3.7 Optimization

1.

$$
f(x) = 2x^2 - 6x + 6
$$

f'(x) = 4x - 6

Find the critical values.

$$
4x - 6 = 0
$$

$$
x = \frac{6}{4} = \frac{3}{2}
$$

Find the function values of the critical value and the endpoints.

$$
f(0) = 6
$$

\n
$$
f(5) = 50 - 30 + 6 = 26
$$

\n
$$
f\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^2 - 6\left(\frac{3}{2}\right) + 6 = \frac{3}{2}
$$

There is an absolute minimum at $(\frac{3}{2})$ $\frac{3}{2}, \frac{3}{2}$ $\frac{3}{2}$). There is an absolute maximum at (5,26). 2.

$$
f(x) = x3 + 3x2
$$

$$
f'(x) = 3x2 + 6x
$$

Find the critical values.

$$
3x2 + 6x = 0
$$

\n
$$
3x(x+2) = 0
$$

\n
$$
x = 0 \text{ or } x = -2
$$

Find the function values of the critical value and the endpoints.

$$
f(0) = 0
$$

f(-2) = 6

$$
f(3) = 27 + 27 = 54
$$

There is an absolute minimum at $(0,0)$. There is an absolute maximum at $(3,54)$.

3.7. Optimization www.ck12.org

3.

$$
f(x) = 3x^{\frac{2}{3}} - 6x + 6
$$

$$
f'(x) = 2x^{-\frac{1}{3}} - 6
$$

Find the critical values.

$$
2x^{-\frac{1}{3}} - 6 = 0
$$

$$
2x^{-\frac{1}{3}} = 6
$$

$$
x^{-\frac{1}{3}} = 3
$$

$$
x^{-1} = 27
$$

$$
x = \frac{1}{27}
$$

Find the function values of the critical value and the endpoints.

$$
f\left(\frac{1}{27}\right) = 3\left(\sqrt[3]{27}\right)^2 - 6\left(\frac{1}{27}\right) + 6 = 27 - \frac{6}{27} + 6 = 32.8
$$

f(1) = 3
f(8) = 12 - 48 + 6 = -30

There is an absolute minimum at $(1,3)$. There is an absolute maximum at $(8,-30)$. 4.

$$
f(x) = x4 - x3
$$

$$
f'(x) = 4x3 - 3x2
$$

Find the critical values.

$$
4x3 - 3x2 = 0
$$

$$
x2 (4x - 3) = 0
$$

$$
x2 = 0 \text{ or } 4x - 3 = 0
$$

$$
x = 0 \text{ or } x = \frac{3}{4}
$$

Find the function values of the critical value and the endpoints.

$$
f(0) = 0
$$

$$
f\left(\frac{3}{4}\right) = \left(\frac{3}{4}\right)^4 - \left(\frac{3}{4}\right)^3 = -0.105
$$

$$
f(-2) = 24
$$

$$
f(2) = 8
$$

There is an absolute minimum at $\left(\frac{3}{4}\right)$ $\frac{3}{4}$, -0.105). There is an absolute maximum at $(-2, -24)$.

- 5. The primary equation is $P = 2x + 2y$.
- The secondary equation is $xy = 2000$.
- Both feasible domains require $x > 0$ and $y > 0$.

Solve the secondary equation for $y: y = \frac{2000}{x}$.

Substitute the secondary equation into the primary equation and simplify:

$$
P = 2x + 2y
$$

$$
= 2x + 2\left(\frac{2000}{x}\right)
$$

$$
= 2x + \frac{4000}{x}
$$

Find the critical value:

$$
P = 2x + \frac{2000}{x}
$$

\n
$$
\frac{dP}{dx} = 2 + \frac{(-1)4000}{x^2}
$$

\n
$$
2 - \frac{4000}{x^2} = 0
$$

\n
$$
2x^2 - 4000 = 0
$$

\n
$$
x^2 - 2000 = 0
$$

\n
$$
x = 20\sqrt{5}
$$

\n
$$
f\left(20\sqrt{5}\right) = \frac{2000}{20\sqrt{5}} = 20\sqrt{5}
$$

Use the second derivative to find if 20 $\sqrt{5}$ is an absolute maximum or minimum.

$$
\frac{d^2P}{dx^2} = \frac{8000}{x^3}
$$

$$
\frac{d^2P}{dx^2}\Big|_{x=20\sqrt{5}} = \frac{8000}{(20\sqrt{5})^3} > 0
$$

20 $\sqrt{5}$ is an absolute minimum. The dimensions of the rectangle with a perimeter as small as possible is 20 $\sqrt{5}$ by 20 √ 5.
20 √ 5.

6. The primary equation is $S = x + y$.

The secondary equation is $xy = 50$.

The feasible domain is $x, y > 0$ or $x, y < 0$

Solve $xy = 50$ for *y*.

$$
y = \frac{50}{x}
$$

Substitute $y = \frac{50}{x}$ into the primary equation.

$$
S = x + \frac{50}{x}
$$

$$
\frac{dS}{dx} = 1 - \frac{50}{x^2}
$$

Find the critical values.

$$
1 - \frac{50}{x^2} = 0
$$

$$
x^2 - 50 = 0
$$

$$
x = \sqrt{50} = \pm 5\sqrt{2}
$$

$$
x = 5\sqrt{2}
$$
, than $y = \frac{50}{5\sqrt{2}} = 5\sqrt{2}$
 $x = -5\sqrt{2}$, than $y = -\frac{50}{5\sqrt{2}} = -5\sqrt{2}$

Use the second derivative test to determine which critical value is the absolute minimum.

$$
\frac{d^2S}{dx^2} = 2\left(\frac{50}{x^3}\right)
$$

$$
\frac{d^2S}{dx^2}\Big|_{x=5\sqrt{2}} = \frac{100}{\left(5\sqrt{2}\right)^3} > 0
$$

$$
\frac{d^2S}{dx^2}\Big|_{x=-5\sqrt{2}} = \frac{100}{\left(-5\sqrt{2}\right)^3} < 0
$$

Thus, $5\sqrt{2}$ is an absolute minimum. The numbers $5\sqrt{2}$ and $5\sqrt{2}$ give the absolute minimum of the sum *S*. 7. The domain is [0,45].

$$
s(t) = -0.025t^{2} + t + 15
$$

\n
$$
s'(t) = -0.050t + 1
$$

\n
$$
-0.050t = -1
$$

\n
$$
t = 20
$$

\n
$$
s(20) = 25
$$

\n
$$
s''(t) = -0.05 < 0
$$

Find the function values of the endpoints and the critical values.

$$
s(0) = 15
$$

\n
$$
s(45) = 9.375
$$

\n
$$
s(20) = 25
$$

 $t = 20$ is an absolute maximum.

At $t = 20$ feet, the basketball will reach a height of 25 feet.

8.
$$
h(t) = -\frac{1}{3}t^3 + 4t^3 + 25t + 4
$$

a. Find the first derivative.

$$
h'(t) = -t^2 + 8t + 25
$$

$$
-t^2 + 8t + 25 = 0
$$

$$
t^2 - 8t - 25 = 0
$$

Use the quadratic formula to find the critical values.

$$
t = \frac{8 \pm \sqrt{64 - 4(1)(-25)}}{2}
$$

$$
t = 4 \pm \sqrt{41}
$$

Since $t \ge 0$, we consider the critical value $t = 4 + 1$ √ 41.

$$
h''(t) = -2t + 8
$$

$$
h''\left(4 + \sqrt{41}\right) = -2\left(4 + \sqrt{41}\right) + 8 = -2\sqrt{41} < 0
$$

 $t = 4 +$ √ 41 is a maximum. b. $h(4+)$ $\sqrt{41}$ = 321.7 ft

c. The rocket hits the ground when $h(t) = 0$. Use a graphing calculator to find the zero of the function after $h(4+\sqrt{41}) = 321.7$. The rocket hits the ground when $t \approx 16.6$ seconds.

9. Let *A* be a given perimeter. The primary equation is $A = xy$.

The secondary equation is $P = 2x + 2y$.

Both feasible domains require $x > 0$ and $y > 0$.

Solve the secondary equation for *y*:

$$
P = 2x + 2y
$$

P - 2x = 2y.

$$
\frac{P}{2} - x = y
$$

Substitute the secondary equation into the primary equation and simplify:

$$
A = xy
$$

= $x \left(\frac{P}{2} - x \right)$
= $\frac{Px}{2} - x^2$

Find the critical value:

$$
A = \frac{Px}{2} - x^2
$$

$$
\frac{dA}{dx} = \frac{P}{2} - 2x
$$

$$
\frac{P}{2} - 2x = 0
$$

$$
-2x = -\frac{P}{2}
$$

$$
x = \frac{P}{4}
$$

Find the corresponding *y*.

$$
P = 2x + 2y
$$

\n
$$
P = 2\left(\frac{P}{4}\right) + 2y
$$

\n
$$
P - \frac{P}{2} = 2y
$$

\n
$$
\frac{P}{2} = 2y
$$

\n
$$
\frac{P}{4} = y
$$

Use the second derivative to find if $\frac{p}{4}$ is an absolute maximum or minimum.

$$
\frac{d^2A}{dx^2} = -2
$$

$$
\frac{d^2P}{dx^2}\Big|_{x=\frac{P}{4}} = -2 < 0
$$

P $\frac{p}{2}$ is an absolute maximum. The dimensions of the rectangle with a area as large as possible is $\frac{p}{2}$ by $\frac{p}{2}$. 10. Let *P* be a given perimeter. The primary equation is $P = 2x + 2y$. The secondary equation is $A = xy$. Both feasible domains require $x > 0$ and $y > 0$.

Solve the secondary equation for $y : y = \frac{A}{x}$ $\frac{A}{x}$. Substitute the secondary equation into the primary equation and simplify:

$$
P = 2x + 2y
$$

$$
= 2x + 2\left(\frac{A}{x}\right)
$$

$$
= 2x + \frac{2A}{x}
$$

Find the critical value:

$$
P = 2x + \frac{2A}{x}
$$

\n
$$
\frac{dP}{dx} = 2 + \frac{2A}{x^2} = 2 - \frac{2A}{x^2}
$$

\n
$$
2 - \frac{2A}{x^2} = 0
$$

\n
$$
2x^2 - 2A = 0
$$

\n
$$
x^2 - A = 0
$$

\n
$$
x^2 = 2000
$$

\n
$$
x = \sqrt{A}
$$

Find the corresponding *y*.

$$
A = xy = \sqrt{Ay}
$$

$$
\sqrt{A} = y
$$

Use the second derivative to find if \sqrt{A} is an absolute maximum or minimum.

$$
\frac{d^2P}{dx^2} = \frac{4A}{x^3}
$$

$$
\frac{d^2P}{dx^2}\Big|_{x=\sqrt{A}} = \frac{4A}{\left(\sqrt{A}\right)^3} > 0
$$

 \sqrt{A} is an absolute minimum. The dimensions of the rectangle with a perimeter as small as possible is \sqrt{A} by \sqrt{A} .