
Adobe	Developer	Connection / ActionScript	Technology	Center / Learning	ActionScript	3 /

Object-oriented	programming
concepts:	Polymorphism	and
interfaces

Share	on	Facebook
Share	on	Twitter
Share	on	LinkedIn
Print

ActionScript inheritance
OOP

by	Michelle	Yaiser

Adobe
michelleyaiser.com
Content
Polymorphism	through
subclasses

Subclass	polymorphism
limitations

Public	interfaces	and	contracts
Defining	and	implementing
interfaces

Where	to	go	from	here

Created
6	February	2012

Page	tools

Was	this	helpful?
Yes			 No	

By	clicking	Submit,	you	accept
the	Adobe	Terms	of	Use.
	
Thanks	for	your	feedback.

Prerequisite	knowledge
This	article	is	designed	for
intermediate	ActionScript
developers.	An	understanding	of
ActionScript	3	language
fundamentals,	using	inheritance,
and	using	encapsulation	in
ActionScript	3	is	required.
User	level
Intermediate

Required	products
Flash	Builder	(Download	trial)
Flash	Professional	(Download	trial)

Inheritance,	encapsulation,	abstraction	and	polymorphism	are	four	of	the	fundamental	concepts
of	object-oriented	programming.	You	should	have	already	learned	about	inheritance	and
encapsulation	in	previous	articles.	This	article	focuses	on	polymorphism,	which	requires	an
understanding	of	inheritance	and	encapsulation.	Please	read	Object-oriented	programming
concepts:	Inheritance	and	Object-oriented	programming	concepts:	Encapsulation	if	you	have	not
already.

Polymorphism	is	the	concept	that	multiple	types	of	objects	might	be	able	to	work	in	a	given
situation.	For	example,	if	you	needed	to	write	a	message	on	a	piece	of	paper,	you	could	use	a
pen,	pencil,	marker	or	even	a	crayon.	You	only	require	that	the	item	you	use	can	fit	in	your	hand
and	can	make	a	mark	when	pressed	against	the	paper.	Interfaces	are	a	way	to	wrap	all	of	those
requirements	into	a	single	word	(or	phrase),	for	example:	I	need	a	writing	instrument.	This	article
will	cover	how	to	use	polymorphism	and	interfaces	in	ActionScript	3.

Polymorphism	through	subclasses

There	are	multiple	ways	to	achieve	polymorphism	when	programming	in	ActionScript	3.	The	first
is	called	subclass	polymorphism,	but	technically,	it	is	really	using	the	concept	of	inheritance.	As
an	example,	look	at	this	simple	Pen	class:

package	writing	{
				public	class	Pen	{
								public	function	Pen()	{}
								
								public	function	line():void	{
												trace("Pen	drew	a	line");												
								}
								
								public	function	circle():void	{
												trace("Pen	drew	a	circle");
								}
				}
}	

Then	Pen	class	has	two	methods:	one	for	drawing	a	line	and	one	for	drawing	a	circle.	Using
inheritance,	you	can	create	two	new	types	of	Pens:	FountainPen	and	RollerBallPen	.	The
FountainPen	class	extends	the	Pen	class	and	adds	one	additional	method	named	refill().

package	writing	{
				public	class	FountainPen	extends	Pen	{
								override	public	function	line():void	{
												trace("FountainPen	drew	a	line...	and	a	splotch");												
								}
								
								override	public	function	circle():void	{
												trace("FountainPen	almost	drew	a	circle.	Need	more	ink.");

	Requirements

http://www.adobe.com/devnet/actionscript/learning/oop-concepts/polymorphism-and-interfaces.html Go AUG SEP MAR

15
2014 2015 2016

122	captures
	 	

	

� ⍰❎
f �

8	Feb	2012	-	30	Dec	2017 ▾	About	this	capture



								}
								
								public	function	refill():void	{
												trace("all	full");
								}
				}
}

The	RollerBallPen	also	extends	the	Pen	class.

package	writing	{
				public	class	RollerBallPen	extends	Pen	{
								override	public	function	line():void	{
												trace("RollerBallPen	drew	a	super	smooth	line.");												
								}
								
								override	public	function	circle():void	{
												trace("RollerBallPen	easily	drew	a	circle.");
								}																
				}
}

In	this	example,	you	can	say	that	FountainPen	is	a	Pen	and	RollerBallPen	is	a	Pen	.	The	fact
that	the	compiler	recognizes	each	of	these	classes	as	still	being	a	Pen	makes	this	type	of
polymorphism	possible.	Look	at	the	following	function:

function	usePen(	pen:Pen	):void	{
				pen.line();
				pen.circle();
}

The	function	accepts	a	Pen	instance	and	calls	the	line()	function	and	the	circle()	function	of
that	Pen	instance.	You	could	use	the	function	in	the	following	way:

var	pen:Pen	=	new	Pen();
usePen(	pen	);

You	would	receive	this	output:

Pen	drew	a	line
Pen	drew	a	circle

However,	since	FountainPen	is	also	a	type	of	Pen	,	you	can	pass	it	to	the	usePen()	function.
Look	at	both	options	in	the	code	below:

var	pen:Pen	=	new	Pen();
usePen(	pen	);

var	fountainPen:FountainPen	=	new	FountainPen();
usePen(	fountainPen	);

You	would	receive	this	output:

Pen	drew	a	line
Pen	drew	a	circle

FountainPen	drew	a	line...	and	a	splotch
FountainPen	almost	drew	a	circle.	Need	more	ink.



In	both	cases,	the	usePen()	function	was	expecting	a	Pen	instance.	However,	since	both	Pen	and
FountainPen	are	of	type	Pen	,	this	function	can	accept	either.	In	its	most	basic	sense,	this	is
subclass	polymorphism.	Pen	or	any	of	its	subclasses	can	be	used	when	the	code	requires	a	Pen	,
just	as	you	would	be	willing	to	accept	any	type	of	pen	from	a	colleague	when	you	need	to	sign	a
document.

Subclass	polymorphism	is	one	technique	that	provides	flexibility	and	allows	future	extension	of
your	code	base.	Look	at	the	code	below.	In	it,	each	type	of	Pen	is	added	to	an	array	and	the
usePen()	function	is	called.

var	penArray:Array	=	[];
penArray	[	0	]	=	new	Pen();
penArray	[	1	]	=	new	FountainPen();
penArray	[	2	]	=	new	RollerBallPen();

for	each	(	var	pen:Pen	in	penArray	)	{
				usePen(	pen	);				
}

As	you	may	be	expecting	by	now,	it	produces	the	following	output:

Pen	drew	a	line
Pen	drew	a	circle
FountainPen	drew	a	line...	and	a	splotch
FountainPen	almost	drew	a	circle.	Need	more	ink.
RollerBallPen	drew	a	super	smooth	line.
RollerBallPen	easily	drew	a	circle.

The	code	sample	shows	that	FountainPen	and	RollerBallPen	can	be	used	anywhere	a	Pen	is
used.	It	is	important	to	understand	that	the	inverse	is	not	true.	A	Pen	cannot	be	used	anywhere	a
FountainPen	is	used.	A	FountainPen	has	the	same	methods	as	Pen	plus	an	additional	method
named	refill()	.	Therefore	this	code	will	fail	to	compile:

function	useFountainPen(	pen:FountainPen	):void	{
				pen.line();
				pen.circle();
}
var	pen:Pen	=	new	Pen();
useFountainPen(	pen	);	//error

The	error	you	will	receive	is:

Implicit	coercion	of	a	value	with	static	type	writing:Pen	to	a	possibly	unrelated	type	writing:FountainPen.

You	receive	this	error	because	you	are	trying	to	treat	a	Pen	as	a	FountainPen	.	Because	it	is
missing	the	refill()	method,	Pen	is	not	the	same	as	FountainPen	.	With	subclass
polymorphism,	you	can	only	substitute	subclasses	for	their	super	class.	You	cannot	substitute	a
super	class	for	one	of	its	subclasses.

Subclass	polymorphism	limitations

Subclassing	is	one	way	to	achieve	polymorphism	and	it	works	for	a	number	of	cases;	however,
there	are	times	when	it	is	too	inflexible.	Continuing	with	the	writing	instrument	example,	what
happens	if	you	desperately	need	to	draw	a	line	and	a	circle	but	the	only	thing	your	artistic
colleague	has	to	offer	is	a	hunk	of	charcoal?	Could	you	still	draw	that	line	and	circle?	Of	course,
but	does	it	make	logical	sense	to	say	that	charcoal	is	a	type	of	Pen?	Not	really.

So,	what	do	you	do?	Well,	you	could	argue	that	Charcoal	and	Pen	are	both	types	of	writing
instruments	and	hence	they	both	should	actually	descend	from	a	common	base	class	called
WritingInstrument	.	This	argument	is	actually	a	bit	of	a	trap,	but	follow	it	through	to	understand
why	it	may	not	work.	Look	at	the	following	code:

package	writing	{
				public	class	WritingInstrument	{



								public	function	WritingInstrument()	{}
								public	function	line():void	{
												trace("Writing	Instrument	drew	a	line");												
								}
								
								public	function	circle():void	{
												trace("Writing	Instrument	drew	a	circle");
								}
				}
}
package	writing	{
				public	class	Pen	extends	WritingInstrument	{…}
}

package	writing	{
				public	class	Charcoal	extends	WritingInstrument	{
								public	function	Charcoal(){}
								public	function	burn():void	{
												trace("Charcoal	now	burning");
								}
				}
}

Initially,	extending	WritingInstrument	seems	fine.	Pen	and	Charcoal	are	now	both	types	of
writing	instruments.	You	could	write	a	new	function	named	useWritingInstrument()	and	you
could	use	either	a	Pen	or	Charcoal	to	draw	lines	and	circles.

function	useWritingInstrument(	instrument:WritingInstrument	):void	{
				instrument.line();
				instrument.circle();
}
var	pen:Pen	=	new	Pen();
useWritingInstrument(	pen	);

var	charcoal:Charcoal	=	new	Charcoal();
useWritingInstrument(	charcoal	);

However,	charcoal	has	other	uses.	For	example,	it	can	be	used	in	a	grill	to	cook.	So,	perhaps	at
some	point	you	will	write	a	function	called	burnIt()	that	accepts	Charcoal	:

function	burnIt(	charcoal:Charcoal	):void	{
				charcoal.burn();
}

So	far	so	good.	You	can	write	with	your	charcoal	and	you	can	burn	it	when	you	are	done.
However,	as	long	as	you	are	burning	things,	there	are	likely	a	number	of	other	things	around	the
office	that	could	burn.	What	if	you	wanted	to	burn	that	paper	you	were	drawing	lines	and	circles
upon?

package	paper	{
				public	class	Paper	{
								public	function	burn():void	{
												trace("Paper	now	burning");
								}								
				}
}

How	would	you	pass	the	paper	to	the	burnIt()	function?	The	function	requires	Charcoal
presently.	It	doesn't	make	logical	sense	to	have	Paper	extend	Charcoal	because	that	would
mean	that	Paper	is	Charcoal	.	Additionally,	because	Charcoal	is	a	WritingInstrument	,	it	would
mean	that	Paper	is	a	WritingInstrument	,	which	doesn't	make	any	sense	at	all.

Hopefully	you	see	that	although	Paper	is	not	Charcoal	,	Paper	and	Charcoal	can	both	burn.
Further,	Charcoal	is	not	just	a	writing	instrument,	but	Charcoal	and	Pen	can	both	draw	lines	and



circles.	Thus,	using	inheritance	in	this	situation	won't	achieve	the	desired	results.	Instead,	you
need	to	use	interfaces.

Public	interfaces	and	contracts

The	combination	of	all	public	methods	and	properties	of	an	object	form	the	object's	public
interface.	In	other	words,	the	public	methods	and	properties	form	a	set	of	expectations	that	you
can	always	count	on.	Interfaces	define	the	required	behavior	for	something	to	be	considered	a
specific	type	of	thing.	They	do	not	actually	contain	the	required	functionality.	An	interface	is	often
called	a	contract.

You	know	that	the	line()	and	circle()	methods	exist	as	public	methods	in	Pen	.	You	can	call
them	anytime	in	your	code.	By	contract,	being	a	Pen	means	always	having	those	two	methods
available	and	public.

Consider	the	following	reasoning:

Pen	's	public	interface	consists	of	two	methods	named	line()	and	circle()
FountainPen	and	RollerBallPen	descend	from	Pen
Because	FountainPen	and	RollerBallPen	descend	from	Pen	,	each	has	the	two	methods
named	line()	and	circle()	in	their	public	interfaces
	Therefore	FountainPen	and	RollerBallPen	can	be	used	to	fulfill	the	same	contract	as	Pen

This	reasoning	is	the	basis	of	subclass	polymorphism	as	discussed	above.	Continue	with	this
contract	example.

The	public	refill()	method	was	added	to	the	FountainPen	class
FountainPen	's	public	interface	now	consists	of	the	line()	and	circle()	methods	and	the
refill()	method
Only	classes	that	have	line()	,	circle()	,	and	refill()	methods	in	their	public	interfaces
can	be	used	to	fulfill	the	same	contract	as	FountainPen

Now	you	see	why	a	super	class	cannot	be	substituted	for	one	its	subclasses—the	super	class
does	not	fulfill	the	same	contract	as	its	subclass.

Defining	and	implementing	interfaces

You've	already	determined	that	Paper	,	Charcoal	,	and	Pen	should	not	be	related	through
inheritance	but	that	both	Paper	and	Charcoal	should	have	the	ability	to	burn	and	that	both
Charcoal	and	Pen	should	have	the	ability	to	draw	lines	and	circles.	To	achieve	that	goal,	define
interfaces	with	those	behaviors	that	those	objects	can	fulfill.

Look	at	this	example	interface,	IWritingInstrument	:

package	writing	{
				public	interface	IWritingInstrument	{
								function	line():void;								
								function	circle():void;
				}
}

Because	you	are	defining	an	interface,	use	the	interface	keyword	followed	by	the	name	of	the
interface.	By	convention,	interface	names	begin	with	an	"I"	so	you	can	quickly	distinguish	them
from	classes.	Note	that	the	function	definitions	do	not	have	access	modifiers	such	as	public	or
private	.	In	a	public	interface,	it	is	a	requirement	that	the	methods	are	public.	Also	note	that	the
function	definitions	do	not	have	function	bodies	because	interfaces	do	not	contain	any
functionality.	This	example	interface	is	defining	a	contract	that	says	in	order	to	be	considered	an
IWritingInstrument	object,	an	object	must	have	public	line()	and	circle()	methods	that	do
not	have	parameters	and	return	nothing.

Interfaces	are	not	classes.	Therefore,	you	can't	instantiate	an	interface.	You	will	receive	an	error	if
you	try	to	instantiate	an	interface	as	you	can	see	in	the	following	code:

var	iWriting:IWritingInstrument	=	new	IWritingInstrument();	//error

To	apply	an	interface	to	a	class,	use	the	implements	keyword	followed	by	the	name	of	the
interface	in	your	class	declaration.	Below,	the	Pen	class	is	changed	to	implement	the
IWritingInstrument	interface.



package	writing	{
				public	class	Pen	implements	IWritingInstrument	{
								
								public	function	Pen(){}	

								public	function	line():void	{
												trace("Pen	drew	a	line");												
								}
								
								public	function	circle():void	{
												trace("Pen	drew	a	circle");
								}								
				}
}

You	can	see	that	the	Pen	class	now	fulfills	the	contract	required	to	be	an	IWritingInstrument	.
As	with	inheritance,	you	can	say	that	Pen	is	an	IWritingInstrument	.	Further,	because
FountainPen	and	RollerBallPen	inherit	from	Pen	,	it	is	proper	to	say	that	both	of	those	classes
are	of	type	IWritingInstrument	.

You	can	also	use	an	interface	as	a	type	for	properties	or	parameters.	In	this	example,	the
useWritingInstrument()	method	can	accept	any	object	that	implements	the
IWritingInstrument	and	call	its	line()	and	circle()	methods.

function	useWritingInstrument(	instrument:IWritingInstrument	):void	{
				instrument.line();
				instrument.circle();
}
var	pen:Pen	=	new	Pen();
useWritingInstrument(	pen	);
var	fountainPen:FountainPen	=	new	FountainPen();
useWritingInstrument(	fountainPen	);

The	Charcoal	class	should	also	implement	the	IWritingInstrument	interface:

package	writing	{
				public	class	Charcoal	implements	IWritingInstrument	{
								
								public	function	Charcoal(){}

								public	function	line():void	{
												trace("Charcoal	drew	a	thick	line");												
								}
								
								public	function	circle():void	{
												trace("Charcoal	drew	an	approximate	circle");
								}				

								public	function	burn():void	{
												trace("Charcoal	now	burning");
								}
				}
}

Charcoal	is	now	a	valid	type	of	IWritingInstrument	.	Hence,	you	can	also	pass	it	to	the
useWritingInstrument()	function.

function	useWritingInstrument(	instrument:IWritingInstrument	):void	{
				instrument.line();
				instrument.circle();
}
var	pen:Pen	=	new	Pen();
useWritingInstrument(	pen	);
var	fountainPen:FountainPen	=	new	FountainPen();
useWritingInstrument(	fountainPen	);



var	charcoal:Charcoal	=	new	Charcoal();
useWritingInstrument(	charcoal	);

The	useWritingInstrument()	function	does	not	care	if	you	give	it	a	Pen	,	Charcoal	or	any	other
specific	implementation.	Instead,	it	only	cares	that	you	provide	it	something	that	fulfills	the
correct	contract—the	IWritingInstrument	contract.	Using	an	interface	in	this	way	is	a	very
useful	technique,	often	referred	to	a	programming	to	an	interface	instead	of	an	implementation.

You	can	also	define	an	interface	for	things	that	are	combustion	sources:

package	fire	{
				public	interface	ICombustionSource	{
								function	burn():void;
				}
}

Although	you	can	only	inherit	from	one	super	class,	you	can	implement	as	many	interfaces	as
you	need.	For	example,	Charcoal	is	both	a	writing	instrument	and	a	combustion	source:

package	writing	{
				import	fire.ICombustionSource;

				public	class	Charcoal	implements	IWritingInstrument,	ICombustionSource	{
								public	function	Charcoal(){}
								public	function	line():void	{
												trace("Charcoal	drew	a	thick	line");												
								}
								
								public	function	circle():void	{
												trace("Charcoal	drew	an	approximate	circle");
								}				

								public	function	burn():void	{
												trace("Charcoal	now	burning");
								}
				}
}

Once	you	change	the	burnIt()	function	to	accept	an	ICombustionSource	,	a	charcoal	object	can
be	used	both	to	write	and	to	burn:

function	useWritingInstrument(	instrument:IWritingInstrument	):void	{
				instrument.line();
				instrument.circle();
}

function	burnIt(	source:ICombustionSource	):void	{
				source.burn();
}
var	pen:Pen	=	new	Pen();
useWritingInstrument(	pen	);

var	charcoal:Charcoal	=	new	Charcoal();
useWritingInstrument(	charcoal	);
burnIt(	charcoal	);

Finally,	Paper	should	also	have	the	ability	to	burn.	Change	the	Paper	class	to	implement	the
ICombustionSource	interface	then	it	too	can	burn.

package	paper	{
				import	fire.ICombustionSource;

				public	class	Paper	implements	ICombustionSource	{
								public	function	Paper(){}



More	Like	This

Object-oriented	programming	concepts:	Encapsulation
Object-oriented	programming	concepts:	Inheritance
Object-oriented	programming	concepts:	Writing	classes
Object-oriented	programming	concepts:	Objects	and	classes
Object-oriented	programming	concepts:	Composition	and	aggregation

								public	function	burn():void	{
												trace("Paper	now	burning");
								}								
				}
}
var	pen:Pen	=	new	Pen();
useWritingInstrument(	pen	);

var	charcoal:Charcoal	=	new	Charcoal();
useWritingInstrument(	charcoal	);
burnIt(	charcoal	);

var	paper:Paper	=	new	Paper();
burnIt(	paper	);

As	you	can	see,	Pen	and	Charcoal	objects	are	now	available	for	writing.	The	Charcoal	and	Paper
objects	are	available	for	burning.	Yet,	Charcoal	,	Paper	and	Pen	do	not	share	a	common	super
class.	If	you	ran	the	code	directly	above,	you	would	receive	the	following	output:

Pen	drew	a	line
Pen	drew	a	circle
Charcoal	drew	a	thick	line
Charcoal	drew	an	approximate	circle
Charcoal	now	burning
Paper	now	burning

Where	to	go	from	here

Programming	to	interfaces	instead	of	implementations	provides	for	future	expansion	as	well	as
flexibility	in	the	way	you	construct	the	objects	in	your	applications.	Further,	it	forces	you	to
consider	the	actual	function	of	each	of	your	classes.	These	techniques	form	the	basis	of	the
largest	and	most	maintainable	applications.

This	work	is	licensed	under	a	Creative	Commons	Attribution-Noncommercial-Share	Alike	3.0
Unported	License


