
Section	3.1
Blocks,	Loops,	and	Branches

THE	ABILITY	OF	A	COMPUTER	TO	PERFORM	complex	tasks	is	built	on	just	a	few	ways	of	combining
simple	commands	into	control	structures.	In	Java,	there	are	just	six	such	structures	--	and,	in	fact,	just
three	of	them	would	be	enough	to	write	programs	to	perform	any	task.	The	six	control	structures	are:	the
block,	the	while	loop,	the	do..while	loop,	the	for	loop,	the	if	statement,	and	the	switch	statement.	Each	of
these	structures	is	considered	to	be	a	single	"statement,"	but	each	is	in	fact	a	structured	statement	that
can	contain	one	or	more	other	statements	inside	itself.

The	block	is	the	simplest	type	of	structured	statement.	Its	purpose	is	simply	to	group	a	sequence	of
statements	into	a	single	statement.	The	format	of	a	block	is:

													{
																	statements
													}

That	is,	it	consists	of	a	sequence	of	statements	enclosed	between	a	pair	of	braces,	"{"	and	"}".	(In	fact,	it
is	possible	for	a	block	to	contain	no	statements	at	all;	such	a	block	is	called	an	empty	block,	and	can
actually	be	useful	at	times.	An	empty	block	consists	of	nothing	but	an	empty	pair	of	braces.)	Block
statements	usually	occur	inside	other	statements,	where	their	purpose	is	to	group	together	several
statements	into	a	unit.	However,	a	block	can	be	legally	used	wherever	a	statement	can	occur.	There	is
one	place	where	a	block	is	required:	As	you	might	have	already	noticed	in	the	case	of	the	main	subroutine
of	a	program,	the	definition	of	a	subroutine	is	a	block,	since	it	is	a	sequence	of	statements	enclosed
inside	a	pair	of	braces.

I	should	probably	note	at	this	point	that	Java	is	what	is	called	a	free-format	language.	There	are	no
syntax	rules	about	how	the	language	has	to	be	arranged	on	a	page.	So,	for	example,	you	could	write	an
entire	block	on	one	line	if	you	want.	But	as	a	matter	of	good	programming	style,	you	should	lay	out	your
program	on	the	page	in	a	way	that	will	make	its	structure	as	clear	as	possible.	In	general,	this	means
putting	one	statement	per	line	and	using	indentation	to	indicate	statements	that	are	contained	inside
control	structures.	This	is	the	format	that	I	will	generally	use	in	my	examples.

Here	are	two	examples	of	blocks:

								{
											System.out.print("The	answer	is	");
											System.out.println(ans);
								}

								{		//	This	block	exchanges	the	values	of	x	and	y
											int	temp;						//	A	temporary	variable	for	use	in	this	block.
											temp	=	x;						//	Save	a	copy	of	the	value	of	x	in	temp.
											x	=	y;									//	Copy	the	value	of	y	into	x.
											y	=	temp;						//	Copy	the	value	of	temp	into	y.
								}

In	the	second	example,	a	variable,	temp,	is	declared	inside	the	block.	This	is	perfectly	legal,	and	it	is	good
style	to	declare	a	variable	inside	a	block	if	that	variable	is	used	nowhere	else	but	inside	the	block.	A
variable	declared	inside	a	block	is	completely	inaccessible	and	invisible	from	outside	that	block.	When
the	computer	executes	the	variable	declaration	statement,	it	allocates	memory	to	hold	the	value	of	the
variable.	When	the	block	ends,	that	memory	is	discarded	(that	is,	made	available	for	reuse).	The	variable
is	said	to	be	local	to	the	block.	There	is	a	general	concept	called	the	"scope"	of	an	identifier.	The	scope	of
an	identifier	is	the	part	of	the	program	in	which	that	identifier	is	valid.	The	scope	of	a	variable	defined
inside	a	block	is	limited	to	that	block,	and	more	specifically	to	the	part	of	the	block	that	comes	after	the
declaration	of	the	variable.

The	block	statement	by	itself	really	doesn't	affect	the	flow	of	control	in	a	program.	The	five	remaining
control	structures	do.	They	can	be	divided	into	two	classes:	loop	statements	and	branching	statements.
You	really	just	need	one	control	structure	from	each	category	in	order	to	have	a	completely	general-
purpose	programming	language.	More	than	that	is	just	convenience.	In	this	section,	I'll	introduce	the
while	loop	and	the	if	statement.	I'll	give	the	full	details	of	these	statements	and	of	the	other	three	control
structures	in	later	sections.

A	while	loop	is	used	to	repeat	a	given	statement	over	and	over.	Of	course,	its	not	likely	that	you	would
want	to	keep	repeating	it	forever.	That	would	be	an	infinite	loop,	which	is	generally	a	bad	thing.	(There	is
an	old	story	about	computer	pioneer	Grace	Murray	Hopper,	who	read	instructions	on	a	bottle	of	shampoo

http://www.faqs.org/docs/javap/c3/s1.html Go MAR MAY JUN

11
2014 2015 2016

70	captures
	 	
	

� ⍰❎
f �

26	Aug	2003	-	11	May	2015 ▾	About	this	capture

telling	her	to	"lather,	rinse,	repeat."	As	the	story	goes,	she	claims	that	she	tried	to	follow	the	directions,
but	she	ran	out	of	shampoo.	(In	case	you	don't	get	it,	this	is	a	joke	about	the	way	that	computers
mindlessly	follow	instructions.))

To	be	more	specific,	a	while	loop	will	repeat	a	statement	over	and	over,	but	only	so	long	as	a	specified
condition	remains	true.	A	while	loop	has	the	form:

													while	(boolean-expression)
																		statement

Since	the	statement	can	be,	and	usually	is,	a	block,	many	while	loops	have	the	form:

													while	(boolean-expression)	{
																	statements
													}

The	semantics	of	this	statement	go	like	this:	When	the	computer	comes	to	a	while	statement,	it	evaluates
the	boolean-expression,	which	yields	either	true	or	false	as	the	value.	If	the	value	is	false,	the	computer
skips	over	the	rest	of	the	while	loop	and	proceeds	to	the	next	command	in	the	program.	If	the	value	of	the
expression	is	true,	the	computer	executes	the	statement	or	block	of	statements	inside	the	loop.	Then	it
returns	to	the	beginning	of	the	while	loop	and	repeats	the	process.	That	is,	it	re-evaluates	the	boolean-
expression,	ends	the	loop	if	the	value	is	false,	and	continues	it	if	the	value	is	true.	This	will	continue	over
and	over	until	the	value	of	the	expression	is	false;	if	that	never	happens,	then	there	will	be	an	infinite
loop.

Here	is	an	example	of	a	while	loop	that	simply	prints	out	the	numbers	1,	2,	3,	4,	5:

								int	number;			//	The	number	to	be	printed.
								number	=	1;			//	Start	with	1.
								while	(number	<	6)	{		//	Keep	going	as	long	as	number	is	<	6.
												System.out.println(number);
												number	=	number	+	1;		//	Go	on	to	the	next	number.
								}
								System.out.println("Done!");

The	variable	number	is	initialized	with	the	value	1.	So	the	first	time	through	the	while	loop,	when	the
computer	evaluates	the	expression	"number	<	6",	it	is	asking	whether	1	is	less	than	6,	which	is	true.	The
computer	therefor	proceeds	to	execute	the	two	statements	inside	the	loop.	The	first	statement	prints	out
"1".	The	second	statement	adds	1	to	number	and	stores	the	result	back	into	the	variable	number;	the	value	of
number	has	been	changed	to	2.	The	computer	has	reached	the	end	of	the	loop,	so	it	returns	to	the
beginning	and	asks	again	whether	number	is	less	than	6.	Once	again	this	is	true,	so	the	computer	executes
the	loop	again,	this	time	printing	out	2	as	the	value	of	number	and	then	changing	the	value	of	number	to	3.	It
continues	in	this	way	until	eventually	number	becomes	equal	to	6.	At	that	point,	the	expression	"number	<
6"	evaluates	to	false.	So,	the	computer	jumps	past	the	end	of	the	loop	to	the	next	statement	and	prints
out	the	message	"Done!".	Note	that	when	the	loop	ends,	the	value	of	number	is	6,	but	the	last	value	that
was	printed	was	5.

By	the	way,	you	should	remember	that	you'll	never	see	a	while	loop	standing	by	itself	in	a	real	program.	It
will	always	be	inside	a	subroutine	which	is	itself	defined	inside	some	class.	As	an	example	of	a	while	loop
used	inside	a	complete	program,	here	is	a	little	program	that	computes	the	interest	on	an	investment
over	several	years.	This	is	an	improvement	over	examples	from	the	previous	chapter	that	just	reported
the	results	for	one	year:

				public	class	Interest3	{
									
							/*
										This	class	implements	a	simple	program	that
										will	compute	the	amount	of	interest	that	is
										earned	on	an	investment	over	a	period	of
										5	years.		The	initial	amount	of	the	investment
										and	the	interest	rate	are	input	by	the	user.
										The	value	of	the	investment	at	the	end	of	each
										year	is	output.
							*/
			
							public	static	void	main(String[]	args)	{
						
										double	principal;		//	The	value	of	the	investment.
										double	rate;							//	The	annual	interest	rate.
										
										/*	Get	the	initial	investment	and	interest	rate	from	the	user.	*/
										
										TextIO.put("Enter	the	initial	investment:	");
										principal	=	TextIO.getlnDouble();
										
										TextIO.put("Enter	the	annual	interest	rate:	");
										rate	=	TextIO.getlnDouble();
										
										/*	Simulate	the	investment	for	5	years.	*/
										
										int	years;		//	Counts	the	number	of	years	that	have	passed.
										

										years	=	0;
										while	(years	<	5)	{
													double	interest;		//	Interest	for	this	year.
													interest	=	principal	*	rate;
													principal	=	principal	+	interest;					//	Add	it	to	principal.
													years	=	years	+	1;				//	Count	the	current	year.
													System.out.print("The	value	of	the	investment	after	");
													System.out.print(years);
													System.out.print("	years	is	$");
													System.out.println(principal);
										}	//	end	of	while	loop
																											
							}	//	end	of	main()
												
				}	//	end	of	class	Interest3

And	here	is	the	applet	which	simulates	this	program:

(Applet	"Interest3Console"	would	be	displayed	here
if	Java	were	available.)

You	should	study	this	program,	and	make	sure	that	you	understand	what	the	computer	does	step-by-step
as	it	executes	the	while	loop.

An	if	statement	tells	the	computer	to	take	one	of	two	alternative	courses	of	action,	depending	on	whether
the	value	of	a	given	boolean-valued	expression	is	true	or	false.	It	is	an	example	of	a	"branching"	or
"decision"	statement.	An	if	statement	has	the	form:

															if	(boolean-expression)
																			statement
															else
																			statement

When	the	computer	executes	an	if	statement,	it	evaluates	the	boolean	expression.	If	the	value	is	true,	the
computer	executes	the	first	statement	and	skips	the	statement	that	follows	the	"else".	If	the	value	of	the
expression	is	false,	then	the	computer	skips	the	first	statement	and	executes	the	second	one.	Note	that	in
any	case,	one	and	only	one	of	the	two	statements	inside	the	if	statement	is	executed.	The	two	statements
represent	alternative	courses	of	action;	the	computer	decides	between	these	courses	of	action	based	on
the	value	of	the	boolean	expression.

In	many	cases,	you	want	the	computer	to	choose	between	doing	something	and	not	doing	it.	You	can	do
this	with	an	if	statement	that	omits	the	else	part:

															if	(boolean-expression)
																			statement

To	execute	this	statement,	the	computer	evaluates	the	expression.	If	the	value	is	true,	the	computer
executes	the	statement	that	is	contained	inside	the	if	statement;	if	the	value	is	false,	the	computer	skips
that	statement.

Of	course,	either	or	both	of	the	statement's	in	an	if	statement	can	be	a	block,	so	that	an	if	statement
often	looks	like:

															if	(boolean-expression)	{
																			statements
															}
															else	{
																			statements
															}

or:

															if	(boolean-expression)	{
																			statements
															}

As	an	example,	here	is	an	if	statement	that	exchanges	the	value	of	two	variables,	x	and	y,	but	only	if	x	is
greater	than	y	to	begin	with.	After	this	if	statement	has	been	executed,	we	can	be	sure	that	the	value	of	x
is	definitely	less	than	or	equal	to	the	value	of	y:

								if	(x	>	y)	{
												int	temp;						//	A	temporary	variable	for	use	in	this	block.
												temp	=	x;						//	Save	a	copy	of	the	value	of	x	in	temp.
												x	=	y;									//	Copy	the	value	of	y	into	x.
												y	=	temp;						//	Copy	the	value	of	temp	into	y.
								}

Finally,	here	is	an	example	of	an	if	statement	that	includes	an	else	part.	See	if	you	can	figure	out	what	it
does,	and	why	it	would	be	used:

								if	(years	>	1)	{		//	handle	case	for	2	or	more	years
												System.out.print("The	value	of	the	investment	after	");
												System.out.print(years);
												System.out.print("	years	is	$");
								}
								else	{		//	handle	case	for	1	year
												System.out.print("The	value	of	the	investment	after	1	year	is	$");
								}		//	end	of	if	statement
								System.out.println(principal);		//	this	is	done	in	any	case

I'll	have	more	to	say	about	control	structures	later	in	this	chapter.	But	you	already	know	the	essentials.	If
you	never	learned	anything	more	about	control	structures,	you	would	already	know	enough	to	perform
any	possible	computing	task.	Simple	looping	and	branching	are	all	you	really	need!

[Next	Section	|	Previous	Chapter	|	Chapter	Index	|	Main	Index]

