
BFOIT	ICSI
BFOIT	-	Introduction	to	Computer	Programming

Background
Preface
Instructor	Notes
Table	of	Contents
What's	Computer	Programming?

jLogo	Programming
Commanding	a	Turtle
Pseudocode
Adding	New	Commands
Iteration	&	Animation
Hierarchical	Structure
Procedure	Inputs
Operators	&	Expressions
Defining	Operators
Words	&	Sentences
User	Interface	Events
What	If?	(Predicates)
Recursion
Local	Variables
Global	Variables
Word/Sentence	Iteration
Mastermind	Project
Turtles	As	Actors
Arrays
File	Input/Output

Java
A	Java	Program
What's	a	Class?
Extending	Existing	Classes
Types
Turtle	Graphics
Control	Flow
User	Interface	Events

Appendices
Jargon
What	Is	TG?
TG	Directives
jLogo	Primitives
TG	Editor
Java	Tables
Example	Programs
Installation	Notes

Updates
December	13,	2008
January	6,	2012
March	15,	2013
January	20,	2014
February	13,	2014
July	29,	2014

Lastly

http://www.bfoit.org/itp/Output.html Go MAR SEP MAR

07
2014 2015 2017

53	captures
	 	
	

� ⍰❎
f �

23	Oct	2007	-	26	Aug	2017 ▾	About	this	capture



Acknowledgements
About	Me

Defining	Operators
Introduction
In	the	previous	lesson	you	learned	about	operators	-	procedures	that	produce	an	output.		Most	of	the	operators	you
used	needed	an	input	or	inputs	and	used	it/them	in	some	way	to	produce	the	output.

In	this	lesson,	you	will	learn

how	to	output	a	value	from	a	procedure	that	you	write;	you	can	write	your	own	operators,	another	mechanism
for	creating	more	powerful	procedural	abstractions,	and
about	symbolic	constants	(names	for	values	that	never	change)	and	how	a	procedure	that	outputs	a	value	can
serve	this	purpose.

Symbolic	Constants
As	I	described	in	the	very	first	lesson,	a	computer	only	works	with	binary	numbers,	called	bits.		But	I	went	on	to
show	how	things	that	you	want	to	work	with	(e.g.,	characters,	decimal	numbers)	are	built	out	of	these	bits.	
Systems	programmers	(wizards	that	write	very	low-level	programs	like	assemblers,	interpreters,	compilers,	system
libraries,	etc...)	have	been	providing	these	niceties	for	almost	ever.		This	allows	you	to	write	programs	that	you	can
read,	that	make	sense	to	you.

The	programs	you	are	now	writing	are	starting	to	get	big	and	they	are	taking	hours	to	write.		In	a	few	lessons,	you
will	be	writing	programs	that	take	many	hours	to	complete.		This	means	that	the	programming	will	be	spread	over
days.		Each	time	you	return	to	continue	programming,	you	need	to	pick	back	up	where	you	left	off.		The	point	is
that	your	programs	need	to	be	easy	for	you	to	read	so	that	you	can	refresh	your	mind	on	what's	done	and	what's
left	to	do.		I	suggest	that	you	get	into	the	habit	of	giving	names	to	many	of	the	numbers	that	are	starting	to	become
ubiquitous	in	your	programs.

The	most	obvious	case	is	the	numbers	for	the	colors	that	you	provide	as	an	input	to	the	setpencolor	command.		I
have	trouble	remembering	many	of	the	color	numbers.		So,	what	I	have	done	is	to	write	little	procedures	that
output	numbers	corresponding	to	the	color	the	procedure's	identifier	represents.

This	binding	of	a	number	to	a	meaningful	identifier	is	what's	called	a	symbolic	constant	in	programming	terms.

Here	are	a	few	examples:

			to	blue	
					output	1
					end	
			to	forest	
					output	10			
					end	
			to	north	
					output	0
					end	
			to	east	
					output	90
					end	

Once	defined,	the	first	two	of	these	procedures	can	be	used	to	provide	an	input	to	setpencolor.		The	colors	above
are	some	of	the	colors	I	used	in	my	seascape	program.		Here	is	what	part	of	my	main	procedure	contained	-	the
part	that	used	the	color	procedures.



			to	main	
					hideturtle
					setpencolor	blue
					waves	-240	20
					waves	-130	-15
					setpencolor	forest			
					fish	100	-100
					fish	50	-150
					...
					end

Defining	the	procedures	blue	and	forest	and	then	using	them	in	appropriate	places	makes	the	program	much
easier	to	read.		Trust	me,	this	is	good...

The	symbolic	constants	for	headings	for	the	turtle	can	be	used	similarly.		north,	east,	etc...	procedures	can	be
used	as	inputs	to	the	setheading	command.		Get	into	the	habit	of	starting	all	of	your	programs	with	symbolic
constants	-	part	of	the	vocabulary	for	the	story	you	are	about	to	write.		Yes,	think	of	the	process	of	writing	a
program	as	similar	to	writing	anything	that	is	descriptive.

Creating	Your	Own	Operators
The	key	to	the	above	procedure	definitions	is	the	command,	output.		When	a	Logo	interpreter	performs	an	output
command,	it	exits	the	procedure	containing	it,	producing	whatever	output's	input	is	-	as	the	procedure's	output.	
This	can	be	confusing	at	first.		output	is	not	an	operator.		Figure	9.1	shows	what	happens	if	you	try	to	put	it	where
an	operator	is	required.

Figure	9.1

Ok,	let's	move	on	and	write	some	more	interesting	procedures	which	are	operators.

In	the	previous	lesson	there	were	examples	of	arithmetic	expressions	that	computed	and	displayed	the
circumference	and	the	area	of	a	circle.		Here	is	one	of	the	procedures.

			to	printCircleCircum	:radius	
					println	product	2	(product	3.14159	:radius)			
					end	

It	would	be	more	useful	to	separate	the	println	functionality	from	the	computation	piece.		It's	simple...		Just
replace	println	with	output.

			to	circleCircumference	:radius	
					output	product	2	(product	3.14159	:radius)			
					end	

Notice	that	I	changed	the	name	of	the	procedure.		You	always	want	the	name	of	the	procedure	to	reflect	what	it
does.		This	is	how	we	achieve	our	abstraction.

This	new	procedure,	now	an	operator,	is	simple	to	use	with	the	println	command,	e.g.,	here	is	an	example	of	its
use	in	the	CommandCenter.

			?	println	circleCircumference	4			
			25.13272
			?	

Use	the	following	TG	applet	to	try	it	out	for	yourself.		Type	the	circleCircumference	definition	into	the	Editor,
then	invoke	it	a	few	times	in	the	CommandCenter	to	see	what	you	get.

alt="Your	browser	understands	the	<APPLET>	tag	but	isn't	running	the	applet,	for	some	reason."	Your	browser	is
completely	ignoring	the	<APPLET>	tag!	TG	Programming	Environment	Applet

If	this	applet	is	broken	and	you	are	using	Chrome,	click	here.

Practice:	A	Couple	More	Operators	For	You	To	Write
You	really	don't	learn	about	something	deeply	by	reading	about	it	or	hearing	someone	lecture	about	it	-	you	learn



by	trying	to	do	it.		Here	are	a	few	exercises	that	you	can	play	with.

1.	 In	the	previous	lesson	you	wrote	printCircleArea.		Write	a	procedure	named	circleArea	with	an	input	for	the
radius	of	the	circle.		It	should	produce	an	output	that	is	the	area	of	the	circle.		Test	it	with	the	inputs	in
Table	9.1	and	make	sure	you	get	good	answers.

Input Area
2 12.56636
3 28.27431
5 78.53975
11 380.13239

Table	9.1
2.	 Part	of	the	arithmetic	expression	you	wrote	to	compute	the	area	of	a	circle	involved	squaring	a	number.	

Squaring	a	number	is	a	common	thing	to	do.		Write	a	procedure	named	square	with	an	input	:number	that
produces	number-squared.		There	is	also	a	constant	value	in	the	expression,	PI,	which	should	be	defined	as	a
symbolic	constant	-	define	the	procedure	PI	which	outputs	3.14159.		Redefine	your	circleArea	using	these
new	procedures.		Once	again,	test	it...

After	you've	completed	writng	these	procedures,	check	what	you	came	up	with	here.

Project:	Random	In	Range
OK,	now	for	an	operator	that	would	have	been	nice	to	have	in	one	of	the	programs	we	wrote	in	the	last	lesson,
RandomBoxes.		To	refresh	your	memory,	we	painted	a	bunch	of	solid,	colored	boxes	at	random	locations	on	the
graphics	canvas.		We	needed	a	couple	of	random	numbers	in	ranges	other	than	the	standard	0...x-1	provided	by	the
random	x	operator.		We	needed	random	numbers	in	a	range	determined	by	the	height	and	width	of	the	graphics
canvas.		As	an	example,	if	the	canvaswidth	operator	outputs	600,	we	needed	random	numbers	in	the	range	of
-300	...	300-boxWidth.

I	want	a	new	operator,	let's	call	it	randomInRange,	which	produces	an	output,	a	number	that's	in	any	range	of
numbers	I	provide	as	inputs.		As	an	example,	for	the	invocation	"randomInRange	-50	50"	I	want	an	output	that	is
random	and	is	greater-than	or	equal-to	-50	AND	is	less-than	or	equal-to	50.		Figure	9.2	demonstrates	a	working
version	producing	random	numbers	in	the	range	of	-2	through	2.

Figure	9.2

Ok,	either	go	off	and	write	it	or	if	you	need	a	little	help	to	get	started,	here's	a	skeleton.

			to	randomInRange	:min	:max	
					;	output	<random	number	gtr-or-eql	:min	and	less-or-eql	:max>			
					end	

At	this	point,	don't	hesitate	to	play	around	in	the	TG	applet	to	figure	out	what	you	need	to	do.		Follow	the	steps
we've	been	using	to	write	all	of	our	programs.

1.	 Understanding	the	Problem	(figure	out	what	you	know,	and	what	you	don't	know)
2.	 Devising	a	Plan	(write	a	pseudo	code	description	of	what	to	do,	draw	a	plumbing	diagram	or	diagrams	to

visualize	what	you	will	do)
3.	 Carrying	out	the	Plan	-	type	in	your	source	code	and	test	it;	does	it	work?		If	not,	verify	your	code	matches

what	you	developed	in	step	2	and	review	what	you	came	up	with	in	steps	1	and	2.

Don't	read	further	until	you've	at	least	made	some	attempt	at	writing	the
randomInRange	procedure.

First	hint...

If	you	think	about	it,	your	output	needs	to	be	at	least	what	the	input	:min	is	given	when	randomInRange	is



invoked.		Since	the	smallest	value	returned	by	random	is	0,	you	are	going	to	need	to	add	:min	to	the	output	from
random.		So,	our	pseudocode	now	looks	like:

			;output	a	random	number	that	is
			;greater	than	or	equal	to	:min	and
			;less	than	or	equal	to	:max	
			to	randomInRange	:min	:max	
					;	output	sum	:min	random	<magnitude	of	range	of	numbers>			
					end	

Don't	read	further	until	you've	made	an	attempt	to	complete	this	procedure	and
experimented	with	it

Second	hint...

At	this	point,	I	suggest	that	you	write	an	operator	named	magnitude.		Here's	the	expanded	pseudo	code:

			;output	the	absolute	value	of	
			;the	difference	of	two	inputs	
			to	magnitude	:min	:max	
					;	output	<magnitude	of	range	of	numbers>
					end	

			;output	a	random	number	that	is	
			;greater	than	or	equal	to	:min	and	
			;less	than	or	equal	to	:max	
			to	randomInRange	:min	:max	
					output	sum	:min	(random	magnitude	:min	:max)			
					end	

OK...	finish	the	procedure.

Use	repeat	to	test	your	code.		If	it	doesn't	work,	help	is	on	the	way	-	read	the	next	section.		If	your	code	works,
congratulations!		Now	read	the	next	section	because	it's	a	really	cool	feature	you	are	sure	to	use	in	the	future.

TRACE	-	A	Debugging	Tool
				"Failure	is	an	integral	part	of	success,"	Mead	says.	"You
				learn	from	every	one	of	your	failures.		I	used	to	tell
				students,	'You've	got	to	listen	to	the	silicon.	It's	trying
				to	tell	you	something.'"

				If	you	build	something	or	do	something	and	it	doesn't	work
				out,	he	says	you	can	curse	and	swear	at	it.	Or,	you	can	learn
				from	it.

				"The	physical	world	is	perfectly	willing	to	share	with	you
				how	it	works.	If	you	listen.	But,	if	you	have	your	mind	made
				up,	you	can	go	for	years	and	not	hear	it,"	Mead	says.

																					from	an	article	in	Investors	Business	Daily
																					May	13,	2003	

Time	for	you	to	learn	more	about	tracing	in	TG.		It	can	help	you	understand	what's	happening	when	your	program
is	being	executed	and	not	doing	what	you	expect.		Remember,	trace	is	a	directive	you	enter	into	the
CommandCenter.		it's	similar	to	a	command,	but	can't	be	placed	into	the	body	of	a	procedure.		It	directs	TG	to	print
out	very	useful	stuff	as	your	program	is	executed.

So,	once	you	have	your	magnitude	and	randomInRange	procedures	entered	into	the	Editor,	switch	keyboard
focus	to	the	CommandCenter	and	type:

			?	trace	magnitude
			?	println	randomInRange	-4	4				

Since	TG	has	been	directed	to	trace	the	procedure	magnitude,	what	you	should	see	is	somthing	like:

			?	println	randomInRange	-4	4
			Entering	magnitude	-4	4
			Exiting	magnitude,	output:	8			
			-3
			?	

TG	let	you	know	that	magnitude	was	invoked	with	the	inputs:	-4	and	4.		It's	body	was	executed	and	its	output	was
8.



Well,	with	this	information,	you	can	see	that	there	is	a	problem	with	the	code	I	gave	you.		There's	a	bug	in	it.	
randomInRange	-4	4	will	never	output	a	4	(the	value	provided	for	the	:max	input	in	our	trial).

random	8	outputs	a	number	in	the	range	0	-	7.		To	get	an	output	of	4	we	need	to	give	random	an	input	equal	to
the	output	of	magnitude	plus	1.

Fix	the	bug	(if	you	hadn't	discovered	it	and	fixed	it	on	your	own)...

Finally,	modify	your	program	from	the	last	lesson	that	draws	boxes	at	random	locations	so	that	it	uses
randomInRange.		Also	add	symbolic	constants	where	appropriate...		Use	them	to	make	your	program	more
readable.

You	may	want	to	use	an	operator	that	TG's	interpreter	understands	that	we	have	not	talked	about	yet.		You	may	not
need	it,	but	I	used	it.		Table	9.1	gives	you	the	scoop	on	minus	which	simply	takes	a	number	and	negates	it,	just	like
multiplying	the	number	by	-1.

Command Inputs Description
MINUS number Outputs	the	negative	of	number

Table	9.1

Project:	A	Grid	Toolkit
The	reason	that	I	have	had	you	drawing	axes	and	grids	in	many	of	the	previous	lessons	is	that	they	are	very
common	in	programs.		Here	are	some	windows	which	I	captured;	they	are,	top-to-bottom,	left-to-right:

Programming	a	Robot	in	Machine	Language
Mastermind	Game
Sudoku	Puzzle	Assistant

Game	of	Life
Turtle	Solving	Maze
Paint	Program	(Big	Pixels)



Each	of	these	programs	contains	at	least	one	graphical	object	that	is	grid-like.		I	am	going	to	take	our	use	of
abstraction	to	another	level.		We	are	going	to	write	a	bunch	of	procedures	that	provide	stuff	we	will	need	in	many
programs.		We	are	going	to	get	started	creating	a	GridToolkit.	

A	Grid	Toolkit	Contract

The	first	thing	I'm	going	to	do	is	write	the	rules	for	using	the	GridToolkit.		These	rules	are	going	to	be	its	contract.	
We	will	follow	the	rules	when	we	write	the	procedures	in	the	toolkit.		And...	we	will	follow	the	rules	when	we	use
the	procedures	in	the	toolkit	in	our	programs.		I	talked	a	bit	about	contracts,	as	they	applied	to	a	single	procedure,
when	I	introduced	defining	you	own	procedures.		Our	first	GridToolkit	rules	will	be

1.	 Definition:	our	grid	is	a	bunch	of	squares,	all	of	equal	size,	arranged	in	rows,	each	with	an	equal	number	of
columns

2.	 Definition:	the	squares	making	up	our	grid	will	be	called	cells
3.	 All	procedures	in	the	toolkit	will	have	names	starting	with	"grid"
4.	 A	cell	can	be	identified	in	one	of	two	ways:

by	its	row	and	column	numbers.	Rows	are	ordered	from	top	to	bottom,	with	the	top	row	numbered	zero.
Columns	are	ordered	left	to	right	with	the	leftmost	column	numbered	zero.

by	its	index.	the	index	(number)	of	the	top-left	cell	is	zero	and	then	indicies	increase	left-to-right	and	then
top-to-bottom.

The	Grid	Toolkit	Source	Code

Given	these	rules,	here	are	the	procedures	that	make	up	our	first	pass	at	a	GridToolkit.

	;Symbolic	constants	for	inputs	to	setpencolor



	to	black	
			output	0
			end	
	to	white	
			output	7
			end	

	;color	for	a	cell's	background	
	;SYMBOLIC	CONSTANT	
	to	gridCellColor	
			output	white
			end	

	;color	of	grid's	frame	
	;SYMBOLIC	CONSTANT	
	to	gridFrameColor	
			output	black
			end	

	;size	of	the	sides	of	a	grid	cell	
	;SYMBOLIC	CONSTANT	
	to	gridCellSize	
			output	40
			end	

	;one-half	the	size	of	a	side	of	a	grid	cell	
	to	gridHafCellSiz	
			output	quotient	gridCellSize	2
			end	

	;number	of	columns	in	the	grid	
	;SYMBOLIC	CONSTANT	
	to	gridNumCol	
			output	8
			end	

	;number	of	rows	in	the	grid	
	;SYMBOLIC	CONSTANT	
	to	gridNumRow	
			output	5
			end	

	;number	of	cells	in	the	grid	
	to	gridNumCells	
			output	product	gridNumCol	gridNumRow
			end	

	;height	of	grid	in	turtle	steps	
	to	gridHeight	
			output	product	gridNumRow	gridCellSize
			end	

	;width	of	grid	in	turtle	steps	
	to	gridWidth	
			output	product	gridNumCol	gridCellSize
			end	

	;X	coordinate	for	left	side	of	the	grid	
	;SYMBOLIC	CONSTANT	
	to	gridLeftX	
			output	-160
			end	

	;Y	coordinate	for	bottom	of	the	grid	
	;SYMBOLIC	CONSTANT	
	to	gridBottomY	
			output	-100
			end	

	;Y	coordinate	for	top	of	the	grid	
	;SYMBOLIC	CONSTANT	
	to	gridTopY	
			output	sum	gridBottomY	gridHeight
			end	

	;move	turtle	to	top-left	corner	of	grid	
	to	gridGotoTopLeft	
			penup
			setxy	gridLeftX	gridTopY
			end	

	;move	turtle	to	bottom-left	corner	of	a	cell
	;specified	by	the	index	:idx
	to	gridGotoCell	:idx	
			gridGotoTopLeft
			setheading	180
			forward	product	gridCellSize	(int	quotient	:idx	gridNumCol)
			forward	gridCellSize
			setheading	90
			forward	product	gridCellSize	(remainder	:idx	gridNumCol)
			end	



	;move	turtle	to	the	center	of	the	cell
	;specified	by	the	index	:idx
	to	gridGotoCellCtr	:idx	
			gridGotoCell	:idx
			setheading	90	forward	gridHafCellSiz
			left	90	forward	gridHafCellSiz
			end	

	;draw/redraw	the	cell	specified	by	the	index	:idx
	;the	:color	input	specifies	the	cell's	new	background	color
	to	gridCellFill	:idx	:color	
			gridGotoCellCtr	:idx
			setpensize	gridCellSize	setpencolor	:color
			setheading	0	pendown
			forward	gridHafCellSiz	back	gridCellSize	forward	gridHafCellSiz
			penup	forward	gridHafCellSiz	left	90	forward	gridHafCellSiz
			setpensize	1	setpencolor	gridFrameColor
			setheading	90	pendown
			repeat	4	[forward	gridCellSize	right	90]
			end	

	;draw	the	grid	
	to	gridPaint	
			gridGotoTopLeft
			setheading	180	forward	quotient	gridHeight	2	setheading	90
			setpensize	gridHeight	setpencolor	gridCellColor
			pendown	forward	gridWidth
			gridGotoTopLeft
			setpensize	1	setpencolor	gridFrameColor
			setheading	180	pendown
			repeat	gridNumRow	[fd	gridCellSize	lt	90	fd	gridWidth	bk	gridWidth	rt	90]
			gridGotoTopLeft
			setheading	90	pendown
			repeat	gridNumCol	[fd	gridCellSize	rt	90	fd	gridHeight	bk	gridHeight	lt	90]
			end	

Checkout	the	Grid	Toolkit

If	you	have	the	TG	programming	environment	on	your	computer,	copy	&	paste	the	GridToolkit	source	code	into
TG's	Editor	so	that	you	can	play	with	it.		If	you	want	to	use	the	TG	applet	on	this	web	page	to	play,	use	the
"loadcode	GridToolkit_9.jlogo"	directive	in	the	CommandCenter	to	get	the	source	code	in	the	Editor.

It	has	initial	default	values	in	place	in	all	of	the	procedures	acting	as	symbolic	constants.		These	will	be	changed	as
necessary	in	programs	that	you	write	that	includes	the	GridToolkit.		But,	with	the	default	values	in	place,	you	can
display	a	grid	by	invoking	a	single	procedure:	gridPaint.		Then	you	can	paint	individual	cells	by	invoking
gridCellFill	with	two	inputs,	the	cell's	index	and	the	color	number	it	is	to	be	filled	with.		Add	the	following	code
after	the	GridToolkit	stuff	in	the	Editor	or	type	it	into	the	CommandCenter.

				gridPaint
				gridCellFill	0	1
				gridCellFill	(difference	gridNumCells	1)	4			

Then	try	filling	random	cells	with	random	colors;	here's	an	instruction	that	does	this.

				repeat	gridNumCells	[gridCellFill	random	gridNumCells	random	32]			

Play	with	the	code...	change	some	symbolic	constants	like	the	size	of	the	cells,	the	number	of	rows	and	or
columns...

Why	the	Gift?

So,	why	did	I	give	you	all	of	the	source	code	for	the	GridToolkit	without	making	you	work	for	it?

Answer:	you	will	learn	a	lot	by	reading	someone	else's	source	code.

Long	ago,	when	I	was	convinced	that	Logo	was	a	much	better	language	to	to	use	to	introduce	programming
concepts	than	Java,	the	first	thing	I	did	was	to	read	a	lot	of	Logo	source	code.		Fortunately	for	me,	there	is	a	lot	of
it	available.		Brian	Harvey's	Computer	Science,	Logo	Style	books,	available	free	on-line,	are	a	great	introduction.	
See	the	ItP	acknowledgements	page	for	additional	sources	of	great	Logo	programs.

Now	it's	your	turn	to	read	some	code.		Read	through	the	GridToolkit	source	code.		Use	it	to	complete	the	following
project.

Draw	Balls	in	the	Cells



Write	a	procedure	that	draws	a	colored	ball	in	the	center	of	a	specified	cell.		Then	use	it	and	procedures	in	the
GridToolkit	to	write	a	program	which	draws	random	colored	balls	in	random	cells.		Here	is	an	example	of	what	my
program	painted	in	the	graphics	canvas.

I	used	a	repeat	command	to	paint	20	randomly	colored	balls	into	20	random	cells.

repeat	20	[	gridGotoCellCtr	random	gridNumCells	drawBall	ballSize	random	16	]
	 	 	
	 	 	

Stamp	Turtle	Shapes	in	the	Cells

Write	a	procedure	that	sets	the	shape	of	the	turtle	to	a	random	one.		Read	about	the	stamp	command	using	the
help	directive	in	the	CommandCenter	and	then	use	it	to	paint	shapes	in	random	cells.		Here	is	an	example	of	what
my	program	painted	in	the	graphics	canvas.

Two	New	Built-in	Operators	-	Why?

In	the	GridToolkit,	I	used	two	built-in	operators	that	you	have	not	seen	before.		What	are	they?		Why	did	I	need	to
use	them?

After	you've	thought	about	it	for	a	while	and	have	some	sort	of	answers,	check	what	you	came	up	with	here.

Why	Count	Starting	With	Zero?

In	GridToolkit,	rows	and	columns	were	numbered	starting	with	zero	instead	of	one.		The	index	that	is	used	to
identify	a	particular	cell	also	started	with	the	first	cell	numbered	zero.		This	convention	has	been	in	place	for
decades	in	the	world	of	computer	programming.

The	reason	is	that	this	simplifies	the	code.		Can	you	find	the	code	in	our	GridWorld	which	is	simpler	than	it	would
have	to	be	if	we	started	numbering	the	index	at	one	instead	of	zero?		How	would	the	code	need	to	be	changed	if
the	base	was	one	instead	of	zero?

After	you've	thought	about	it	for	a	while	and	have	some	sort	of	an	answer,	check	what	you	came	up	with	here.

Summary
We've	made	another	quantum	jump	in	how	we	can	reduce	the	complexity	of	the	programs	we	write.		You	now	know
how	to	define	your	own	operators,	procedures	which	output	values.		Symbolic	constants,	a	very	simple	form	of	a
user-defined	operator,	can	make	your	programs	much	more	readable.		And,	binding	meaningful	names	to	complex
expressions,	is	just	one	more	use	of	abstraction,	an	approach	to	writing	programs	that	are	much	more	easily
understood.		And,	the	side	benefit	is	that	a	program	that	is	easy	to	read,	that's	easily	understood.	is	that	it	will
probably	do	what	you	want,	what	you	intended	it	to	do.

Back	to	Operators	&	Expressions



Go	to	the	Table	of	Contents
On	to	Words	&	Sentences

Feel	free	to	e-mail	comments/questions	to	bfoitGuy	<at>	gmail	<dot>	com

	
This	work	(BFOIT:	Introduction	to	Computer	Programming,	by	Guy	M.	Haas),

identified	by	Berkeley	Foundation	for	Opportunities	in	IT	(BFOIT),
is	free	of	known	copyright	restrictions.


