
CS	537
Lecture	Notes	Part	6
Memory	Management
Previous	Implementation	of	Processes	
Next	Paging	
Contents

Contents
Allocating	Main	Memory

Algorithms	for	Memory	Management
Compaction	and	Garbage	Collection
Swapping

Allocating	Main	Memory
We	first	consider	how	to	manage	main	(“core”)	memory	(also	called	random-access	memory	(RAM)).	In	general,	a
memory	manager	provides	two	operations:

				Address	allocate(int	size);
				void	deallocate(Address	block);

The	procedure	allocate	receives	a	request	for	a	contiguous	block	of	size	bytes	of	memory	and	returns	a	pointer	to
such	a	block.	The	procedure	deallocate	releases	the	indicated	block,	returning	it	to	the	free	pool	for	reuse.
Sometimes	a	third	procedure	is	also	provided,

				Address	reallocate(Address	block,	int	new_size);

which	takes	an	allocated	block	and	changes	its	size,	either	returning	part	of	it	to	the	free	pool	or	extending	it	to	a
larger	block.	It	may	not	always	be	possible	to	grow	the	block	without	copying	it	to	a	new	location,	so	reallocate
returns	the	new	address	of	the	block.

Memory	allocators	are	used	in	a	variety	of	situations.	In	Unix,	each	process	has	a	data	segment.	There	is	a	system
call	to	make	the	data	segment	bigger,	but	no	system	call	to	make	it	smaller.	Also,	the	system	call	is	quite	expensive.
Therefore,	there	are	library	procedures	(called	malloc,	free,	and	realloc)	to	manage	this	space.	Only	when	malloc	or
realloc	runs	out	of	space	is	it	necessary	to	make	the	system	call.	The	C++	operators	new	and	delete	are	just
dressed-up	versions	of	malloc	and	free.	The	Java	operator	new	also	uses	malloc,	and	the	Java	runtime	system	calls
free	when	an	object	is	no	found	to	be	inaccessible	during	garbage	collection	(described	below).

The	operating	system	also	uses	a	memory	allocator	to	manage	space	used	for	OS	data	structures	and	given	to
“user”	processes	for	their	own	use.	As	we	saw	before,	there	are	several	reasons	why	we	might	want	multiple
processes,	such	as	serving	multiple	interactive	users	or	controlling	multiple	devices.	There	is	also	a	“selfish”
reason	why	the	OS	wants	to	have	multiple	processes	in	memory	at	the	same	time:	to	keep	the	CPU	busy.	Suppose
there	are	n	processes	in	memory	(this	is	called	the	level	of	multiprogramming)	and	each	process	is	blocked
(waiting	for	I/O)	a	fraction	p	of	the	time.	In	the	best	case,	when	they	“take	turns”	being	blocked,	the	CPU	will	be
100%	busy	provided	n(1-p)	>=	1.	For	example,	if	each	process	is	ready	20%	of	the	time,	p	=	0.8	and	the	CPU	could
be	kept	completely	busy	with	five	processes.	Of	course,	real	processes	aren't	so	cooperative.	In	the	worst	case,
they	could	all	decide	to	block	at	the	same	time,	in	which	case,	the	CPU	utilization	(fraction	of	the	time	the	CPU	is
busy)	would	be	only	1	-	p	(20%	in	our	example).	If	each	processes	decides	randomly	and	independently	when	to
block,	the	chance	that	all	n	processes	are	blocked	at	the	same	time	is	only	pn,	so	CPU	utilization	is	1	-	pn.
Continuing	our	example	in	which	n	=	5	and	p	=	0.8,	the	expected	utilization	would	be	1	-	.85	=	1	-	.32768	=
0.67232.	In	other	words,	the	CPU	would	be	busy	about	67%	of	the	time	on	the	average.	[See	also	Tanenbaum,
Section	4.1.3.]

Algorithms	for	Memory	Management

[Tanenbaum,	Section	4.2.]

Clients	of	the	memory	manager	keep	track	of	allocated	blocks	(for	now,	we	will	not	worry	about	what	happens
when	a	client	“forgets”	about	a	block).	The	memory	manager	needs	to	keep	track	of	the	“holes”	between	them.	The
most	common	data	structure	is	doubly	linked	list	of	holes.	This	data	structure	is	called	the	free	list.	This	free	list
doesn't	actually	consume	any	space	(other	than	the	head	and	tail	pointers),	since	the	links	between	holes	can	be
stored	in	the	holes	themselves	(provided	each	hole	is	at	least	as	large	as	two	pointers.	To	satisfy	an	allocate(n)
request,	the	memory	manager	finds	a	hole	of	size	at	least	n	and	removes	it	from	the	list.	If	the	hole	is	bigger	than	n



bytes,	it	can	split	off	the	tail	of	the	hole,	making	a	smaller	hole,	which	it	returns	to	the	list.	To	satisfy	a	deallocate
request,	the	memory	manager	turns	the	returned	block	into	a	“hole”	data	structure	and	inserts	it	into	the	free	list.
If	the	new	hole	is	immediately	preceded	or	followed	by	a	hole,	the	holes	can	be	coalesced	into	a	bigger	hole,	as
explained	below.

How	does	the	memory	manager	know	how	big	the	returned	block	is?	The	usual	trick	is	to	put	a	small	header	in	the
allocated	block,	containing	the	size	of	the	block	and	perhaps	some	other	information.	The	allocate	routine	returns	a
pointer	to	the	body	of	the	block,	not	the	header,	so	the	client	doesn't	need	to	know	about	it.	The	deallocate	routine
subtracts	the	header	size	from	its	argument	to	get	the	address	of	the	header.	The	client	thinks	the	block	is	a	little
smaller	than	it	really	is.	So	long	as	the	client	“colors	inside	the	lines”	there	is	no	problem,	but	if	the	client	has	bugs
and	scribbles	on	the	header,	the	memory	manager	can	get	completely	confused.	This	is	a	frequent	problem	with
malloc	in	Unix	programs	written	in	C	or	C++.	The	Java	system	uses	a	variety	of	runtime	checks	to	prevent	this
kind	of	bug.

To	make	it	easier	to	coalesce	adjacent	holes,	the	memory	manager	also	adds	a	flag	(called	a	“boundary	tag”)	to	the
beginning	and	end	of	each	hole	or	allocated	block,	and	it	records	the	size	of	a	hole	at	both	ends	of	the	hole.

When	the	block	is	deallocated,	the	memory	manager	adds	the	size	of	the	block	(which	is	stored	in	its	header)	to	the
address	of	the	beginning	of	the	block	to	find	the	address	of	the	first	word	following	the	block.	It	looks	at	the	tag
there	to	see	if	the	following	space	is	a	hole	or	another	allocated	block.	If	it	is	a	hole,	it	is	removed	from	the	free	list
and	merged	with	the	block	being	freed,	to	make	a	bigger	hole.	Similarly,	if	the	boundary	tag	preceding	the	block
being	freed	indicates	that	the	preceding	space	is	a	hole,	we	can	find	the	start	of	that	hole	by	subtracting	its	size
from	the	address	of	the	block	being	freed	(that's	why	the	size	is	stored	at	both	ends),	remove	it	from	the	free	list,
and	merge	it	with	the	block	being	freed.	Finally,	we	add	the	new	hole	back	to	the	free	list.	Holes	are	kept	in	a
doubly-linked	list	to	make	it	easy	to	remove	holes	from	the	list	when	they	are	being	coalesced	with	blocks	being
freed.

How	does	the	memory	manager	choose	a	hole	to	respond	to	an	allocate	request?	At	first,	it	might	seem	that	it
should	choose	the	smallest	hole	that	is	big	enough	to	satisfy	the	request.	This	strategy	is	called	best	fit.	It	has	two
problems.	First,	it	requires	an	expensive	search	of	the	entire	free	list	to	find	the	best	hole	(although	fancier	data
structures	can	be	used	to	speed	up	the	search).	More	importantly,	it	leads	to	the	creation	of	lots	of	little	holes	that
are	not	big	enough	to	satisfy	any	requests.	This	situation	is	called	fragmentation,	and	is	a	problem	for	all	memory-
management	strategies,	although	it	is	particularly	bad	for	best-fit.	One	way	to	avoid	making	little	holes	is	to	give
the	client	a	bigger	block	than	it	asked	for.	For	example,	we	might	round	all	requests	up	to	the	next	larger	multiple
of	64	bytes.	That	doesn't	make	the	fragmentation	go	away,	it	just	hides	it.	Unusable	space	in	the	form	of	holes	is
called	external	fragmentation,	while	unused	space	inside	allocated	blocks	is	called	internal	fragmentation.

Another	strategy	is	first	fit,	which	simply	scans	the	free	list	until	a	large	enough	hole	is	found.	Despite	the	name,
first-fit	is	generally	better	than	best-fit	because	it	leads	to	less	fragmentation.	There	is	still	one	problem:	Small
holes	tend	to	accumulate	near	the	beginning	of	the	free	list,	making	the	memory	allocator	search	farther	and
farther	each	time.	This	problem	is	solved	with	next	fit,	which	starts	each	search	where	the	last	one	left	off,
wrapping	around	to	the	beginning	when	the	end	of	the	list	is	reached.

Yet	another	strategy	is	to	maintain	separate	lists,	each	containing	holes	of	a	different	size.	This	approach	works
well	at	the	application	level,	when	only	a	few	different	types	of	objects	are	created	(although	there	might	be	lots	of
instances	of	each	type).	It	can	also	be	used	in	a	more	general	setting	by	rounding	all	requests	up	to	one	of	a	few
pre-determined	choices.	For	example,	the	memory	manager	may	round	all	requests	up	to	the	next	power	of	two
bytes	(with	a	minimum	of,	say,	64)	and	then	keep	lists	of	holes	of	size	64,	128,	256,	...,	etc.	Assuming	the	largest
request	possible	is	1	megabyte,	this	requires	only	14	lists.	This	is	the	approach	taken	by	most	implementations	of
malloc.	This	approach	eliminates	external	fragmentation	entirely,	but	internal	fragmentation	may	be	as	bad	as	50%
in	the	worst	case	(which	occurs	when	all	requests	are	one	byte	more	than	a	power	of	two).



Another	problem	with	this	approach	is	how	to	coalesce	neighboring	holes.	One	possibility	is	not	to	try.	The	system
is	initialized	by	splitting	memory	up	into	a	fixed	set	of	holes	(either	all	the	same	size	or	a	variety	of	sizes).	Each
request	is	matched	to	an	“appropriate”	hole.	If	the	request	is	smaller	than	the	hole	size,	the	entire	hole	is	allocated
to	it	anyhow.	When	the	allocate	block	is	released,	it	is	simply	returned	to	the	appropriate	free	list.	Most
implementations	of	malloc	use	a	variant	of	this	approach	(some	implementations	split	holes,	but	most	never
coalesce	them).

An	interesting	trick	for	coalescing	holes	with	multiple	free	lists	is	the	buddy	system.	Assume	all	blocks	and	holes
have	sizes	which	are	powers	of	two	(so	requests	are	always	rounded	up	to	the	next	power	of	two)	and	each	block
or	hole	starts	at	an	address	that	is	an	exact	multiple	of	its	size.	Then	each	block	has	a	“buddy”	of	the	same	size
adjacent	to	it,	such	that	combining	a	block	of	size	2n	with	its	buddy	creates	a	properly	aligned	block	of	size	2n+1
For	example,	blocks	of	size	4	could	start	at	addresses	0,	4,	8,	12,	16,	20,	etc.	The	blocks	at	0	and	4	are	buddies;
combining	them	gives	a	block	at	0	of	length	8.	Similarly	8	and	12	are	buddies,	16	and	20	are	buddies,	etc.	The
blocks	at	4	and	8	are	not	buddies	even	though	they	are	neighbors:	Combining	them	would	give	a	block	of	size	8
starting	at	address	4,	which	is	not	a	multiple	of	8.	The	address	of	a	block's	buddy	can	be	easily	calculated	by
flipping	the	nth	bit	from	the	right	in	the	binary	representation	of	the	block's	address.	For	example,	the	pairs	of
buddies	(0,4),	(8,12),	(16,20)	in	binary	are	(00000,00100),	(01000,01100),	(10000,10100).	In	each	case,	the	two
addresses	in	the	pair	differ	only	in	the	third	bit	from	the	right.	In	short,	you	can	find	the	address	of	the	buddy	of	a
block	by	taking	the	exclusive	or	of	the	address	of	the	block	with	its	size.	To	allocate	a	block	of	a	given	size,	first
round	the	size	up	to	the	next	power	of	two	and	look	on	the	list	of	blocks	of	that	size.	If	that	list	is	empty,	split	a
block	from	the	next	higher	list	(if	that	list	is	empty,	first	add	two	blocks	to	it	by	splitting	a	block	from	the	next
higher	list,	and	so	on).	When	deallocating	a	block,	first	check	to	see	whether	the	block's	buddy	is	free.	If	so,
combine	the	block	with	its	buddy	and	add	the	resulting	block	to	the	next	higher	free	list.	As	with	allocations,
deallocations	can	cascade	to	higher	and	higher	lists.

Compaction	and	Garbage	Collection

What	do	you	do	when	you	run	out	of	memory?	Any	of	these	methods	can	fail	because	all	the	memory	is	allocated,
or	because	there	is	too	much	fragmentation.	Malloc,	which	is	being	used	to	allocate	the	data	segment	of	a	Unix
process,	just	gives	up	and	calls	the	(expensive)	OS	call	to	expand	the	data	segment.	A	memory	manager	allocating
real	physical	memory	doesn't	have	that	luxury.	The	allocation	attempt	simply	fails.	There	are	two	ways	of	delaying
this	catastrophe,	compaction	and	garbage	collection.

Compaction	attacks	the	problem	of	fragmentation	by	moving	all	the	allocated	blocks	to	one	end	of	memory,	thus
combining	all	the	holes.	Aside	from	the	obvious	cost	of	all	that	copying,	there	is	an	important	limitation	to
compaction:	Any	pointers	to	a	block	need	to	be	updated	when	the	block	is	moved.	Unless	it	is	possible	to	find	all
such	pointers,	compaction	is	not	possible.	Pointers	can	stored	in	the	allocated	blocks	themselves	as	well	as	other
places	in	the	client	of	the	memory	manager.	In	some	situations,	pointers	can	point	not	only	to	the	start	of	blocks
but	also	into	their	bodies.	For	example,	if	a	block	contains	executable	code,	a	branch	instruction	might	be	a	pointer
to	another	location	in	the	same	block.	Compaction	is	performed	in	three	phases.	First,	the	new	location	of	each
block	is	calculated	to	determine	the	distance	the	block	will	be	moved.	Then	each	pointer	is	updated	by	adding	to	it
the	amount	that	the	block	it	is	pointing	(in)to	will	be	moved.	Finally,	the	data	is	actually	moved.	There	are	various
clever	tricks	possible	to	combine	these	operations.

Garbage	collection	finds	blocks	of	memory	that	are	inaccessible	and	returns	them	to	the	free	list.	As	with
compaction,	garbage	collection	normally	assumes	we	find	all	pointers	to	blocks,	both	within	the	blocks	themselves
and	“from	the	outside.”	If	that	is	not	possible,	we	can	still	do	“conservative”	garbage	collection	in	which	every
word	in	memory	that	contains	a	value	that	appears	to	be	a	pointer	is	treated	as	a	pointer.	The	conservative
approach	may	fail	to	collect	blocks	that	are	garbage,	but	it	will	never	mistakenly	collect	accessible	blocks.	There
are	three	main	approaches	to	garbage	collection:	reference	counting,	mark-and-sweep,	and	generational
algorithms.

Reference	counting	keeps	in	each	block	a	count	of	the	number	of	pointers	to	the	block.	When	the	count	drops	to
zero,	the	block	may	be	freed.	This	approach	is	only	practical	in	situations	where	there	is	some	“higher	level”
software	to	keep	track	of	the	counts	(it's	much	too	hard	to	do	by	hand),	and	even	then,	it	will	not	detect	cyclic
structures	of	garbage:	Consider	a	cycle	of	blocks,	each	of	which	is	only	pointed	to	by	its	predecessor	in	the	cycle.
Each	block	has	a	reference	count	of	1,	but	the	entire	cycle	is	garbage.

Mark-and-sweep	works	in	two	passes:	First	we	mark	all	non-garbage	blocks	by	doing	a	depth-first	search	starting
with	each	pointer	“from	outside”:

				void	mark(Address	b)	{
								mark	block	b;
								for	(each	pointer	p	in	block	b)	{
												if	(the	block	pointed	to	by	p	is	not	marked)
																mark(p);
								}
				}

The	second	pass	sweeps	through	all	blocks	and	returns	the	unmarked	ones	to	the	free	list.	The	sweep	pass	usually
also	does	compaction,	as	described	above.

There	are	two	problems	with	mark-and-sweep.	First,	the	amount	of	work	in	the	mark	pass	is	proportional	to	the



amount	of	non-garbage.	Thus	if	memory	is	nearly	full,	it	will	do	a	lot	of	work	with	very	little	payoff.	Second,	the
mark	phase	does	a	lot	of	jumping	around	in	memory,	which	is	bad	for	virtual	memory	systems,	as	we	will	soon	see.

The	third	approach	to	garbage	collection	is	called	generational	collection.	Memory	is	divided	into	spaces.	When	a
space	is	chosen	for	garbage	collection,	all	subsequent	references	to	objects	in	that	space	cause	the	object	to	be
copied	to	a	new	space.	After	a	while,	the	old	space	either	becomes	empty	and	can	be	returned	to	the	free	list	all	at
once,	or	at	least	it	becomes	so	sparse	that	a	mark-and-sweep	garbage	collection	on	it	will	be	cheap.	As	an
empirical	fact,	objects	tend	to	be	either	short-lived	or	long-lived.	In	other	words,	an	object	that	has	survived	for	a
while	is	likely	to	live	a	lot	longer.	By	carefully	choosing	where	to	move	objects	when	they	are	referenced,	we	can
arrange	to	have	some	spaces	filled	only	with	long-lived	objects,	which	are	very	unlikely	to	become	garbage.	We
garbage-collect	these	spaces	seldom	if	ever.

Swapping

[Tanenbaum,	Section	4.2]

When	all	else	fails,	allocate	simply	fails.	In	the	case	of	an	application	program,	it	may	be	adequate	to	simply	print
an	error	message	and	exit.	An	OS	must	be	able	recover	more	gracefully.

We	motivated	memory	management	by	the	desire	to	have	many	processes	in	memory	at	once.	In	a	batch	system,	if
the	OS	cannot	allocate	memory	to	start	a	new	job,	it	can	“recover”	by	simply	delaying	starting	the	job.	If	there	is	a
queue	of	jobs	waiting	to	be	created,	the	OS	might	want	to	go	down	the	list,	looking	for	a	smaller	job	that	can	be
created	right	away.	This	approach	maximizes	utilization	of	memory,	but	can	starve	large	jobs.	The	situation	is
analogous	to	short-term	CPU	scheduling,	in	which	SJF	gives	optimal	CPU	utilization	but	can	starve	long	bursts.
The	same	trick	works	here:	aging.	As	a	job	waits	longer	and	longer,	increase	its	priority,	until	its	priority	is	so	high
that	the	OS	refuses	to	skip	over	it	looking	for	a	more	recently	arrived	but	smaller	job.

An	alternative	way	of	avoiding	starvation	is	to	use	a	memory-allocation	scheme	with	fixed	partitions	(holes	are	not
split	or	combined).	Assuming	no	job	is	bigger	than	the	biggest	partition,	there	will	be	no	starvation,	provided	that
each	time	a	partition	is	freed,	we	start	the	first	job	in	line	that	is	smaller	than	that	partition.	However,	we	have
another	choice	analogous	to	the	difference	between	first-fit	and	best	fit.	Of	course	we	want	to	use	the	“best”	hole
for	each	job	(the	smallest	free	partition	that	is	at	least	as	big	as	the	job),	but	suppose	the	next	job	in	line	is	small
and	all	the	small	partitions	are	currently	in	use.	We	might	want	to	delay	starting	that	job	and	look	through	the
arrival	queue	for	a	job	that	better	uses	the	partitions	currently	available.	This	policy	re-introduces	the	possibility	of
starvation,	which	we	can	combat	by	aging,	as	above.

If	a	disk	is	available,	we	can	also	swap	blocked	jobs	out	to	disk.	When	a	job	finishes,	we	first	swap	back	jobs	from
disk	before	allowing	new	jobs	to	start.	When	a	job	is	blocked	(either	because	it	wants	to	do	I/O	or	because	our
short-term	scheduling	algorithm	says	to	switch	to	another	job),	we	have	a	choice	of	leaving	it	in	memory	or
swapping	it	out.	One	way	of	looking	at	this	scheme	is	that	it	increases	the	multiprogramming	level	(the	number	of
jobs	“in	memory”)	at	the	cost	of	making	it	(much)	more	expensive	to	switch	jobs.	A	variant	of	the	MLFQ	(multi-
level	feedback	queues)	CPU	scheduling	algorithm	is	particularly	attractive	for	this	situation.	The	queues	are
numbered	from	0	up	to	some	maximum.	When	a	job	becomes	ready,	it	enters	queue	zero.	The	CPU	scheduler
always	runs	a	job	from	the	lowest-numbered	non-empty	queue	(i.e.,	the	priority	is	the	negative	of	the	queue
number).	It	runs	a	job	from	queue	i	for	a	maximum	of	i	quanta.	If	the	job	does	not	block	or	complete	within	that
time	limit,	it	is	added	to	the	next	higher	queue.	This	algorithm	behaves	like	RR	with	short	quanta	in	that	short
bursts	get	high	priority,	but	does	not	incur	the	overhead	of	frequent	swaps	between	jobs	with	long	bursts.	The
number	of	swaps	is	limited	to	the	logarithm	of	the	burst	size.

Previous	Implementation	of	Processes	
Next	Paging	
Contents

solomon@cs.wisc.edu	
Tue	Jan	16	14:33:41	CST	2007

Copyright	©	1996-2007	by	Marvin	Solomon.	All	rights	reserved.


