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3.1 Related Rates

1. a. Answers will vary.

b. Answers will vary.

2.

4x2 +16y2 = 32

4
(

2x
dx
dt

)
+16

(
2y

dy
dt

)
= 0

8x
dx
dt

+32y
dy
dt

= 0

Substitute (2,1) and dx
dt = 3 into the last equation and solve for dy

dx .

8x
dx
dt

+32y
dy
dt

= 0

16(1)(3)+32
dy
dt

= 0

48+32
dy
dt

= 0

32
dy
dt

=−48

dy
dt

=
−48
32

=
3 ft

2 sec

3. Draw a diagram of the situation. The runner is 2
3 (60) = 40 ft from first base. The player’s rate is dx

dt =
18 ft
sec .

The variable y represents the distance between the runner and home plate. The variable x represents the distance
traveled by the runner. The rate at which the distance between the runner and home plate is changing is dy

dt . The

runner is 2
3 (60) = 40 ft from first base. The player’s rate of change is dx

dt =
18 ft
sec . The diagram shows that a right

triangle is formed with x, the side of the diamond, and y. Use the Pythagorean Theorem to solve for y.
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602 +402 = y2

3600+1600 = y2

5200 = y2

√
5200 = y

Now, differentiate 602 + x2 = y2 with respect to time t and substitute the known values to find dy
dt .

602 + x2 = y2

0+2x
dx
dt

= 2y
dy
dt

2x
dx
dt

= 2y
dy
dt

2(40)
18 ft
sec

= 2
(√

5200
) dy

dt
1440 ft

sec
= 2

(√
5200

) dy
dt

1440 ft

2
(√

5200
)

sec
=

dy
dt

720 ft√
5200sec

=
dy
dt

9.98 ft
sec

≈ dy
dt

4. Draw a diagram of the situation. The balloon was 300 ft from the ground. The balloon’s rate of change was
dx
dt =

20 ft
sec .

The variable y represents the distance between Mr. Smith’s place and the balloon’s place. The variable x represents
the height of the balloon. The rate at which the distance between Mr. Smith’s place and the balloon’s place was
changing is dy

dt .The diagram shows that a right triangle is formed with x, the height of the balloon, and y. Use the
Pythagorean Theorem to solve for y.
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3002 +1002 = y2

90,000+10,000 = y2

100,000 = y2√
100,000 = y

Now, differentiate 1002 + x2 = y2 with respect to time t and substitute the known values to find dy
dt .

1002 + x2 = y2

0+2x
dx
dt

= 2y
dy
dt

2x
dx
dt

= 2y
dy
dt

2(300)
20 ft
sec

= 2
(√

100,000
) dy

dt
12,000 ft

sec
= 2

(√
100,000

) dy
dt

12,000 ft
2
(√

100,000
)

sec
=

dy
dt

6,000 ft√
100,000sec

=
dy
dt

18.97 ft
sec

≈ dy
dt

5. Draw a diagram of the situation. Let x represent the distance traveled by the first train. The rate of change of the
first train was dx

dt =
65 mi

hr . Let y represent the distance traveled by the second train. The rate of change of the second

train was dy
dt =

75 mi
hr . At 3 PM, the distance y = 130 mi and the distance x = 120 mi. Let s represent the distance

between the two trains.
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Use the Pythagorean Theorem to solve for s.

1202 +1302 = s2

14,400+16,900 = s2

31,300 = s2√
31,300 = s

Now, differentiate y2 + x2 = s2 with respect to time t and substitute the known values to find ds
dt .

y2 + x2 = s2

2y
dy
dt

+2x
dx
dt

= 2s
ds
dt

y
dy
dt

+ x
dx
dt

= s
ds
dt

(130)
75 mi

hr
+(120)

65 mi
hr

=
√

31,300
ds
dt

9,750 mi
hr

+
7,800 mi

hr
=
√

31,300
ds
dt

17,750 mi√
31,300 hr

=
ds
dt

99.20 mi
hr

≈ ds
dt

6. Draw a diagram of the situation. Let x represent the distance on the ground between the bottom of the ladder and
the wall. Let y represent the height of the ladder against the wall. The rate of change of the ladder is dy

dt = −
6 ft
sec .

The distance between the bottom of the ladder and the wall is 17 ft.

Use the Pythagorean Theorem to solve for x when y = 8.

x2 +82 = 172

x2 +64 = 289

x2 = 225

x = 15

Now, differentiate 172 + x2 = y2 with respect to time t and substitute the known values to find dx
dt .
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x2 + y2 = 172

2x
dx
dt

+2y
dx
dt

= 0

x
dx
dt

+ y
dx
dt

= 0

(15)
dx
dt

+(8)
−6 ft
sec

= 0

(15)
dx
dt
− 48 ft

sec
= 0

(15)
dx
dt

=
48 ft
sec

dx
dt

=
48 ft

(15) sec
dx
dt
≈ 16 ft

5 sec

7. A = lw where ` represents the length of the rectangle, w represents the width, and A represents the area of the
rectangle. Then dl

dt =
6 ft
min and dw

dt = 2 ft
min . Differentiate the equation A = lw with respect to time t.

A = lw
dA
dt

=
dl
dt

w+ l
dw
dt

=
6 ft
min

(15)+(25)
2 ft
min

=
90 ft
min

+
50 ft
min

=
140 ft
min

8. When d p
dt = −10

week , find dx
dt .

9. Let s = length of one side of the cube. Then volume V = s3.

V = s3

dV
dt

= 3s2 ds
dt

dV
dt

= 3(6 in.)2 1 in.
4 min

=
27 in.3

4 min

10. a. A = πr2

Solve for r when A = 36π in.2
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36π = πr2

36 = r2

6 = r

A = πr2

dA
dt

= 2πr
dr
dt

24 in.
min

= 2π(6)
dr
dt

24 in.
(12π)min

=
dr
dt

2 in.
π min

=
dr
dt

b.

C = 2πr
dC
dt

= 2π
dr
dt

= 2π

(
2 in.

π min

)
=

4 in.
min
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