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Vector Analysis 
 
 
A.1 Vectors 
 
A.1.1 Introduction 
 
Certain physical quantities such as mass or the absolute temperature at some point only 
have magnitude. These quantities can be represented by numbers alone, with the 
appropriate units, and they are called scalars. There are, however, other physical 
quantities which have both magnitude and direction; the magnitude can stretch or shrink, 
and the direction can reverse. These quantities can be added in such a way that takes into 
account both direction and magnitude. Force is an example of a quantity that acts in a 
certain direction with some magnitude that we measure in newtons. When two forces act 
on an object, the sum of the forces depends on both the direction and magnitude of the 
two forces. Position, displacement, velocity, acceleration, force, momentum and torque 
are all physical quantities that can be represented mathematically by vectors. We shall 
begin by defining precisely what we mean by a vector.  
 
 
A.1.2 Properties of a Vector 
 
A vector is a quantity that has both direction and magnitude. Let a vector be denoted by 
the symbol . The magnitude of A A  is | A≡A | .  We can represent vectors as geometric 
objects using arrows. The length of the arrow corresponds to the magnitude of the vector. 
The arrow points in the direction of the vector (Figure A.1.1). 
 

 
 

Figure A.1.1 Vectors as arrows. 
 
There are two defining operations for vectors:   
 
 (1) Vector Addition: Vectors can be added. 
 
Let  and  be two vectors. We define a new vector, A B = +C A B , the “vector addition” 
of  and , by a geometric construction. Draw the arrow that represents . Place the A B A
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tail of the arrow that represents B  at the tip of the arrow for A  as shown in Figure 
A.1.2(a). The arrow that starts at the tail of A  and goes to the tip of  is defined to be 
the “vector addition” . There is an equivalent construction for the law of vector 
addition. The vectors  and  can be drawn with their tails at the same point. The two 
vectors form the sides of a parallelogram. The diagonal of the parallelogram corresponds 
to the vector , as shown in Figure A.1.2(b). 

B
= +C A B

A B

= +C A B
 

  
Figure A.1.2 Geometric sum of vectors. 

 
Vector addition satisfies the following four properties: 
 
(i) Commutivity: The order of adding vectors does not matter. 
 
 + = +A B B A  (A.1.1) 
 
Our geometric definition for vector addition satisfies the commutivity property (i) since 
in the parallelogram representation for the addition of vectors, it doesn’t matter which 
side you start with as seen in Figure A.1.3. 
 

 
 

Figure A.1.3 Commutative property of vector addition 
 
(ii) Associativity:  When adding three vectors, it doesn’t matter which two you start with 
 
 ( ) ( )+ + = + +A B C A B C  (A.1.2) 
 
In Figure A.1.4(a), we add ( )+ +A B C , while in Figure A.1.4(b) we add . 
We arrive at the same vector sum in either case. 

( )+ +A B C
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Figure A.1.4 Associative law. 
 
(iii) Identity Element for Vector Addition: There is a unique vector, 0 , that acts as an 
identity element for vector addition.  
 
This means that for all vectors , A
 
 + = + =A 0 0 A A  (A.1.3) 
 
(iv) Inverse element for Vector Addition: For every vector A , there is a unique inverse 
vector  
 
 ( )1− ≡ −A A  (A.1.4) 
 
such that 

( )+ − =A A 0  

 
This means that the vector −  has the same magnitude asA A , | | | | A= − =A A , but they 
point in opposite directions (Figure A.1.5). 
 

 
 

Figure A.1.5 additive inverse. 
 
 
(2) Scalar Multiplication of Vectors: Vectors can be multiplied by real numbers. 
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Let  be a vector. Let c  be a real positive number. Then the multiplication of  by c  is 
a new vector which we denote by the symbol 

A A
cA .  The magnitude of  is c  times the 

magnitude of  (Figure A.1.6a), 
cA

A
 
 cA Ac=  (A.1.5) 
 
Since , the direction of  is the same as the direction ofc > 0 cA A . However, the direction 
of  is opposite of  (Figure A.1.6b). c− A A
 

 
 

Figure A.1.6 Multiplication of vector A  by (a) , and (b) . 0c > 0c− <
 
Scalar multiplication of vectors satisfies the following properties: 
 
(i) Associative Law for Scalar Multiplication: The order of multiplying numbers is 
doesn’t matter.  
 
Let b and c be real numbers. Then 
 
 ( ) ( ) ( ) ( )b c bc cb c b= = =A A A A

c

 (A.1.6) 
 
(ii) Distributive Law for Vector Addition: Vector addition satisfies a distributive law 
for multiplication by a number.  
 
Let c be a real number. Then 
 
 ( )c c+ = +A B A B  (A.1.7) 
 
Figure A.1.7 illustrates this property. 
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Figure A.1.7 Distributive Law for vector addition. 
 
(iii) Distributive Law for Scalar Addition: The multiplication operation also satisfies a 
distributive law for the addition of numbers.  
 
Let b and c be real numbers. Then  
 
 ( )b c b c+ = +A A A  (A.1.8) 
 
Our geometric definition of vector addition satisfies this condition as seen in Figure 
A.1.8. 
 

 
 

Figure A.1.8 Distributive law for scalar multiplication 
 
(iv) Identity Element for Scalar Multiplication: The number 1 acts as an identity 
element for multiplication, 
 
 1 =A A  (A.1.9) 
 
A.1.3 Application of Vectors 
 
When we apply vectors to physical quantities it’s nice to keep in the back of our minds 
all these formal properties. However from the physicist’s point of view, we are interested 
in representing physical quantities such as displacement, velocity, acceleration, force, 
impulse, momentum, torque, and angular momentum as vectors. We can’t add force to 
velocity or subtract momentum from torque. We must always understand the physical 
context for the vector quantity. Thus, instead of approaching vectors as formal 
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mathematical objects we shall instead consider the following essential properties that 
enable us to represent physical quantities as vectors. 
 
(1) Vectors can exist at any point P in space.  
 
(2) Vectors have direction and magnitude. 
 
(3) Vector Equality:  Any two vectors that have the same direction and magnitude are 
equal no matter where in space they are located. 
 
(4) Vector Decomposition: Choose a coordinate system with an origin and axes. We can 
decompose a vector into component vectors along each coordinate axis. In Figure A.1.9 
we choose Cartesian coordinates for the -x y  plane (we ignore the -direction for 
simplicity but we can extend our results when we need to). A vector  at P can be 
decomposed into the vector sum, 

z
A

 
 x= +A A A y  (A.1.10) 
 
where  is the -component vector pointing in the positive or negative -direction, 

and  is the -component vector pointing in the positive or negative -direction 
(Figure A.1.9).  

xA x x

yA y y

 

 
 

Figure A.1.9 Vector decomposition 
 
(5) Unit vectors: The idea of multiplication by real numbers allows us to define a set of 
unit vectors at each point in space. We associate to each point  in space, a set of three 
unit vectors (

P
)ˆ ˆ ˆ, ,i j k . A unit vector means that the magnitude is one: , 1ˆ| |=i 1ˆ| |=j , and 

. We assign the direction of ˆ  to point in the direction of the increasing -
coordinate at the point . We call ˆ  the unit vector at  pointing in the + -direction. 
Unit vectors ˆ

1ˆ| |=k i x
P i P x

j  and  can be defined in a similar manner (Figure A.1.10). k̂
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Figure A.1.10 Choice of unit vectors in Cartesian coordinates. 
 
(6) Vector Components:  Once we have defined unit vectors, we can then define the -
component and -component of a vector. Recall our vector decomposition, 

. We can write the x-component vector, 

x
y

x= +A A A y xA , as 
 
 x x̂A=A i  (A.1.11) 
 
In this expression the term Ax , (without the arrow above) is called the x-component of 
the vector . The -component  can be positive, zero, or negative. It is not the 
magnitude of  which is given by .  Note the difference between the -

component, , and the -component vector, 

A x Ax

xA 2 1/ 2( )xA x

Ax x xA . 
 
In a similar fashion we define the y -component, Ay , and the -component, , of the 

vector  

z Az

A
 
 y y z z

ˆ ˆA , A= =A j A k  (A.1.12) 
 
A vector  can be represented by its three components A ( )x y zA , A , A=A . We can also 
write the vector as  
 x y z

ˆ ˆ ˆA A A= + +A i j k  (A.1.13) 
 
(7) Magnitude: In Figure A.1.10, we also show the vector components . 

Using the Pythagorean theorem, the magnitude of the 

( )x y zA , A , A=A

A  is, 
 
 2 2

x yA A A A= + + 2
z  (A.1.14) 

 
(8) Direction: Let’s consider a vector ( 0)x yA , A ,=A . Since the -component is zero, the 

vector  lies in the 

z

A -x y  plane. Let θ  denote the angle that the vector  makes in the A
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counterclockwise direction with the positive -axis (Figure A.1.12). Then the -
component and -components are 

x x
y

 
 cos sinx yA A , A Aθ θ= =  (A.1.15) 

 

 
 

Figure A.1.12 Components of a vector in the x-y plane. 
 
We can now write a vector in the -x y  plane as 
 
 ˆcos sinA A ˆθ θ= +A i j  (A.1.16) 
 
Once the components of a vector are known, the tangent of the angle θ  can be 
determined by 
 

 sin tan
cos

y

x

A A
A A

θ θ
θ

= =  (A.1.17) 

 
which yields 
 

 1tan y

x

A
A

θ − ⎛ ⎞
= ⎜

⎝ ⎠
⎟  (A.1.18) 

 
 
Clearly, the direction of the vector depends on the sign of  and xA yA . For example, if 
both  and , then 0xA > 0yA > 0 / 2θ π< < , and the vector lies in the first quadrant. If, 
however,  and , then 0xA > 0yA < / 2 0π θ− < < , and the vector lies in the fourth 
quadrant. 
 
(9) Vector Addition: Let  and BA  be two vectors in the x-y plane. Let θA  andθB  denote 
the angles that the vectors  and BA  make (in the counterclockwise direction) with the 
positive x-axis. Then  
 

 A-9



 cos sinA A
ˆA A ˆθ θ= +A i j  (A.1.19) 

 
 cos sinB

ˆB B B
ˆθ θ= +B i j  (A.1.20) 

 
In Figure A.1.13, the vector addition = +C A B  is shown. LetθC  denote the angle that 
the vector  makes with the positive x-axis.  C
 

 
 

Figure A.1.13 Vector addition with components 
 
Then the components of C  are  
 
 x x x y yC A B , C A By= + = +

B

B

 (A.1.21) 
 
In terms of magnitudes and angles, we have  
 

 
cos cos cos
sin sin sin

x C A

y C A

C C A B
C C A B

θ θ θ
θ θ

= = +
= = + θ

)̂

 (A.1.22) 

 
We can write the vector  as  C
 

 ( ) ( ) (cos sinx x y y C C
ˆ ˆ ˆA B A B C θ θ= + + + = +C i j i j  (A.1.23) 

 
 
A.2 Dot Product 
 
A.2.1 Introduction 
 
We shall now introduce a new vector operation, called the “dot product” or “scalar 
product” that takes any two vectors and generates a scalar quantity (a number). We shall 
see that the physical concept of work can be mathematically described by the dot product 
between the force and the displacement vectors. 
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Let  and B  be two vectors. Since any two non-collinear vectors form a plane, we 
define the angle 

A
θ  to be the angle between the vectors A  and B  as shown in Figure 

A.2.1. Note that θ  can vary from 0 toπ . 
 

 
Figure A.2.1 Dot product geometry. 

 
A.2.2 Definition 
 
The dot product of the vectors ⋅A B  A  and B  is defined to be product of the magnitude 
of the vectors  and  with the cosine of the angle A B θ  between the two vectors: 
 
 cosAB θ⋅ =A B  (A.2.1) 
 
Where |  and  represent the magnitude of |A = A ||B = B A  and B  respectively.  The dot 
product can be positive, zero, or negative, depending on the value of cosθ . The dot 
product is always a scalar quantity. 
 
We can give a geometric interpretation to the dot product by writing the definition as  
 
 ( cos )A Bθ⋅ =A B  (A.2.2) 
 
In this formulation, the term cosA θ  is the projection of the vector A  in the direction of 
the vector . This projection is shown in Figure A.2.2a. So the dot product is the product 
of the projection of the length of 

B
A  in the direction of B  with the length of B . Note that 

we could also write the dot product as  
 
 ( cos )A B θ⋅ =A B  (A.2.3) 
 
 
Now the term cosB θ  is the projection of the vector B  in the direction of the vector A  as 
shown in Figure A.2.2b.From this perspective, the dot product is the product of the 
projection of the length of  in the direction of B A  with the length of A . 
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Figure A.2.2a and A.2.2b Projection of vectors and the dot product. 
 
From our definition of the dot product we see that the dot product of two vectors that are 
perpendicular to each other is zero since the angle between the vectors is / 2π  and 
cos( / 2) 0π = .  
 
A.2.3 Properties of Dot Product 
  
The first property involves the dot product between a vector cA  where c is a scalar and a 
vector B , 
 
(1a) (c c )⋅ = ⋅A B A B  (A.2.4) 
 
The second involves the dot product between the sum of two vectors  and B  with a 
vectorC , 

A

 
(2a) ( )+ ⋅ = ⋅ + ⋅A B C A C B C  (A.2.5) 
 
 
Since the dot product is a commutative operation  
 
 ⋅ = ⋅A B B A  (A.2.6) 
 
the similar definitions hold 
 
(1b) (c c )⋅ = ⋅A B A B  (A.2.7) 
 
(2b) ( )⋅ + = ⋅ + ⋅C A B C A C B  (A.2.8) 
 
 
A.2.4 Vector Decomposition and the Dot Product 
 
With these properties in mind we can now develop an algebraic expression for the dot 
product in terms of components. Let’s choose a Cartesian coordinate system with the 
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vector B  pointing along the positive -axis with positive -component , i.e., x x Bx
ˆ

xB=B i .  

The vector  can be written as  A
 
 ˆ ˆ ˆ

x y zA A A= + +A i j k  (A.2.9) 
 

We first calculate that the dot product of the unit vector ˆ  with itself is unity: i
  
 ˆ ˆ ˆ ˆ| || | cos(0) 1⋅ =i i i i =  (A.2.10) 
 
since the unit vector has magnitude 1ˆ| |=i   and cos(0) 1= . We note that the same rule 
applies for the unit vectors in the y and z directions: 
 
 ˆ ˆ ˆ ˆ 1⋅ = ⋅ =j j k k  (A.2.11) 

 
The dot product of the unit vector ˆ  with the unit vectorˆi j  is zero because the two unit 
vectors are perpendicular to each other: 
 

cos( /2) 0ˆ ˆ ˆ ˆ| || | π⋅ =i j i j =  (A.2.12) 
  
Similarly, the dot product of the unit vector ˆ  with the unit vector , and the unit vector i k̂
ĵ  with the unit vector  are also zero: k̂
 
 0ˆ ˆˆ ˆ⋅ = ⋅ =i k j k  (A.2.13) 
 
The dot product of the two vectors now becomes 
 

  (A.2.14) 

ˆ ˆ ˆˆ( )
ˆ ˆ ˆ ˆ ˆˆ      property (2a)

ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( )    property (1a) and (1b)

x y z x

x x y x z x

x x y x z x

x x

A A A B

A B A B A B

A B A B A B

A B

⋅ = + + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

=

A B i j k i

i i j i k i

i i j i k i

 
This third step is the crucial one because it shows that it is only the unit vectors that 
undergo the dot product operation.  
 
Since we assumed that the vector B  points along the positive -axis with positive -
component , our answer can be zero, positive, or negative depending on the -
component of the vector A .  In Figure A.2.3, we show the three different cases. 

x x
Bx x
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Figure A.2.3 Dot product that is (a) positive, (b) zero or (c) negative. 
 
The result for the dot product can be generalized easily for arbitrary vectors 
 
 x y z

ˆ ˆ ˆA A A= + +A i j k  (A.2.15) 
 
and  
 
 x y z

ˆ ˆ ˆB B B= + +B i j k  (A.2.16) 
to yield 
 
 x x y y z zA B A B A B⋅ = + +A B  (A.2.17) 
 
A.3 Cross Product 
 
We shall now introduce our second vector operation, called the “cross product” that takes 
any two vectors and generates a new vector. The cross product is a type of 
“multiplication” law that turns our vector space (law for addition of vectors) into a vector 
algebra (laws for addition and multiplication of vectors). The first application of the cross 
product will be the physical concept of torque about a point  which can be described 
mathematically by the cross product of a vector from

P
P  to where the force acts, and the 

force vector. 
 
A.3.1 Definition: Cross Product 
  
Let  and B  be two vectors. Since any two vectors form a plane, we define the angle A θ  
to be the angle between the vectors A  and B  as shown in Figure A.3.2.1. The magnitude 
of the cross product  of the vectors ×A B A  and B  is defined to be product of the 
magnitude of the vectors  and BA  with the sine of the angle θ  between the two vectors,  
 
 sinAB θ× =A B  (A.3.1) 
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where A and B denote the magnitudes of A and B , respectively. The angleθ  between the 
vectors is limited to the values 0 ≤θ ≤ π  insuring that sinθ ≥ 0. 
 

 
 

Figure A.3.1 Cross product geometry. 
 

The direction of the cross product is defined as follows. The vectors  and  form a 
plane. Consider the direction perpendicular to this plane. There are two possibilities, as 
shown in Figure A.3.1. We shall choose one of these two for the direction of the cross 
product  using a convention that is commonly called the “right-hand rule”. 

A B

×A B
 
A.3.2 Right-hand Rule for the Direction of Cross Product 

 
The first step is to redraw the vectors A  and B  so that their tails are touching. Then 
draw an arc starting from the vector A  and finishing on the vector . Curl your right 
fingers the same way as the arc. Your right thumb points in the direction of the cross 
product  (Figure A.3.2).  

B

×A B
 

 
 

Figure A.3.2 Right-Hand Rule. 
 
You should remember that the direction of the cross product ×A B  is perpendicular to 
the plane formed by  and .  A B
 
We can give a geometric interpretation to the magnitude of the cross product by writing 
the definition as  
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 ( sinA B )θ× =A B  (A.3.2) 

 
The vectors  and  form a parallelogram. The area of the parallelogram equals the 
height times the base, which is the magnitude of the cross product. In Figure A.3.3, two 
different representations of the height and base of a parallelogram are illustrated. As 
depicted in Figure A.3.3(a), the term

A B

sinB θ  is the projection of the vector  in the 
direction perpendicular to the vector 

B
A . We could also write the magnitude of the cross 

product as  
 
 ( sin )A Bθ× =A B  (A.3.3) 

 
Now the term sinA θ  is the projection of the vector A  in the direction perpendicular to 
the vector  as shown in Figure A.3.3(b).  B
 

 
 

Figure A.3.3 Projection of vectors and the cross product 
 
The cross product of two vectors that are parallel (or anti-parallel) to each other is zero 
since the angle between the vectors is 0  (or π ) and sin(0) 0=  (or sin( ) 0π = ). 
Geometrically, two parallel vectors do not have any component perpendicular to their 
common direction. 
 
A.3.3 Properties of the Cross Product 
  
(1) The cross product is anti-commutative since changing the order of the vectors cross 

product changes the direction of the cross product vector by the right hand rule: 
 
 × = − ×A B B A  (A.3.4) 
 

(2) The cross product between a vector cA  where c is a scalar and a vector  is B
 
 (c c )× = ×A B A B  (A.3.5) 
 
Similarly, 
 (c c )× = ×A B A B  (A.3.6) 
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(3) The cross product between the sum of two vectors A  and B  with a vector  is C
 
 ( )+ × = × + ×A B C A C B C  (A.3.7) 
 
Similarly, 
 
 ( )× + = × + ×A B C A B A C  (A.3.8) 
 
 
A.3.4 Vector Decomposition and the Cross Product 
 
We first calculate that the magnitude of cross product of the unit vector ˆ  with ˆi j : 
  

 ˆ ˆ ˆ ˆ| | | || | sin
2
π⎛ ⎞ 1× = ⎜ ⎟
⎝ ⎠

i j i j =  (A.3.9) 

 
since the unit vector has magnitude ˆ ˆ| | | | 1= =i j  and sin( / 2) 1π = . By the right hand rule, 
the direction of ˆ  is in the  as shown in Figure A.3.4.  Thus ˆ ˆˆ×i j ˆ+k ˆ× =i j k . 
 

 
Figure A.3.4 Cross product of ˆ ˆ×i j  

 
We note that the same rule applies for the unit vectors in the y and z directions, 
 
 ˆ ˆ ˆˆ ˆ, ˆ× = × =j k i k i j   (A.3.10) 
 
Note that by the anti-commutatively property (1) of the cross product, 
 
 ˆ ˆ ˆ ˆˆ ˆ,× = − × = −j i k i k j  (A.3.11) 
 
The cross product of the unit vector ˆ  with itself is zero because the two unit vectors are 
parallel to each other, ( sin( ), 

i
0) 0=
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 ˆ ˆ ˆ ˆ| | | || | sin(0) 0× =i i i i =  (A.3.12) 
 
The cross product of the unit vector ĵ  with itself and the unit vector  with itself, are 
also zero for the same reason. 

k̂

 
 0ˆ ˆ ˆ ˆ, 0× = × =j j k k  (A.3.13) 

 
With these properties in mind we can now develop an algebraic expression for the cross 
product in terms of components. Let’s choose a Cartesian coordinate system with the 
vector  pointing along the positive x-axis with positive x-component . Then the 
vectors  and  can be written as  

B Bx

A B
 
 x y z

ˆ ˆ ˆA A A= + +A i j k  (A.3.14) 
and 
 x̂B=B i  (A.3.15) 

 
respectively. The cross product in vector components is 
 
 ( )x y z

ˆ ˆ ˆA A A B× = + + ×A B i x̂j k i  (A.3.16) 
 

This becomes, using properties (3) and (2),   
 

 

ˆ ˆ ˆ ˆ ˆˆ( ) ( ) (
ˆ ˆ ˆ ˆ ˆˆ( ) ( ) (

ˆˆ

x x y x z x

x x y x z x

y x z x

A B A B A B

A B A B A B

A B A B

× = × + × + ×

= × + × + ×

= − +

A B i i )

)

j i k

i i

i

j i k

k j

i  (A.3.17) 

 
The vector component expression for the cross product easily generalizes for arbitrary 
vectors 
 
 x y z

ˆ ˆ ˆA A A= + +A i j k  (A.3.18) 
 
and 

 x y z
ˆ ˆ ˆB B B= + +B i j k  (A.3.19) 

 
to yield 
 
 ˆ ˆ ˆ( ) ( ) (y z z y z x x z x y y xA B A B A B A B A B A B× = − + − + −A B i )j k . (A.3.20) 
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