
Section	1.5
Objects	and	Object-oriented	Programming

PROGRAMS	MUST	BE	DESIGNED.	No	one	can	just	sit	down	at	the	computer	and	compose	a	program	of
any	complexity.	The	discipline	called	software	engineering	is	concerned	with	the	construction	of	correct,
working,	well-written	programs.	The	software	engineer	tends	to	use	accepted	and	proven	methods	for
analyzing	the	problem	to	be	solved	and	for	designing	a	program	to	solve	that	problem.

During	the	1970s	and	into	the	80s,	the	primary	software	engineering	methodology	was	structured
programming.	The	structured	programming	approach	to	program	design	was	based	on	the	following
advice:	To	solve	a	large	problem,	break	the	problem	into	several	pieces	and	work	on	each	piece
separately;	to	solve	each	piece,	treat	it	as	a	new	problem	which	can	itself	be	broken	down	into	smaller
problems;	eventually,	you	will	work	your	way	down	to	problems	that	can	be	solved	directly,	without
further	decomposition.	This	approach	is	called	top-down	programming.

There	is	nothing	wrong	with	top-down	programming.	It	is	a	valuable	and	often-used	approach	to
problem-solving.	However,	it	is	incomplete.	For	one	thing,	it	deals	almost	entirely	with	producing	the
instructions	necessary	to	solve	a	problem.	But	as	time	went	on,	people	realized	that	the	design	of	the
data	structures	for	a	program	was	as	least	as	important	as	the	design	of	subroutines	and	control
structures.	Top-down	programming	doesn't	give	adequate	consideration	to	the	data	that	the	program
manipulates.

Another	problem	with	strict	top-down	programming	is	that	is	makes	it	difficult	to	reuse	work	done	for
other	projects.	By	starting	with	a	particular	problem	and	subdividing	it	into	convenient	pieces,	top-down
programming	tends	to	produce	a	design	that	is	unique	to	that	problem.	It	is	unlikely	that	you	will	be	able
to	take	a	large	chunk	of	programming	from	another	program	and	fit	it	into	your	project,	at	least	not
without	extensive	modification.	Producing	high-quality	programs	is	difficult	and	expensive,	so
programmers	and	the	people	who	employ	them	are	always	eager	to	reuse	past	work.

So,	in	practice,	top-down	design	is	often	combined	with	bottom-up	design.	In	bottom-up	design,	the
approach	is	to	start	"at	the	bottom,"	with	problems	that	you	already	know	how	to	solve	(and	for	which
you	might	already	have	a	reusable	software	component	at	hand).	From	there,	you	can	work	upwards
towards	a	solution	to	the	overall	problem.

The	reusable	components	should	be	as	"modular"	as	possible.	A	module	is	a	component	of	a	larger
system	that	interacts	with	the	rest	of	the	system	in	a	simple,	well-defined,	straightforward	manner.	The
idea	is	that	a	module	can	be	"plugged	into"	a	system.	The	details	of	what	goes	on	inside	the	module	are
not	important	to	the	system	as	a	whole,	as	long	as	the	module	fulfills	its	assigned	role	correctly.	This	is
called	information	hiding,	and	it	is	one	of	the	most	important	principles	of	software	engineering.

One	common	format	for	software	modules	is	to	contain	some	data,	along	with	some	subroutines	for
manipulating	that	data.	For	example,	a	mailing-list	module	might	contain	a	list	of	names	and	addresses
along	with	a	subroutine	for	adding	a	new	name,	a	subroutine	for	printing	mailing	labels,	and	so	forth.	In
such	modules,	the	data	itself	is	often	hidden	inside	the	module;	a	program	that	uses	the	module	can	then
manipulate	the	data	only	indirectly,	by	calling	the	subroutines	provided	by	the	module.	This	protects	the
data,	since	it	can	only	be	manipulated	in	known,	well-defined	ways.	And	it	makes	it	easier	for	programs
to	use	the	module,	since	they	don't	have	to	worry	about	the	details	of	how	the	data	is	represented.
Information	about	the	representation	of	the	data	is	hidden.

Modules	that	could	support	this	kind	of	information-hiding	became	common	in	programming	languages
in	the	early	1980s.	Since	then,	a	more	advanced	form	of	the	same	idea	has	more	or	less	taken	over
software	engineering.	This	latest	approach	is	called	object-oriented	programming,	often	abbreviated	as
OOP.

The	central	concept	of	object-oriented	programming	is	the	object,	which	is	a	kind	of	module	containing
data	and	subroutines.	The	point-of-view	in	OOP	is	that	an	object	is	a	kind	of	self-sufficient	entity	that	has
an	internal	state	(the	data	it	contains)	and	that	can	respond	to	messages	(calls	to	its	subroutines).	A
mailing	list	object,	for	example,	has	a	state	consisting	of	a	list	of	names	and	addresses.	If	you	send	it	a
message	telling	it	to	add	a	name,	it	will	respond	by	modifying	its	state	to	reflect	the	change.	If	you	send
it	a	message	telling	it	to	print	itself,	it	will	respond	by	printing	out	its	list	of	names	and	addresses.

The	OOP	approach	to	software	engineering	is	to	start	by	identifying	the	objects	involved	in	a	problem
and	the	messages	that	those	objects	should	respond	to.	The	program	that	results	is	a	collection	of
objects,	each	with	its	own	data	and	its	own	set	of	responsibilities.	The	objects	interact	by	sending
messages	to	each	other.	There	is	not	much	"top-down"	in	such	a	program,	and	people	used	to	more
traditional	programs	can	have	a	hard	time	getting	used	to	OOP.	However,	people	who	use	OOP	would

http://www.faqs.org/docs/javap/c1/s5.html Go MAR MAY JUL

11
2014 2015 2016

44	captures
	 	
	

� ⍰❎
f �

13	Oct	2003	-	27	Mar	2017 ▾	About	this	capture

claim	that	object-oriented	programs	tend	to	be	better	models	of	the	way	the	world	itself	works,	and	that
they	are	therefore	easier	to	write,	easier	to	understand,	and	more	likely	to	be	correct.

You	should	think	of	objects	as	"knowing"	how	to	respond	to	certain	messages.	Different	objects	might
respond	to	the	same	message	in	different	ways.	For	example,	a	"print"	message	would	produce	very
different	results,	depending	on	the	object	it	is	sent	to.	This	property	of	objects	--	that	different	objects
can	respond	to	the	same	message	in	different	ways	--	is	called	polymorphism.

It	is	common	for	objects	to	bear	a	kind	of	"family	relationship"	to	one	another.	Objects	that	contain	the
same	type	of	data	and	that	respond	to	the	same	messages	in	the	same	way	belong	to	the	same	class.	(In
actual	programming,	the	class	is	primary;	that	is,	a	class	is	created	and	then	one	or	more	objects	are
created	using	that	class	as	a	template.)	But	objects	can	be	similar	without	being	in	exactly	the	same
class.

For	example,	consider	a	drawing	program	that	lets	the	user	draw	lines,	rectangles,	ovals,	polygons,	and
curves	on	the	screen.	In	the	program,	each	visible	object	on	the	screen	could	be	represented	by	a
software	object	in	the	program.	There	would	be	five	classes	of	objects	in	the	program,	one	for	each	type
of	visible	object	that	can	be	drawn.	All	the	lines	would	belong	to	one	class,	all	the	rectangles	to	another
class,	and	so	on.	These	classes	are	obviously	related;	all	of	them	represent	"drawable	objects."	They
would,	for	example,	all	presumably	be	able	to	respond	to	a	"draw	yourself"	message.	Another	level	of
grouping,	based	on	the	data	needed	to	represent	each	type	of	object,	is	less	obvious,	but	would	be	very
useful	in	a	program:	We	can	group	polygons	and	curves	together	as	"multipoint	objects,"	while	lines,
rectangles,	and	ovals	are	"two-point	objects."	(A	line	is	determined	by	its	endpoints,	a	rectangle	by	two	of
its	corners,	and	an	oval	by	two	corners	of	the	rectangle	that	contains	it.)	We	could	diagram	these
relationships	as	follows:

DrawableObject,	MultipointObject,	and	TwoPointObject	would	be	classes	in	the	program.
MultipointObject	and	TwoPointObject	would	be	subclasses	of	DrawableObject.	The	class	Line	would	be	a
subclass	of	TwoPointObject	and	(indirectly)	of	DrawableObject.	A	subclass	of	a	class	is	said	to	inherit	the
properties	of	that	class.	The	subclass	can	add	to	its	inheritance	and	it	can	even	"override"	part	of	that
inheritance	(by	defining	a	different	response	to	some	method).	Nevertheless,	lines,	rectangles,	and	so	on
are	drawable	objects,	and	the	class	DrawableObject	expresses	this	relationship.

Inheritance	is	a	powerful	means	for	organizing	a	program.	It	is	also	related	to	the	problem	of	reusing
software	components.	A	class	is	the	ultimate	reusable	component.	Not	only	can	it	be	reused	directly	if	it
fits	exactly	into	a	program	you	are	trying	to	write,	but	if	it	just	almost	fits,	you	can	still	reuse	it	by
defining	a	subclass	and	making	only	the	small	changes	necessary	to	adapt	it	exactly	to	your	needs.

So,	OOP	is	meant	to	be	both	a	superior	program-development	tool	and	a	partial	solution	to	the	software
reuse	problem.	Objects,	classes,	and	object-oriented	programming	will	be	important	themes	throughout
the	rest	of	this	text.

[Next	Section	|	Previous	Section	|	Chapter	Index	|	Main	Index]

