
part	of	Hypertext	Transfer	Protocol	--	HTTP/1.1
RFC	2616	Fielding,	et	al.

9	Method	Definitions
The	set	of	common	methods	for	HTTP/1.1	is	defined	below.	Although	this	set	can	be	expanded,	additional	methods
cannot	be	assumed	to	share	the	same	semantics	for	separately	extended	clients	and	servers.

The	Host	request-header	field	(section	14.23)	MUST	accompany	all	HTTP/1.1	requests.

9.1	Safe	and	Idempotent	Methods

9.1.1	Safe	Methods

Implementors	should	be	aware	that	the	software	represents	the	user	in	their	interactions	over	the	Internet,	and
should	be	careful	to	allow	the	user	to	be	aware	of	any	actions	they	might	take	which	may	have	an	unexpected
significance	to	themselves	or	others.

In	particular,	the	convention	has	been	established	that	the	GET	and	HEAD	methods	SHOULD	NOT	have	the
significance	of	taking	an	action	other	than	retrieval.	These	methods	ought	to	be	considered	"safe".	This	allows	user
agents	to	represent	other	methods,	such	as	POST,	PUT	and	DELETE,	in	a	special	way,	so	that	the	user	is	made
aware	of	the	fact	that	a	possibly	unsafe	action	is	being	requested.

Naturally,	it	is	not	possible	to	ensure	that	the	server	does	not	generate	side-effects	as	a	result	of	performing	a	GET
request;	in	fact,	some	dynamic	resources	consider	that	a	feature.	The	important	distinction	here	is	that	the	user
did	not	request	the	side-effects,	so	therefore	cannot	be	held	accountable	for	them.

9.1.2	Idempotent	Methods

Methods	can	also	have	the	property	of	"idempotence"	in	that	(aside	from	error	or	expiration	issues)	the	side-effects
of	N	>	0	identical	requests	is	the	same	as	for	a	single	request.	The	methods	GET,	HEAD,	PUT	and	DELETE	share
this	property.	Also,	the	methods	OPTIONS	and	TRACE	SHOULD	NOT	have	side	effects,	and	so	are	inherently
idempotent.

However,	it	is	possible	that	a	sequence	of	several	requests	is	non-	idempotent,	even	if	all	of	the	methods	executed
in	that	sequence	are	idempotent.	(A	sequence	is	idempotent	if	a	single	execution	of	the	entire	sequence	always
yields	a	result	that	is	not	changed	by	a	reexecution	of	all,	or	part,	of	that	sequence.)	For	example,	a	sequence	is
non-idempotent	if	its	result	depends	on	a	value	that	is	later	modified	in	the	same	sequence.

A	sequence	that	never	has	side	effects	is	idempotent,	by	definition	(provided	that	no	concurrent	operations	are
being	executed	on	the	same	set	of	resources).

9.2	OPTIONS

The	OPTIONS	method	represents	a	request	for	information	about	the	communication	options	available	on	the
request/response	chain	identified	by	the	Request-URI.	This	method	allows	the	client	to	determine	the	options
and/or	requirements	associated	with	a	resource,	or	the	capabilities	of	a	server,	without	implying	a	resource	action
or	initiating	a	resource	retrieval.

Responses	to	this	method	are	not	cacheable.

If	the	OPTIONS	request	includes	an	entity-body	(as	indicated	by	the	presence	of	Content-Length	or	Transfer-
Encoding),	then	the	media	type	MUST	be	indicated	by	a	Content-Type	field.	Although	this	specification	does	not
define	any	use	for	such	a	body,	future	extensions	to	HTTP	might	use	the	OPTIONS	body	to	make	more	detailed
queries	on	the	server.	A	server	that	does	not	support	such	an	extension	MAY	discard	the	request	body.

If	the	Request-URI	is	an	asterisk	("*"),	the	OPTIONS	request	is	intended	to	apply	to	the	server	in	general	rather
than	to	a	specific	resource.	Since	a	server's	communication	options	typically	depend	on	the	resource,	the	"*"
request	is	only	useful	as	a	"ping"	or	"no-op"	type	of	method;	it	does	nothing	beyond	allowing	the	client	to	test	the
capabilities	of	the	server.	For	example,	this	can	be	used	to	test	a	proxy	for	HTTP/1.1	compliance	(or	lack	thereof).

If	the	Request-URI	is	not	an	asterisk,	the	OPTIONS	request	applies	only	to	the	options	that	are	available	when
communicating	with	that	resource.

A	200	response	SHOULD	include	any	header	fields	that	indicate	optional	features	implemented	by	the	server	and
applicable	to	that	resource	(e.g.,	Allow),	possibly	including	extensions	not	defined	by	this	specification.	The
response	body,	if	any,	SHOULD	also	include	information	about	the	communication	options.	The	format	for	such	a

body	is	not	defined	by	this	specification,	but	might	be	defined	by	future	extensions	to	HTTP.	Content	negotiation
MAY	be	used	to	select	the	appropriate	response	format.	If	no	response	body	is	included,	the	response	MUST
include	a	Content-Length	field	with	a	field-value	of	"0".



The	Max-Forwards	request-header	field	MAY	be	used	to	target	a	specific	proxy	in	the	request	chain.	When	a	proxy
receives	an	OPTIONS	request	on	an	absoluteURI	for	which	request	forwarding	is	permitted,	the	proxy	MUST
check	for	a	Max-Forwards	field.	If	the	Max-Forwards	field-value	is	zero	("0"),	the	proxy	MUST	NOT	forward	the
message;	instead,	the	proxy	SHOULD	respond	with	its	own	communication	options.	If	the	Max-Forwards	field-
value	is	an	integer	greater	than	zero,	the	proxy	MUST	decrement	the	field-value	when	it	forwards	the	request.	If
no	Max-Forwards	field	is	present	in	the	request,	then	the	forwarded	request	MUST	NOT	include	a	Max-Forwards
field.

9.3	GET

The	GET	method	means	retrieve	whatever	information	(in	the	form	of	an	entity)	is	identified	by	the	Request-URI.	If
the	Request-URI	refers	to	a	data-producing	process,	it	is	the	produced	data	which	shall	be	returned	as	the	entity	in
the	response	and	not	the	source	text	of	the	process,	unless	that	text	happens	to	be	the	output	of	the	process.

The	semantics	of	the	GET	method	change	to	a	"conditional	GET"	if	the	request	message	includes	an	If-Modified-
Since,	If-Unmodified-Since,	If-Match,	If-None-Match,	or	If-Range	header	field.	A	conditional	GET	method	requests
that	the	entity	be	transferred	only	under	the	circumstances	described	by	the	conditional	header	field(s).	The
conditional	GET	method	is	intended	to	reduce	unnecessary	network	usage	by	allowing	cached	entities	to	be
refreshed	without	requiring	multiple	requests	or	transferring	data	already	held	by	the	client.

The	semantics	of	the	GET	method	change	to	a	"partial	GET"	if	the	request	message	includes	a	Range	header	field.
A	partial	GET	requests	that	only	part	of	the	entity	be	transferred,	as	described	in	section	14.35.	The	partial	GET
method	is	intended	to	reduce	unnecessary	network	usage	by	allowing	partially-retrieved	entities	to	be	completed
without	transferring	data	already	held	by	the	client.

The	response	to	a	GET	request	is	cacheable	if	and	only	if	it	meets	the	requirements	for	HTTP	caching	described	in
section	13.

See	section	15.1.3	for	security	considerations	when	used	for	forms.

9.4	HEAD

The	HEAD	method	is	identical	to	GET	except	that	the	server	MUST	NOT	return	a	message-body	in	the	response.
The	metainformation	contained	in	the	HTTP	headers	in	response	to	a	HEAD	request	SHOULD	be	identical	to	the
information	sent	in	response	to	a	GET	request.	This	method	can	be	used	for	obtaining	metainformation	about	the
entity	implied	by	the	request	without	transferring	the	entity-body	itself.	This	method	is	often	used	for	testing
hypertext	links	for	validity,	accessibility,	and	recent	modification.

The	response	to	a	HEAD	request	MAY	be	cacheable	in	the	sense	that	the	information	contained	in	the	response
MAY	be	used	to	update	a	previously	cached	entity	from	that	resource.	If	the	new	field	values	indicate	that	the
cached	entity	differs	from	the	current	entity	(as	would	be	indicated	by	a	change	in	Content-Length,	Content-MD5,
ETag	or	Last-Modified),	then	the	cache	MUST	treat	the	cache	entry	as	stale.

9.5	POST

The	POST	method	is	used	to	request	that	the	origin	server	accept	the	entity	enclosed	in	the	request	as	a	new
subordinate	of	the	resource	identified	by	the	Request-URI	in	the	Request-Line.	POST	is	designed	to	allow	a
uniform	method	to	cover	the	following	functions:

						-	Annotation	of	existing	resources;

						-	Posting	a	message	to	a	bulletin	board,	newsgroup,	mailing	list,
								or	similar	group	of	articles;

						-	Providing	a	block	of	data,	such	as	the	result	of	submitting	a
								form,	to	a	data-handling	process;

						-	Extending	a	database	through	an	append	operation.

The	actual	function	performed	by	the	POST	method	is	determined	by	the	server	and	is	usually	dependent	on	the
Request-URI.	The	posted	entity	is	subordinate	to	that	URI	in	the	same	way	that	a	file	is	subordinate	to	a	directory
containing	it,	a	news	article	is	subordinate	to	a	newsgroup	to	which	it	is	posted,	or	a	record	is	subordinate	to	a
database.

The	action	performed	by	the	POST	method	might	not	result	in	a	resource	that	can	be	identified	by	a	URI.	In	this
case,	either	200	(OK)	or	204	(No	Content)	is	the	appropriate	response	status,	depending	on	whether	or	not	the
response	includes	an	entity	that	describes	the	result.

If	a	resource	has	been	created	on	the	origin	server,	the	response	SHOULD	be	201	(Created)	and	contain	an	entity
which	describes	the	status	of	the	request	and	refers	to	the	new	resource,	and	a	Location	header	(see	section
14.30).

Responses	to	this	method	are	not	cacheable,	unless	the	response	includes	appropriate	Cache-Control	or	Expires
header	fields.	However,	the	303	(See	Other)	response	can	be	used	to	direct	the	user	agent	to	retrieve	a	cacheable
resource.



POST	requests	MUST	obey	the	message	transmission	requirements	set	out	in	section	8.2.

See	section	15.1.3	for	security	considerations.

9.6	PUT

The	PUT	method	requests	that	the	enclosed	entity	be	stored	under	the	supplied	Request-URI.	If	the	Request-URI
refers	to	an	already	existing	resource,	the	enclosed	entity	SHOULD	be	considered	as	a	modified	version	of	the	one
residing	on	the	origin	server.	If	the	Request-URI	does	not	point	to	an	existing	resource,	and	that	URI	is	capable	of
being	defined	as	a	new	resource	by	the	requesting	user	agent,	the	origin	server	can	create	the	resource	with	that
URI.	If	a	new	resource	is	created,	the	origin	server	MUST	inform	the	user	agent	via	the	201	(Created)	response.	If
an	existing	resource	is	modified,	either	the	200	(OK)	or	204	(No	Content)	response	codes	SHOULD	be	sent	to
indicate	successful	completion	of	the	request.	If	the	resource	could	not	be	created	or	modified	with	the	Request-
URI,	an	appropriate	error	response	SHOULD	be	given	that	reflects	the	nature	of	the	problem.	The	recipient	of	the
entity	MUST	NOT	ignore	any	Content-*	(e.g.	Content-Range)	headers	that	it	does	not	understand	or	implement	and
MUST	return	a	501	(Not	Implemented)	response	in	such	cases.

If	the	request	passes	through	a	cache	and	the	Request-URI	identifies	one	or	more	currently	cached	entities,	those
entries	SHOULD	be	treated	as	stale.	Responses	to	this	method	are	not	cacheable.

The	fundamental	difference	between	the	POST	and	PUT	requests	is	reflected	in	the	different	meaning	of	the
Request-URI.	The	URI	in	a	POST	request	identifies	the	resource	that	will	handle	the	enclosed	entity.	That	resource
might	be	a	data-accepting	process,	a	gateway	to	some	other	protocol,	or	a	separate	entity	that	accepts
annotations.	In	contrast,	the	URI	in	a	PUT	request	identifies	the	entity	enclosed	with	the	request	--	the	user	agent
knows	what	URI	is	intended	and	the	server	MUST	NOT	attempt	to	apply	the	request	to	some	other	resource.	If	the
server	desires	that	the	request	be	applied	to	a	different	URI,

it	MUST	send	a	301	(Moved	Permanently)	response;	the	user	agent	MAY	then	make	its	own	decision	regarding
whether	or	not	to	redirect	the	request.

A	single	resource	MAY	be	identified	by	many	different	URIs.	For	example,	an	article	might	have	a	URI	for
identifying	"the	current	version"	which	is	separate	from	the	URI	identifying	each	particular	version.	In	this	case,	a
PUT	request	on	a	general	URI	might	result	in	several	other	URIs	being	defined	by	the	origin	server.

HTTP/1.1	does	not	define	how	a	PUT	method	affects	the	state	of	an	origin	server.

PUT	requests	MUST	obey	the	message	transmission	requirements	set	out	in	section	8.2.

Unless	otherwise	specified	for	a	particular	entity-header,	the	entity-headers	in	the	PUT	request	SHOULD	be
applied	to	the	resource	created	or	modified	by	the	PUT.

9.7	DELETE

The	DELETE	method	requests	that	the	origin	server	delete	the	resource	identified	by	the	Request-URI.	This
method	MAY	be	overridden	by	human	intervention	(or	other	means)	on	the	origin	server.	The	client	cannot	be
guaranteed	that	the	operation	has	been	carried	out,	even	if	the	status	code	returned	from	the	origin	server
indicates	that	the	action	has	been	completed	successfully.	However,	the	server	SHOULD	NOT	indicate	success
unless,	at	the	time	the	response	is	given,	it	intends	to	delete	the	resource	or	move	it	to	an	inaccessible	location.

A	successful	response	SHOULD	be	200	(OK)	if	the	response	includes	an	entity	describing	the	status,	202
(Accepted)	if	the	action	has	not	yet	been	enacted,	or	204	(No	Content)	if	the	action	has	been	enacted	but	the
response	does	not	include	an	entity.

If	the	request	passes	through	a	cache	and	the	Request-URI	identifies	one	or	more	currently	cached	entities,	those
entries	SHOULD	be	treated	as	stale.	Responses	to	this	method	are	not	cacheable.

9.8	TRACE

The	TRACE	method	is	used	to	invoke	a	remote,	application-layer	loop-	back	of	the	request	message.	The	final
recipient	of	the	request	SHOULD	reflect	the	message	received	back	to	the	client	as	the	entity-body	of	a	200	(OK)
response.	The	final	recipient	is	either	the

origin	server	or	the	first	proxy	or	gateway	to	receive	a	Max-Forwards	value	of	zero	(0)	in	the	request	(see	section
14.31).	A	TRACE	request	MUST	NOT	include	an	entity.

TRACE	allows	the	client	to	see	what	is	being	received	at	the	other	end	of	the	request	chain	and	use	that	data	for
testing	or	diagnostic	information.	The	value	of	the	Via	header	field	(section	14.45)	is	of	particular	interest,	since	it
acts	as	a	trace	of	the	request	chain.	Use	of	the	Max-Forwards	header	field	allows	the	client	to	limit	the	length	of
the	request	chain,	which	is	useful	for	testing	a	chain	of	proxies	forwarding	messages	in	an	infinite	loop.

If	the	request	is	valid,	the	response	SHOULD	contain	the	entire	request	message	in	the	entity-body,	with	a
Content-Type	of	"message/http".	Responses	to	this	method	MUST	NOT	be	cached.



9.9	CONNECT

This	specification	reserves	the	method	name	CONNECT	for	use	with	a	proxy	that	can	dynamically	switch	to	being
a	tunnel	(e.g.	SSL	tunneling	[44]).


