	and	data	are	often	interchangeable,	so	that	a	program	can	write	another
program	and	then	execute	it	on	the	fly.	Scripting	languages	are	often	string-oriented,	since	this	provides	a	uniform
representation	for	many	different	things.

A	typeless	language	makes	it	much	easier	to	hook	together	components.	There	are	no	a	priori	restrictions	on	how
things	can	be	used,	and	all	components	and	values	are	represented	in	a	uniform	fashion.	Thus	any	component	or	value
can	be	used	in	any	situation;	components	designed	for	one	purpose	can	be	used	for	totally	different	purposes	never
foreseen	by	the	designer.	For	example,	in	the	Unix	shells,	all	filter	programs	read	a	stream	of	bytes	from	an	input	and
write	a	string	of	bytes	to	an	output;	any	two	programs	can	be	connected	together	by	attaching	the	output	of	one
program	to	the	input	of	the	other.	The	following	shell	command	stacks	three	filters	together	to	count	the	number	of
lines	in	the	selection	that	contain	the	word	"scripting":

select	|	grep	scripting	|	wc

The	select	program	reads	the	text	that	is	currently	selected	on	the	display	and	prints	it	on	its	output;	the	grep
program	reads	its	input	and	prints	on	its	output	the	lines	containing	"scripting";	the	wc	program	counts	the
number	of	lines	on	its	input.	Each	of	these	programs	can	be	used	in	numerous	other	situations	to	perform
different	tasks.
The	strongly	typed	nature	of	system	programming	languages	discourages	reuse.	Typing	encourages	programmers	to
create	a	variety	of	incompatible	interfaces	("interfaces	are	good;	more	interfaces	are	better").	Each	interface	requires
objects	of	specific	types	and	the	compiler	prevents	any	other	types	of	objects	from	being	used	with	the	interface,	even
if	that	would	be	useful.	In	order	to	use	a	new	object	with	an	existing	interface,	conversion	code	must	be	written	to
translate	between	the	type	of	the	object	and	the	type	expected	by	the	interface.	This	in	turn	requires	recompiling	part
or	all	of	the	application,	which	isn't	possible	in	the	common	case	where	the	application	is	distributed	in	binary	form.

To	see	the	advantages	of	a	typeless	language,	consider	the	following	Tcl	command:

button	.b	-text	Hello!	-font	{Times	16}	-command	{puts	hello}

This	command	creates	a	new	button	control	that	displays	a	text	string	in	a	16-point	Times	font	and	prints	a
short	message	when	the	user	clicks	on	the	control.	It	mixes	six	different	types	of	things	in	a	single	statement:
a	command	name	(button),	a	button	control	(.b),	property	names	(-text,	-font,	and	-command),	simple	strings
(Hello!	and	hello),	a	font	name	(Times	16)	that	includes	a	typeface	name	(Times)	and	a	size	in	points	(16),
and	a	Tcl	script	(puts	hello).	Tcl	represents	all	of	these	things	uniformly	with	strings.	In	this	example	the
properties	may	be	specified	in	any	order	and	unspecified	properties	are	given	default	values;	more	than	20
properties	were	left	unspecified	in	the	example.
The	same	example	requires	7	lines	of	code	in	two	methods	when	implemented	in	Java.	With	C++	and	Microsoft
Foundation	Classes,	it	requires	about	25	lines	of	code	in	three	procedures	(see	[7]	for	the	code	for	these	examples).
Just	setting	the	font	requires	several	lines	of	code	in	Microsoft	Foundation	Classes:

CFont	*fontPtr	=	new	CFont();

fontPtr->CreateFont(16,	0,	0,0,700,	0,	0,	0,	ANSI_CHARSET,

				OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS,	DEFAULT_QUALITY,

				DEFAULT_PITCH|FF_DONTCARE,	"Times	New	Roman");

buttonPtr->SetFont(fontPtr);

Much	of	this	code	is	a	consequence	of	the	strong	typing.	In	order	to	set	the	font	of	a	button,	its	SetFont
method	must	be	invoked,	but	this	method	must	be	passed	a	pointer	to	a	CFont	object.	This	in	turn	requires	a
new	object	to	be	declared	and	initialized.	In	order	to	initialize	the	CFont	object	its	CreateFont	method	must	be
invoked,	but	CreateFont	has	a	rigid	interface	that	requires	14	different	arguments	to	be	specified.	In	Tcl,	the
essential	characteristics	of	the	font	(typeface	Times,	size	16	points)	can	be	used	immediately	with	no
declarations	or	conversions.	Furthermore,	Tcl	allows	the	behavior	for	the	button	to	be	included	directly	in	the
command	that	creates	the	button,	while	C++	and	Java	require	it	to	be	placed	in	a	separately	declared
method.
(In	practice,	a	trivial	example	like	this	would	probably	be	handled	with	a	graphical	development	environment	that
hides	the	complexity	of	the	underlying	language:	the	user	enters	property	values	in	a	form	and	the	development
environment	outputs	the	code.	However,	in	more	complex	situations	such	as	conditional	assignment	of	property	values
or	interfaces	generated	programmatically,	the	developer	must	write	code	in	the	underlying	language.)

It	might	seem	that	the	typeless	nature	of	scripting	languages	could	allow	errors	to	go	undetected,	but	in	practice
scripting	languages	are	just	as	safe	as	system	programming	languages.	For	example,	an	error	will	occur	if	the	font	size
specified	for	the	button	example	above	is	a	non-integer	string	such	as	xyz.	The	difference	is	that	scripting	languages
do	their	error	checking	at	the	last	possible	moment,	when	a	value	is	used.	Strong	typing	allows	errors	to	be	detected	at
compile-time,	so	the	cost	of	run-time	checks	is	avoided.	However,	the	price	to	be	paid	for	this	efficiency	is	restrictions
on	how	information	can	be	used:	this	results	in	more	code	and	less	flexible	programs.

Another	key	difference	between	scripting	languages	and	system	programming	languages	is	that	scripting	languages
are	usually	interpreted	whereas	system	programming	languages	are	usually	compiled.	Interpreted	languages	provide
rapid	turnaround	during	development	by	eliminating	compile	times.	Interpreters	also	make	applications	more	flexible
by	allowing	users	to	program	the	applications	at	run-time.	For	example,	many	synthesis	and	analysis	tools	for
integrated	circuits	include	a	Tcl	interpreter;	users	of	the	programs	write	Tcl	scripts	to	specify	their	designs	and	control
the	operation	of	the	tools.	Interpreters	also	allow	powerful	effects	to	be	achieved	by	generating	code	on	the	fly.	For
example,	a	Tcl-based	Web	browser	can	parse	a	Web	page	by	translating	the	HTML	for	the	page	into	a	Tcl	script	using	a
few	regular	expression	substitutions.	It	then	executes	the	Tcl	script	to	render	the	page	on	the	screen.

Scripting	languages	are	less	efficient	than	system	programming	languages,	in	part	because	they	use	interpreters
instead	of	compilers	but	also	because	their	basic	components	are	chosen	for	power	and	ease	of	use	rather	than	an
efficient	mapping	onto	the	underlying	hardware.	For	example,	scripting	languages	often	use	variable-length	strings	in
situations	where	a	system	programming	language	would	use	a	binary	value	that	fits	in	a	single	machine	word,	and
scripting	languages	often	use	hash	tables	where	system	programming	languages	use	indexed	arrays.

Fortunately,	the	performance	of	a	scripting	language	isn't	usually	a	major	issue.	Applications	for	scripting	languages
are	generally	smaller	than	applications	for	system	programming	languages,	and	the	performance	of	a	scripting
application	tends	to	be	dominated	by	the	performance	of	the	components,	which	are	typically	implemented	in	a
system	programming	language.

Scripting	languages	are	higher	level	than	system	programming	languages,	in	the	sense	that	a	single	statement	does
more	work	on	average.	A	typical	statement	in	a	scripting	language	executes	hundreds	or	thousands	of	machine

instructions,	whereas	a	typical	statement	in	a	system	programming	language	executes	about	five	machine	instructions
(see	Figure	1).	Part	of	this	difference	is	because	scripting	languages	use	interpreters,	which	are	less	efficient	than	the
compiled	code	for	system	programming	languages.	But	much	of	the	difference	is	because	the	primitive	operations	in
scripting	languages	have	greater	functionality.	For	example,	in	Perl	it	is	about	as	easy	to	invoke	a	regular	expression
substitution	as	it	is	to	invoke	an	integer	addition.	In	Tcl,	a	variable	can	have	traces	associated	with	it	so	that	setting	the
variable	causes	side	effects;	for	example,	a	trace	might	be	used	to	keep	the	variable's	value	updated	continuously	on
the	screen.

Because	of	the	features	described	above,	scripting	languages	allow	very	rapid	development	for	applications	that	are
gluing-oriented.	Table	1	provides	anecdotal	support	for	this	claim.	It	describes	several	applications	that	were
implemented	in	a	system	programming	language	and	then	reimplemented	in	a	scripting	language,	or	vice	versa.

In	every	case	the	scripting	version	required	less	code	and	development	time	than	the	system	programming
version;	the	difference	varied	from	a	factor	of	2	to	a	factor	of	60.	Scripting	languages	provided	less	benefit
when	they	were	used	for	the	first	implementation;	this	suggests	that	any	reimplementation	benefits
substantially	from	the	experiences	of	the	first	implementation	and	that	the	true	difference	between	scripting
and	system	programming	is	more	like	a	factor	of	5-10x	than	the	extreme	points	of	the	table.	The	benefits	of
scripting	also	depend	on	the	application.	In	the	last	example	of	the	table	the	GUI	part	of	the	application	is
gluing-oriented	but	the	simulator	part	isn't;	this	may	explain	why	the	application	benefited	less	from	scripting
than	other	applications.
To	summarize,	scripting	languages	are	designed	for	gluing	applications.	They	provide	a	higher	level	of	programming
than	assembly	or	system	programming	languages,	much	weaker	typing	than	system	programming	languages,	and	an
interpreted	development	environment.	Scripting	languages	sacrifice	execution	speed	to	improve	development	speed.

4	Different	tools	for	different	tasks
A	scripting	language	is	not	a	replacement	for	a	system	programming	language	or	vice	versa.	Each	is	suited	to
a	different	set	of	tasks.	For	gluing	and	system	integration,	applications	can	be	developed	5-10x	faster	with	a
scripting	language;	system	programming	languages	will	require	large	amounts	of	boilerplate	and	conversion
code	to	connect	the	pieces,	whereas	this	can	be	done	directly	with	a	scripting	language.	For	complex
algorithms	and	data	structures,	the	strong	typing	of	a	system	programming	language	makes	programs	easier
to	manage.	Where	execution	speed	is	key,	a	system	programming	language	can	often	run	10-20x	faster	than
a	scripting	language	because	it	makes	fewer	run-time	checks.
In	deciding	whether	to	use	a	scripting	language	or	a	system	programming	language	for	a	particular	task,	consider	the
following	questions:

Is	the	application's	main	task	to	connect	together	pre-existing	components?
Will	the	application	manipulate	a	variety	of	different	kinds	of	things?
Does	the	application	include	a	graphical	user	interface?
Does	the	application	do	a	lot	of	string	manipulation?
Will	the	application's	functions	evolve	rapidly	over	time?
Does	the	application	need	to	be	extensible?

"Yes"	answers	to	these	questions	suggest	that	a	scripting	language	will	work	well	for	the	application.	On	the
other	hand,	"yes"	answers	to	the	following	questions	suggest	that	an	application	is	better	suited	to	a	system

programming	language:
Does	the	application	implement	complex	algorithms	or	data	structures?
Does	the	application	manipulate	large	datasets	(e.g.	all	the	pixels	in	an	image)	so	that	execution	speed	is	critical?
Are	the	application's	functions	well-defined	and	changing	slowly?

Most	of	the	major	computing	platforms	over	the	last	30	years	have	provided	both	system	programming	and
scripting	languages.	For	example,	one	of	the	first	scripting	languages,	albeit	a	crude	one,	was	JCL	(Job	Control
Language),	which	was	used	to	sequence	job	steps	in	OS/360.	The	individual	job	steps	were	written	in	PL/1,
Fortran,	or	assembler	language,	which	were	the	system	programming	languages	of	the	day.	In	the	Unix
machines	of	the	1980's,	C	was	used	for	system	programming	and	shell	programs	such	as	sh	and	csh	for
scripting.	In	the	PC	world	of	the	1990's,	C	and	C++	are	used	for	system	programming	and	Visual	Basic	for
scripting.	In	the	Internet	world	that	is	taking	shape	now,	Java	is	used	for	system	programming	and	languages
such	as	JavaScript,	Perl,	and	Tcl	are	used	for	scripting.
Scripting	and	system	programming	are	symbiotic.	Used	together,	they	produce	programming	environments	of
exceptional	power:	system	programming	languages	are	used	to	create	exciting	components	which	can	then	be
assembled	using	scripting	languages.	For	example,	much	of	the	attraction	of	Visual	Basic	is	that	system	programmers
can	write	ActiveX	components	in	C	and	less	sophisticated	programmers	can	then	use	the	components	in	Visual	Basic
applications.	In	Unix	it	is	easy	to	write	shell	scripts	that	invoke	applications	written	in	C.	One	of	the	reasons	for	the
popularity	of	Tcl	is	the	ability	to	extend	the	language	by	writing	C	code	that	implements	new	commands.

5	Scripting	is	on	the	rise
Scripting	languages	have	existed	for	a	long	time,	but	in	recent	years	several	factors	have	combined	to
increase	their	importance.	The	most	important	factor	is	a	shift	in	the	application	mix	towards	gluing
applications.	Three	examples	of	this	shift	are	graphical	user	interfaces,	the	Internet,	and	component
frameworks.
Graphical	user	interfaces	(GUIs)	first	began	to	appear	in	the	early	1980's	and	became	widespread	by	the	end	of	the
decade;	GUIs	now	account	for	half	or	more	of	the	total	effort	in	many	programming	projects.	GUIs	are	fundamentally
gluing	applications:	the	goal	is	not	to	create	new	functionality,	but	to	make	connections	between	a	collection	of
graphical	controls	and	the	internal	functions	of	the	application.	I	am	not	aware	of	any	rapid-development	environments
for	GUIs	based	on	a	system	programming	language.	Whether	the	environment	is	Windows,	Macintosh	Toolbox,	or	Unix
Motif,	GUI	toolkits	based	on	languages	like	C	or	C++	have	proven	to	be	hard	to	learn,	clumsy	to	use,	and	inflexible	in
the	results	they	produce.	Some	of	these	systems	have	very	nice	graphical	tools	for	designing	screen	layouts	that	hide
the	underlying	language,	but	things	become	difficult	as	soon	as	the	designer	has	to	write	code,	for	example	to	provide
the	behaviors	for	the	interface	elements.	All	of	the	best	rapid-development	GUI	environments	are	based	on	scripting
languages:	Visual	Basic,	HyperCard,	and	Tcl/Tk.	Thus	scripting	languages	have	risen	in	popularity	as	the	importance	of
GUIs	has	increased.

The	growth	of	the	Internet	has	also	popularized	scripting	languages.	The	Internet	is	nothing	more	than	a	gluing	tool.	It
doesn't	create	any	new	computations	or	data;	it	simply	makes	a	huge	number	of	existing	things	easily	accessible.	The
ideal	language	for	most	Internet	programming	tasks	is	one	that	makes	it	possible	for	all	the	connected	components	to
work	together,	i.e.	a	scripting	language.	For	example,	Perl	has	become	popular	for	writing	CGI	scripts	and	JavaScript	is
popular	for	scripting	in	Web	pages.

The	third	example	of	scripting-oriented	applications	is	component	frameworks	such	as	ActiveX,	OpenDoc,	and
JavaBeans.	Although	system	programming	languages	work	well	for	creating	components,	the	task	of	assembling
components	into	applications	is	better	suited	to	scripting.	Without	a	good	scripting	language	to	manipulate	the
components,	much	of	the	power	of	a	component	framework	is	lost.	This	may	explain	in	part	why	component
frameworks	have	been	more	successful	on	PCs	(where	Visual	Basic	provides	a	convenient	scripting	tool)	than	on	other
platforms	such	as	Unix/CORBA	where	scripting	is	not	included	in	the	component	framework.

Another	reason	for	the	increasing	popularity	of	scripting	languages	is	improvements	in	scripting	technology.	Modern
scripting	languages	such	as	Tcl	and	Perl	are	a	far	cry	from	early	scripting	languages	such	as	JCL.	For	example,	JCL
didn't	even	provide	basic	iteration	and	early	Unix	shells	didn't	support	procedures.	Scripting	technology	is	still
relatively	immature	even	today.	For	example,	Visual	Basic	isn't	really	a	scripting	language;	it	was	originally
implemented	as	a	simple	system	programming	language,	then	modified	to	make	it	more	suitable	for	scripting.	Future
scripting	languages	will	be	even	better	than	those	available	today.
Scripting	technology	has	also	benefited	from	the	ever-increasing	speed	of	computer	hardware.	It	used	to	be	that	the
only	way	to	get	acceptable	performance	in	an	application	of	any	complexity	was	to	use	a	system	programming
language.	In	some	cases	even	system	programming	languages	weren't	efficient	enough,	so	the	applications	had	to	be
written	in	assembler.	However,	machines	today	are	100-500	times	faster	than	the	machines	of	1980	and	they	continue
to	double	in	performance	every	18	months.	Today,	many	applications	can	be	implemented	in	an	interpreted	language
and	still	have	excellent	performance;	for	example,	a	Tcl	script	can	manipulate	collections	with	several	thousand	objects
and	still	provide	good	interactive	response.	As	computers	get	faster,	scripting	will	become	attractive	for	larger	and
larger	applications.

One	final	reason	for	the	increasing	use	of	scripting	languages	is	a	change	in	the	programmer	community.	Twenty	years
ago	most	programmers	were	sophisticated	programmers	working	on	large	projects.	Programmers	of	that	era	expected
to	spend	several	months	to	master	a	language	and	its	programming	environment,	and	system	programming	languages
were	designed	for	such	programmers.	However,	since	the	arrival	of	the	personal	computer,	more	and	more	casual
programmers	have	joined	the	programmer	community.	For	these	people,	programming	is	not	their	main	job	function;	it
is	a	tool	they	use	occasionally	to	help	with	their	main	job.	Examples	of	casual	programming	are	simple	database
queries	or	macros	for	a	spreadsheet.	Casual	programmers	are	not	willing	to	spend	months	learning	a	system
programming	language,	but	they	can	often	learn	enough	about	a	scripting	language	in	a	few	hours	to	write	useful
programs.	Scripting	languages	are	easier	to	learn	because	they	have	simpler	syntax	than	system	programming
languages	and	because	they	omit	complex	features	like	objects	and	threads.	For	example,	compare	Visual	Basic	with
Visual	C++;	few	casual	programmers	would	attempt	to	use	Visual	C++,	but	many	have	been	able	to	build	useful
applications	with	Visual	Basic.

Even	today	the	number	of	applications	written	in	scripting	languages	is	much	greater	than	the	number	of	applications
written	in	system	programming	languages.	On	Unix	systems	there	are	many	more	shell	scripts	than	C	programs,	and
under	Windows	there	are	many	more	Visual	Basic	programmers	and	applications	than	C	or	C++.	Of	course,	most	of	the
largest	and	most	widely	used	applications	are	written	in	system	programming	languages,	so	a	comparison	based	on
total	lines	of	code	or	number	of	installed	copies	may	still	favor	system	programming	languages.	Nonetheless,	scripting
languages	are	already	a	major	force	in	application	development	and	their	market	share	will	increase	in	the	future.

6	The	role	of	objects
Scripting	languages	have	been	mostly	overlooked	by	experts	in	programming	languages	and	software
engineering.	Instead,	they	have	focused	their	attention	on	object-oriented	system	programming	languages
such	as	C++	and	Java.	Object-oriented	programming	is	widely	believed	to	represent	the	next	major	step	in	the
evolution	of	programming	languages.	Object-oriented	features	such	as	strong	typing	and	inheritance	are	often
claimed	to	reduce	development	time,	increase	software	reuse,	and	solve	many	other	problems	including	those
addressed	by	scripting	languages.
How	much	benefit	has	object-oriented	programming	actually	provided?	Unfortunately	I	haven't	seen	enough
quantitative	data	to	answer	this	question	definitively.	In	my	opinion	objects	provide	only	a	modest	benefit:	perhaps	a
20-30%	improvement	in	productivity	but	certainly	not	a	factor	of	two,	let	alone	a	factor	of	10.	C++	now	seems	to	be
reviled	as	much	as	it	is	loved,	and	some	language	experts	are	beginning	to	speak	out	against	object-oriented
programming	[2].	The	rest	of	this	section	explains	why	objects	don't	improve	productivity	in	the	dramatic	way	that
scripting	does,	and	it	argues	that	the	benefits	of	object-oriented	programming	can	be	achieved	in	scripting	languages.

The	reason	why	object-oriented	programming	doesn't	provide	a	large	improvement	in	productivity	is	that	it	doesn't
raise	the	level	of	programming	or	encourage	reuse.	In	an	object-oriented	language	such	as	C++	programmers	still
work	with	small	basic	units	that	must	be	described	and	manipulated	in	great	detail.	In	principle,	powerful	library
packages	could	be	developed,	and	if	these	libraries	were	used	extensively	they	could	raise	the	level	of	programming.
However,	not	many	such	libraries	have	come	into	existence.	The	strong	typing	of	most	object-oriented	languages
encourages	narrowly	defined	packages	that	are	hard	to	reuse.	Each	package	requires	objects	of	a	specific	type;	if	two
packages	are	to	work	together,	conversion	code	must	be	written	to	translate	between	the	types	required	by	the
packages.

Another	problem	with	object-oriented	languages	is	their	emphasis	on	inheritance.	Implementation	inheritance,	where
one	class	borrows	code	that	was	written	for	another	class,	is	a	bad	idea	that	makes	software	harder	to	manage	and
reuse.	It	binds	the	implementations	of	classes	together	so	that	neither	class	can	be	understood	without	the	other:	a
subclass	cannot	be	understood	without	knowing	how	the	inherited	methods	are	implemented	in	its	superclass,	and	a
superclass	cannot	be	understood	without	knowing	how	its	methods	are	inherited	in	subclasses.	In	a	complex	class
hierarchy,	no	individual	class	can	be	understood	without	understanding	all	the	other	classes	in	the	hierarchy.	Even
worse,	a	class	cannot	be	separated	from	its	hierarchy	for	reuse.	Multiple	inheritance	makes	these	problems	even
worse.	Implementation	inheritance	causes	the	same	intertwining	and	brittleness	that	have	been	observed	when	goto
statements	are	overused.	As	a	result,	object-oriented	systems	often	suffer	from	complexity	and	lack	of	reuse.

Scripting	languages,	on	the	other	hand,	have	actually	generated	significant	software	reuse.	They	use	a	model	where
interesting	components	are	built	in	a	system	programming	language	and	then	glued	together	into	applications	using
the	scripting	language.	This	division	of	labor	provides	a	natural	framework	for	reusability.	Components	are	designed	to
be	reusable,	and	there	are	well-defined	interfaces	between	components	and	scripts	that	make	it	easy	to	use
components.	For	example,	in	Tcl	the	components	are	custom	commands	implemented	in	C;	they	look	just	like	the
builtin	commands	so	they	are	easy	to	invoke	in	Tcl	scripts.	In	Visual	Basic	the	components	are	ActiveX	extensions,
which	can	be	used	by	dragging	them	from	a	palette	onto	a	form.

Nonetheless,	object	oriented	programming	does	provide	at	least	two	useful	features.	The	first	is	encapsulation:	objects
combine	together	data	and	code	in	a	way	that	hides	implementation	details.	This	makes	it	easier	to	manage	large
systems.	The	second	useful	feature	is	interface	inheritance,	which	refers	to	classes	that	provide	the	same	methods	and
APIs	even	though	they	have	different	implementations.	This	makes	the	classes	interchangeable,	which	encourages
reuse.

Fortunately,	the	benefits	of	objects	can	be	achieved	in	scripting	languages	as	well	as	system	programming	languages
and	virtually	all	scripting	languages	have	some	support	for	object-oriented	programming.	For	example,	Python	is	an
object-oriented	scripting	language,	Perl	version	5	includes	support	for	objects,	Object	Rexx	is	an	object-oriented
version	of	Rexx,	and	Incr	Tcl	is	an	object-oriented	extension	to	Tcl.	One	difference	is	that	objects	in	scripting	languages
tend	to	be	typeless,	while	objects	in	system	programming	languages	tend	to	be	strongly	typed.

7	Other	languages
This	article	is	not	intended	as	a	complete	characterization	of	all	programming	languages.	There	are	many
other	attributes	of	programming	languages	besides	strength	of	typing	and	the	level	of	programming,	and
there	are	many	interesting	languages	that	can't	be	characterized	cleanly	as	a	system	programming	language
or	a	scripting	language.	For	example,	the	Lisp	family	of	languages	lies	somewhere	between	scripting	and
system	programming,	with	some	of	the	attributes	of	each.	Lisp	pioneered	concepts	such	as	interpretation	and
dynamic	typing	that	are	now	common	in	scripting	languages,	as	well	as	automatic	storage	management	and
integrated	development	environments,	which	are	now	used	in	both	scripting	and	system	programming
languages.

8	Conclusion
Scripting	languages	represent	a	different	set	of	tradeoffs	than	system	programming	languages.	They	give	up
execution	speed	and	strength	of	typing	relative	to	system	programming	languages	but	provide	significantly
higher	programmer	productivity	and	software	reuse.	This	tradeoff	makes	more	and	more	sense	as	computers
become	faster	and	cheaper	in	comparison	to	programmers.	System	programming	languages	are	well	suited	to
building	components	where	the	complexity	is	in	the	data	structures	and	algorithms,	while	scripting	languages
are	well	suited	for	gluing	applications	where	the	complexity	is	in	the	connections.	Gluing	tasks	are	becoming
more	and	more	prevalent,	so	scripting	will	become	an	even	more	important	programming	paradigm	in	the
next	century	than	it	is	today.
I	hope	that	this	article	will	impact	the	computing	community	in	three	ways:

I	hope	that	programmers	will	consider	the	differences	between	scripting	and	system	programming	when	starting	new
projects	and	choose	the	most	powerful	tool	for	each	task.
I	hope	that	designers	of	component	frameworks	will	recognize	the	importance	of	script
ing	and	ensure	that	their	frameworks	include	not	just	facilities	for	creating	components	
but	also	facilities	for	gluing	them	together.
I	hope	that	the	programming	language	research	community	will	shift	some	of	its	attention	to	scripting	languages	and	help
develop	even	more	powerful	scripting	languages	for	the	future.	Raising	the	level	of	programming	should	be	the	single
most	important	goal	for	language	designers,	since	it	has	the	greatest	effect	on	programmer	productivity;	it	is	not	clear
that	strong	typing	contributes	to	this	goal.

9	Acknowledgments
This	article	has	benefited	from	many	people's	comments,	including	Joel	Bartlett,	Bill	Eldridge,	Jeffrey	Haemer,
Mark	Harrison,	Paul	McJones,	David	Patterson,	Stephen	Uhler,	Hank	Walker,	Chris	Wright,	the	IEEE	Computer
referees,	and	dozens	of	others	who	participated	in	a	heated	net-news	discussion	of	an	early	draft	of	the
article.	Colin	Stevens	wrote	the	MFC	version	of	the	button	example	and	Stephen	Uhler	wrote	the	Java	version.

10	References
[1]	B.	Boehm,	Software	Engineering	Economics,	Prentice-Hall,	ISBN	0-138-22122-7,	1981.
[2]	S.	Johnson,	Objecting	To	Objects,	Invited	Talk,	USENIX	Technical	Conference,	San	Francisco,	CA,	January	1994.
[3]	C.	Jones,	"Programming	Languages	Table,	Release	8.2",	March	1996,	http://www.spr.com/library/0langtbl.htm.

[4]	M.	Lutz,	Programming	Python,	O'Reilly,	ISBN	1-56592-197-6,	1996.
[5]	Netscape	Inc.,	"JavaScript	in	Navigator	3.0",
http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/atlas.html#taint_dg.

[6]	R.	O'Hara	and	D.	Gomberg,	Modern	Programming	Using	REXX,	Prentice	Hall,	ISBN	0-13-597329-5,	1988.
[7]	J.	Ousterhout,	Additional	Information	for	Scripting	White	Paper,
http://www.ajubasolutions.com/people/john.ousterhout/scriptextra.html.

[8]	J.	Ousterhout,	Tcl	and	the	Tk	Toolkit,	Addison-Wesley,	ISBN	0-201-63337-X,	1994.
[9]	L.	Wall,	T.	Christiansen,	and	R.	Schwartz,	Programming	Perl,	Second	Edition,	O'Reilly	and	Associates,	ISBN	1-56592-
149-6,	1996.

Sun	and	Java	are	trademarks	or	registered	trademarks	of	Sun	Microsystems,	Inc.	in	the	United	States	and	other
countries.

1	A	more	precise	characterization	would	use	the	term	"static	typing"	where	I	say	"strong	typing"	and	"dynamic
typing	with	automatic	conversion"	for	scripting	languages	that	I	describe	as	weakly	typed	or	untyped.	I	use
the	term	"typing"	in	a	general	sense	to	describe	the	degree	to	which	the	usage	of	data	is	restricted	in
advance.
ouster@interwoven.com
Tcl	DeveloperXChange
Tcl	Developer	Xchange	Home	Page
Last	updated:	August	8,	2000	

This	is	the	main	Tcl	Developer	Xchange	site,	www.tcl.tk	.				About	this	Site	|	webmaster@-SPAM-.tcl.tk	
Home	|	About	Tcl/Tk	|	Software	|	Core	Development	|	Community	|	Documentation

