
Learning Objectives 

A student will be able to: 

• Use the First and Second Derivative Tests to find absolute maximum and minimum values of 

a function. 

• Use the First and Second Derivative Tests to solve optimization applications. 

Introduction 

In this lesson we wish to extend our discussion of extrema and look at the absolute 
maximum and minimum values of functions. We will then solve some applications using 
these methods to maximize and minimize functions. 

Absolute Maximum and Minimum 

We begin with an observation about finding absolute maximum and minimum values of 

functions that are continuous on a closed interval. Suppose that f is continuous on a 

closed interval [a,b]. Recall that we can find relative minima and maxima by identifying 

the critical numbers of f in (a,b) and then applying the Second Derivative Test. The 

absolute maximum and minimum must come from either the relative extrema 

of fin (a,b) or the value of the function at the endpoints, f(a) or f(b).Hence the absolute 

maximum or minimum values of a function f that is continuous on a closed 

interval [a,b] can be found as follows: 

1. Find the values of f for each critical value in (a,b); 
2. Find the values of the function f at the endpoints of [a,b]; 

3. The absolute maximum will be the largest value of the numbers found in 1 and 2; the 

absolute minimum will be the smallest number. 

The optimization problems we will solve will involve a process of maximizing and 
minimizing functions. Since most problems will involve real applications that one finds in 
everyday life, we need to discuss how the properties of everyday applications will affect 
the more theoretical methods we have developed in our analysis. Let’s start with the 
following example. 

Example 1: 

A company makes high-quality bicycle tires for both recreational and racing riders. The 
number of tires that the company sells is a function of the price charged and can be 

modeled by the formula T(x)=−x3+36.5x2+50x+250, where x is the priced charged for 

each tire in dollars. At what price is the maximum number of tires sold? How many tires 
will be sold at that maximum price? 
Solution: 



Let’s first look at a graph and make some observations. Set the viewing window ranges 

on your graphing calculator to [−10,50] for x and [−500,10000] for y. The graph 

should appear as follows: 

 

We first note that since this is a real-life application, we observe that both 

quantities, x and T(x), are positive or else the problem makes no sense. These conditions, 

together with the fact that the zero of T(x) is located at x=37.9, suggest that the actual domain 

of this function is 0<x<37. This domain, which we refer to as a feasible domain,illustrates a 

common feature of optimization problems: that the real-life conditions of the situation under 

study dictate the domain values. Once we make this observation, we can use our First and 

Second Derivative Tests and the method for finding absolute maximums and minimums on a 

closed interval (in this problem, [0,37]), to see that the function attains an absolute maximum 

at x=25, at the point (25,8687.5). So, charging a price of $25 will result in a total 

of 8687 tires being sold. 

In addition to the feasible domain issue illustrated in the previous example, many 
optimization problems involve other issues such as information from multiple sources 
that we will need to address in order to solve these problems. The next section 
illustrates this fact. 

Primary and Secondary Equations 

We will often have information from at least two sources that will require us to make 
some transformations in order to answer the questions we are faced with. To illustrate 
this, let’s return to our Lesson on Related Rates problems and recall the right circular 
cone volume problem. 

V=13πr2h. 



 

We started with the general volume formula V=13πr2h , but quickly realized that we did 

not have sufficient information to find dhdt since we had no information about the radius 

when the water level was at a particular height. So we needed to employ some indirect 

reasoning to find a relationship between r and h, r(t)=2h(t)5. We then made an 

appropriate substitution in the original formula (V=13π(2h5)2h=4π75h3) and were 

able to find the solution. 

We started with a primary equation, V=13πr2h, that involved two variables and 

provided a general model of the situation. However, in order to solve the problem, we 

needed to generate a secondary equation, r(t)=2h(t)5, that we then substituted into 

the primary equation. We will face this same situation in most optimization problems. 
Let’s illustrate the situation with an example. 

Example 2: 

Suppose that Mary wishes to make an outdoor rectangular pen for her pet chihuahua. 
She would like the pen to enclose an area in her backyard with one of the sides of the 
rectangle made by the side of Mary's house as indicated in the following figure. If she 

has 90ft of fencing to work with, what dimensions of the pen will result in the maximum 

area? 

 

Solution: 

The primary equation is the function that models the area of the pen and that we wish to 
maximize, 



A=xy. 
The secondary equation comes from the information concerning the fencing Mary has to 
work with. In particular, 

2x+y=90. 
Solving for y we have 

y=90−2x. 
We now substitute into the primary equation to get 

A=xy=x(90−2x), or 

A=90x−2x2. 
It is always helpful to view the graph of the function to be optimized. Set the viewing 
window ranges on your graphing calculator 

to [−10,100] for x and [−500,1200] for y. The graph should appear as follows: 

 

The feasible domain of this function is 0<x<45, which makes sense because if x is 45feet, 

then the figure will be two 45-foot-long fences going away from the house with 0feet left for the 

width, y. Using our First and Second Derivative Tests and the method for finding absolute 

maximums and minimums on a closed interval (in this problem, [0,45]), we see that the 

function attains an absolute maximum at x=22.5, at the point (22.5,1012.5). So the 

dimensions of the pen should be x=22.5, y=45; with those dimensions, the pen will enclose an 

area of 1012.5ft2. 

Recall in the Lesson Related Rates that we solved problems that involved a variety of 
geometric shapes. Let’s consider a problem about surface areas of cylinders. 

Example 3: 

A certain brand of lemonade sells its product in 16−ounce aluminum cans that 

hold 473ml (1ml=1cm3). Find the dimensions of the cylindrical can that will use the 

least amount of aluminum. 
Solution: 

We need to develop the formula for the surface area of the can. This consists of the top 

and bottom areas, each πr2, and the surface area of the side, 2πrh (treating the side as 



a rectangle, the lateral area is (circumference of the top) × (height)). Hence the primary 

equation is 

A=2πr2+2πrh. 
We observe that both our feasible domains require r,h>0. 
In order to generate the secondary equation, we note that the volume for a circular 

cylinder is given by V=πr2h. Using the given information we can find a relationship 

between r and h, h=473πr2. We substitute this value into the primary equation to 

get A=2πr2+2πr(473πr2), or A=2πr2+946r. 

 

dAdr=4πr−946r2=0 when r=9464π−−−−√3≈9.06cm. We note 

that d2Adr2>0 since r>0. Hence we have a minimum surface area 

when r=9464π0−−−−√3≈4.22cm and h=473π(9464π)2−−−−√3=8.44cm. 

Lesson Summary 

1. We used the First and Second Derivative Tests to find absolute maximum and minimum 

values of a function. 

2. We used the First and Second Derivative Tests to solve optimization applications. 

Multimedia Links 

For video presentations of maximum-minimum Business and Economics 
applications (11.0), see Math Video Tutorials by James Sousa, Max & Min Apps. 
w/calculus, Part 1 (9:57) 

and Math Video Tutorials by James Sousa, Max & Min Apps. w/calculus, Part 2 (4:51). 

To see more examples of worked out problems involving finding minima and maxima on 
an interval (11.0), see the video at Khan Academy Minimum and Maximum Values on 
an Interval (11:42). 

This video shows the process of applying the first derivative test to problems with no 
context, just a given function and a domain. A classic problem in calculus involves 
maximizing the volume of an open box made by cutting squares from a rectangular 
sheet and folding up the edges. This very cool calculus applet shows one solution to 
this problem and multiple representations of the problem as well. Calculus Applet on 
Optimization 

http://www.youtube.com/watch?v=lD9r9ROo4oE
http://www.youtube.com/watch?v=lD9r9ROo4oE
http://www.youtube.com/watch?v=Qw_TqJ4ZdhE
http://www.youtube.com/watch?v=gzmSKrwiG3g
http://www.youtube.com/watch?v=gzmSKrwiG3g
http://calculusapplets.com/boxproblem.html
http://calculusapplets.com/boxproblem.html


Review Questions 

In problems #1–4, find the absolute maximum and absolute minimum values, if they 
exist. 

1. f(x)=2x2−6x+6 on [0,5] 
2. f(x)=x3+3x2 on [−2,3] 
3. f(x)=3x23−6x+6 on [1,8] 
4. f(x)=x4−x3 on [−2,2] 
5. Find the dimensions of a rectangle having area 2000ft2 whose perimeter is as small as 

possible. 

6. Find two numbers whose product is 50 and whose sum is a minimum. 

7. John is shooting a basketball from half-court. It is approximately 45ftfrom the half court line 

to the hoop. The function s(t)=−0.025t2+t+15 models the basketball’s height above the 

ground s(t) in feet, when it is tfeet from the hoop. How many feet from John will the ball 

reach its highest height? What is that height? 

8. The height of a model rocket t seconds into flight is given by the 

formula h(t)=−13t3+4t2+25t+4. 

a. How long will it take for the rocket to attain its maximum height? 

b. What is the maximum height that the rocket will reach? 

c. How long will the flight last? 

9. Show that of all rectangles of a given perimeter, the rectangle with the greatest area is a 

square. 

10. Show that of all rectangles of a given area, the rectangle with the smallest perimeter is a 

square. 

 


