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3.4 The Second Derivative Test

1.

f (x) =
x2

4
+

4
x
=

x2

4
+4x−1

f ′ (x) =
2x
4
−4x−2 =

x
2
− 4

x2

f ′′ (x) =
1
2
+8x−3 =

1
2
+

8
x3

Critical values:

x
2
− 4

x2 = 0

x3−8 = 0

x3 = 8

x = 2

f (2) =
4
4
+

4
2
= 1+2 = 3

Note that f ′ (x) is undefined for x = 0.

Applying the Second Derivative Test:

f ′′ (2) = 1
2 +

8
x3 =

1
2 +

8
8 > 0, f ′′ (2), is undefined for x = 0.

There is a relative minimum at x = 2. The relative minimum of the graph is at (2,3).

2. a.

f ′ (x) = 2x+a

2(1)+a = 0

2+a = 0

a =−2

f (1) = 1−2(1)+b

3 = 1−2+b

3+1 = b

4 = b

f (x) = x2−2x+4

f ′ (x) =−2x−2

f ′′ (x) =−2

Then f (1) = 1−2+4 = 3.
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b. Applying the Second Derivative Test:

f ′′ (1) =−2 < 0

The point (1,3) is an absolute maximum of f .

3.

f (x) = x3 + x2

f ′ (x) = 3x2 +2x

f ′′ (x) = 6x+2

Find the critical values by solving f ′ (x) = 0.

f ′ (x) = 3x2 +2x = 0

x(3x+2) = 0

x = 0 or 3x+2 = 0

3x =−2

x =−2
3

Find where f ′′ (x) = 0.

f ′′ (x) = 0

6x+2 = 0

6x =−2

x =−1
3

Find the function values for these special points.

f (x) = x3 + x2

f
(
−2

3

)
=

(
−2

3

)3

+

(
−2

3

)2

= 0.15

f
(
−1

3

)
=

(
−1

3

)3

+

(
−1

3

)2

= 0.07

f (0) = 0

Divide the number line into the intervals using the values from f ′ (x) = 0 and f ′′ (x) = 0 and make a table. Use a test
point from each interval to check the signs of the first and second derivatives.
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Interval
(
−∞,−2

3

) (
−2

3
,−1

3

) (
−1

3
,0
)

(0,+∞)

Text point x = c c =−1 c =−1
2

c =−1
6

c = 1

f ′ (x) = 3x2 +2x 3(−1)2 +2(−1) 3
(
−1

2

)2

+2
(
−1

2

)
3
(
−1

6

)2

+2
(
−1

6

)
3(1)2 +2(1)

f ′ (c) = 3−2 > 0 =
3
4
−1 < 0 =

3
36
− 2

6
< 0 = 3+2 > 0

sign of f ′ (x) f ′ (x)> 0 f ′ (x)< 0 f ′ (x)< 0 f ′ (x)> 0

f ′′ (x) = 6x+2 6(−1)+2 6
(
−1
2

)
+2 6

(
−1
6

)
+2 6(1)+2

f ′′ (c) =−6+2 < 0 =−3+2 < 0 =−1+2 > 0 = 6+2 > 0

Sign of f ′′ (x) f ′′ (x)< 0 f ′′ (x)< 0 f ′′ (x)> 0 f ′′ (x)> 0

Shape of Graph Increasing, Concave down Decreasing, Concave down Decreasing, Concave up Increasing

concave up

There is a relative maximum at x =−2
3 located at

(
−2

3 ,0.15
)
. There is a relative minimum at x = 0 located at (0,0).

There is a point of inflection at
(
−1

3 ,0.07
)
.
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4.

f (x) =
x2 +3

x

f ′ (x) =
x(2x)−

(
x2 +3

)
1

x2

=
2x2− x2−3

x2

=
x2−3

x2

f ′′ (x) =
x2 (2x)−

(
x2−3

)
(2x)

x4

=
2x3−2x3 +6x

x4

=
6x
x4

=
6
x3

f ′ (x) =
x2−3

x2 = 0

x2−3 = 0

x2 = 3

x =±
√

3

f ′ (x) is undefined at x = 0.

f ′′ (x) = 6
x3 is undefined for x = 0.

Find the function values:

f (x) =
x2 +3

x

f
(
−
√

3
)
=− 6√

3
=−6

√
3

3
=−2

√
3

f
(√

3
)
=

6√
3
=

6
√

3
3

= 2
√

3

Make the table of intervals.
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Interval
(
−∞,−

√
3
) (

−
√

3,0
) (

0,
√

3
) (√

3,∞
)

Text point x = c c =−2 c =−1 c = 1 c = 2

f ′ (x) =
x2−3

x2
x2−3

x2
(−1)2−3

(−1)2
12−3

12
(2)2−3

(2)2

f ′ (c) =
(−2)2−3

(−2)2 > 0 =
1−3

1
< 0 =−2 < 0 =

1
4
> 0

sign of f ′ (x) f ′ (x)> 0 f ′ (x)< 0 f ′ (x)< 0 f ′ (x)> 0

f ′′ (x) =
6
x3

6

(−2)3
6

(−1)3
6

(1)3
6

(2)3

f ′′ (c) =
6
−8

< 0 =
6
−1

< 0 =
6
1
> 0 =

6
8
> 0

Sign of f ′′ (x) f ′′ (x)< 0 f ′′ (x)< 0 f ′′ (x)> 0 f ′′ (x)> 0

Shape of Graph Increasing, Concave down Decreasing, Concave down Decreasing, Concave up Increasing

concave up

The function has a relative maximum at x = −
√

3 located at
(
−
√

3,−2
√

3
)

. There is a relative minimum at

x =
√

3 located at
(√

3,2
√

3
)

. There are no inflection points.
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5.

f (x) = x3−12x

f ′ (x) = 3x2−12x

f ′′ (x) = 6x

f ′ (x) = 3x2−12 = 0

3
(
x2−4

)
= 0

3(x−2)(x+2) = 0

(x−2) = 0 or x+2 = 0

x = 2 or x =−2

f ′′ (x) = 0

6x = 0

x = 0

f (2) = 8−24 =−16

f (−2) =−8+24 = 16

f (0) = 0

Interval (−∞,−2) (−2,0) (0,2) (2,∞)

Text point x = c c =−3 c =−1 c = 1 c = 3

f ′ (x) = 3x2−12 3x2−12 3x2−12 3x2−12 3x2−12

f ′ (c) = 3(−3)2−12 > 0 = 3(−1)2−12 < 0 = 3(1)2−12 < 0 = 3(3)2−12 > 0

sign of f ′ (x) f ′ (x)> 0 f ′ (x)< 0 f ′ (x)< 0 f ′ (x)> 0

f ′′ (x) = 6x 6x 6x 6x 6x

f ′′ (c) = 6(−3)< 0 = 6(−1)< 0 = 6(1)> 0 = 6(3)< 0

Sign of f ′′ (x) f ′′ (x)< 0 f ′′ (x)< 0 f ′′ (x)> 0 f ′′ (x)> 0

Shape of Graph Increasing, Concave down Decreasing, Concave down Decreasing, Concave up Increasing

concave up

The function has a relative maximum at x = −2 located at (−2,16). The relative minimum is located at (2,16).
There is a point of inflection at (0,0).
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6.

f (x) =−1
4

x4 +2x2

f ′ (x) =−x3 +4x

f ′′ (x) =−3x2 +4

f ′ (x) =−x3 +4x = 0

−x
(
x2−4

)
= 0

−x(x−2)(x+2) = 0

x = 0 or x−2 = 0 or x+2 = 0

x = 0 or x = 2 or x =−2

f ′′ (x) = 0

−3x2 +4 = 0

x2 =
−4
−3

=
4
3

x =± 2√
3
=±2

√
3

3
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f (2) = 4

f (−2) = 4

f (0) = 0

f

(
−2
√

3
3

)
=−1

4

(
−2
√

3
3

)4

+2

(
−2
√

3
3

)2

=−1
4

(
16×9

81

)
+2
(

12
9

)
=−4

9
+

24
9

=
20
9

f

(
2
√

3
3

)
=−1

4

(
2
√

3
3

)4

+2

(
2
√

3
3

)2

=−1
4

(
16×9

81

)
+2
(

12
9

)
=−4

9
+

24
9

=
20
9

Interval (−∞,−2)

(
−2,−2

√
3

3

) (
−2
√

3
3

,0

) (
0,

2
√

3
3

)
Text point x = c c =−3 c =−1.5 c =−1 c = 1

f ′ (x) =−x3 +4x − (−3)3 +4(−3) − (−1.5)3 +4(−1.5) − (−1)3 +4(−1) − (1)3 +4(1)

f ′ (c) = 27−12 > 0 =−2.625 < 0 = 1−4 < 0 =−1+4 > 0

sign of f ′ (x) f ′ (x)> 0 f ′ (x)< 0 f ′ (x)< 0 f ′ (x)> 0

f ′′ (x) =−3x2 +4 −3(−3)2 +4 −3(−1.5)2 +4 −3(−1)2 +4 −3(1)2 +4

f ′′ (c) =−27+4 < 0 =−6.75+4 < 0 =−3+4 > 0 =−3+4 > 0

Sign of f ′′ (x) f ′′ (x)< 0 f ′′ (x)< 0 f ′′ (x)> 0 f ′′ (x)> 0

Shape of Graph Increasing, Concave down Decreasing, Concave down Decreasing, Concave up Increasing

concave up

(
2
√

3
3

,2

)
(2,∞)

c = 1.5 c = 3

− (1.5)3 +4(1.5) − (3)3 +4(3)

= 2.625 > 0 =−27+12 < 0

f ′ (x)> 0 f ′ (x)< 0

−3(1.5)2 +4 −3(3)2 +4

=−6.75+4 < 0 =−27+4 < 0

f ′′ (x)< 0 f ′′ (x)< 0

Increasing, Concave down Decreasing Concave down
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The relative maximums are at x = 2 and x = −2. They are located at (−2,4) and (2,4). The relative minimum is

located at (0,0). There are two inflection points at
(
−2
√

3
3 , 20

9

)
and

(
2
√

3
3 , 20

9

)
.

7.a. General Graph

Close up of the interval
(
0, 1

2

)

You may need to zoom in even more on the graph. The graph is concave up in the interval.

b.
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The relative minimum is at (0.25,−0.10).

8. False

Find the first and second derivatives.

f (x) = x4 +4x3

f ′ (x) = 4x3 +12x2

f ′′ (x) = 12x2 +24x

The critical values are:

4x3 +12x2 = 0

4x2 (x+3) = 0

x = 0 or x =−3

The possible inflection points are:

12x2 +24x = 0

12x(x+2) = 0

x = 0 or x =−2

Check the possible inflection points.

Interval (−∞,−2) (−2,0) (0,∞)

sign of f ′′ (x) f ′′ (x)> 0 f ′′ (x)< 0 f ′′ (x)> 0

Shape of Graph Concave up Concave down Concave up

Both x = 0 and x =−2 are inflection points.

x =−3 is a relative minimum because f ′′ (−3)> 0.

9. One example is f (x) = x2 + 1
x−1 . It has exactly relative minimum. Look at the graph.
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10. One example is f (x) =
√

x on the interval (0,∞).
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