3.4 The Second Derivative Test

1.

$$f(x) = \frac{x^2}{4} + \frac{4}{x} = \frac{x^2}{4} + 4x^{-1}$$
$$f'(x) = \frac{2x}{4} - 4x^{-2} = \frac{x}{2} - \frac{4}{x^2}$$
$$f''(x) = \frac{1}{2} + 8x^{-3} = \frac{1}{2} + \frac{8}{x^3}$$

Critical values:

$$\frac{x}{2} - \frac{4}{x^2} = 0$$

 $x^3 - 8 = 0$
 $x^3 = 8$
 $x = 2$
 $f(2) = \frac{4}{4} + \frac{4}{2} = 1 + 2 = 3$

Note that f'(x) is undefined for x = 0.

Applying the Second Derivative Test:

 $f''(2) = \frac{1}{2} + \frac{8}{x^3} = \frac{1}{2} + \frac{8}{8} > 0, f''(2)$, is undefined for x = 0.

There is a relative minimum at x = 2. The relative minimum of the graph is at (2,3). 2. a.

$$f'(x) = 2x + a$$

$$2(1) + a = 0$$

$$2 + a = 0$$

$$a = -2$$

$$f(1) = 1 - 2(1) + b$$

$$3 = 1 - 2 + b$$

$$3 + 1 = b$$

$$4 = b$$

$$f(x) = x^{2} - 2x + 4$$
$$f'(x) = -2x - 2$$
$$f''(x) = -2$$

Then f(1) = 1 - 2 + 4 = 3.

b. Applying the Second Derivative Test:

$$f''(1) = -2 < 0$$

The point (1,3) is an absolute maximum of *f*. 3.

$$f(x) = x^{3} + x^{2}$$
$$f'(x) = 3x^{2} + 2x$$
$$f''(x) = 6x + 2$$

Find the critical values by solving f'(x) = 0.

$$f'(x) = 3x^{2} + 2x = 0$$
$$x(3x+2) = 0$$

$$x = 0 \text{ or } 3x + 2 = 0$$
$$3x = -2$$
$$x = -\frac{2}{3}$$

Find where f''(x) = 0.

$$f''(x) = 0$$

$$6x + 2 = 0$$

$$6x = -2$$

$$x = -\frac{1}{3}$$

Find the function values for these special points.

$$f(x) = x^{3} + x^{2}$$

$$f\left(-\frac{2}{3}\right) = \left(-\frac{2}{3}\right)^{3} + \left(-\frac{2}{3}\right)^{2} = 0.15$$

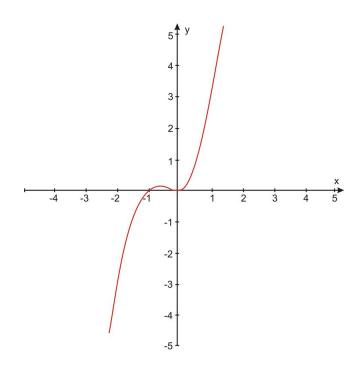
$$f\left(-\frac{1}{3}\right) = \left(-\frac{1}{3}\right)^{3} + \left(-\frac{1}{3}\right)^{2} = 0.07$$

$$f(0) = 0$$

Divide the number line into the intervals using the values from f'(x) = 0 and f''(x) = 0 and make a table. Use a test point from each interval to check the signs of the first and second derivatives.

Interval
$$\left(-\infty, -\frac{2}{3}\right)$$
 $\left(-\frac{2}{3}, -\frac{1}{3}\right)$ $\left(-\frac{1}{3}, 0\right)$ $(0, +\infty)$ Text point $x = c$ $c = -1$ $c = -\frac{1}{2}$ $c = -\frac{1}{6}$ $c = 1$ $f'(x) = 3x^2 + 2x$ $3(-1)^2 + 2(-1)$ $3\left(-\frac{1}{2}\right)^2 + 2\left(-\frac{1}{2}\right)$ $3\left(-\frac{1}{6}\right)^2 + 2\left(-\frac{1}{6}\right)$ $3(1)^2 + 2(1)$ $f'(c)$ $= 3 - 2 > 0$ $= \frac{3}{4} - 1 < 0$ $= \frac{3}{36} - \frac{2}{6} < 0$ $= 3 + 2 > 0$ sign of $f'(x)$ $f'(x) > 0$ $f'(x) < 0$ $f'(x) < 0$ $f'(x) > 0$ $f''(c)$ $= -6 + 2 < 0$ $= -3 + 2 < 0$ $= -1 + 2 > 0$ $= 6 + 2 > 0$ Sign of $f''(x)$ $f''(x) < 0$ $f''(x) < 0$ $f''(x) > 0$ $f''(x) > 0$ f''(c) $= -6 + 2 < 0$ $= -3 + 2 < 0$ $= -1 + 2 > 0$ $= 6 + 2 > 0$ Sign of $f''(x)$ $f''(x) < 0$ $f''(x) < 0$ $f''(x) > 0$ $f''(x) > 0$ Shape of GraphIncreasing, Concave downDecreasing, Concave downDecreasing, Concave upIncreasing
concave up

There is a relative maximum at $x = -\frac{2}{3}$ located at $\left(-\frac{2}{3}, 0.15\right)$. There is a relative minimum at x = 0 located at (0, 0). There is a point of inflection at $\left(-\frac{1}{3}, 0.07\right)$.



4.

$$f(x) = \frac{x^2 + 3}{x}$$

$$f'(x) = \frac{x(2x) - (x^2 + 3) 1}{x^2}$$

$$= \frac{2x^2 - x^2 - 3}{x^2}$$

$$= \frac{x^2 - 3}{x^2}$$

$$f''(x) = \frac{x^2(2x) - (x^2 - 3)(2x)}{x^4}$$

$$= \frac{2x^3 - 2x^3 + 6x}{x^4}$$

$$= \frac{6x}{x^4}$$

$$= \frac{6}{x^3}$$

$$f'(x) = \frac{x^2 - 3}{x^2} = 0$$
$$x^2 - 3 = 0$$
$$x^2 = 3$$
$$x = \pm \sqrt{3}$$

f'(x) is undefined at x = 0. $f''(x) = \frac{6}{x^3}$ is undefined for x = 0. Find the function values:

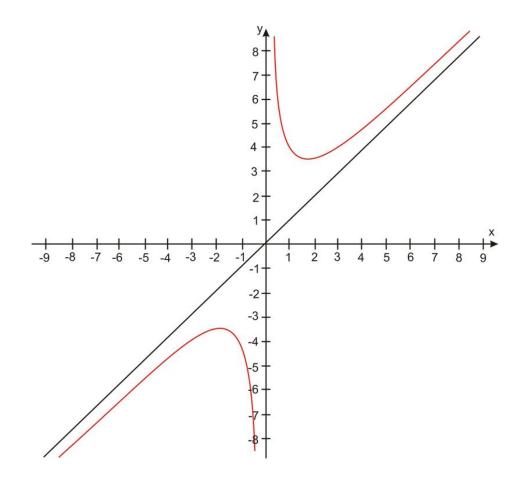
$$f(x) = \frac{x^2 + 3}{x}$$
$$f\left(-\sqrt{3}\right) = -\frac{6}{\sqrt{3}} = -\frac{6\sqrt{3}}{3} = -2\sqrt{3}$$
$$f\left(\sqrt{3}\right) = \frac{6}{\sqrt{3}} = \frac{6\sqrt{3}}{3} = 2\sqrt{3}$$

Make the table of intervals.

Interval	$\left(-\infty,-\sqrt{3}\right)$	$\left(-\sqrt{3},0 ight)$	$\left(0,\sqrt{3}\right)$	$\left(\sqrt{3},\infty\right)$
Text point $x = c$	c = -2	c = -1	c = 1	c = 2
$f'(x) = \frac{x^2 - 3}{x^2}$	$\frac{x^2-3}{x^2}$	$\frac{(-1)^2 - 3}{(-1)^2}$	$\frac{1^2-3}{1^2}$	$\frac{(2)^2 - 3}{(2)^2}$
f'(c)	$=\frac{(-2)^2-3}{\left(-2\right)^2}>0$	$=\frac{1-3}{1}<0$	= -2 < 0	$=\frac{1}{4}>0$
sign of $f'(x)$	f'(x) > 0	f'(x) < 0	f'(x) < 0	f'(x) > 0
$f''(x) = \frac{6}{x^3}$	$\frac{6}{\left(-2\right)^3}$	$\frac{6}{(-1)^3}$	$\frac{6}{\left(1\right)^{3}}$	$\frac{6}{\left(2\right)^3}$
$f^{\prime\prime}\left(c ight)$	$=rac{6}{-8} < 0$	$=\frac{6}{-1}<0$	$=\frac{6}{1} > 0$	$=\frac{6}{8} > 0$
Sign of $f''(x)$	f''(x) < 0	f''(x) < 0	f''(x) > 0	f''(x) > 0
Shana of Granh	Increasing Concerns down	Decreasing Conceve down	Decreasing Concerns un	Increasing

Shape of Graph Increasing, Concave down Decreasing, Concave down Decreasing, Concave up Increasing concave up

The function has a relative maximum at $x = -\sqrt{3}$ located at $\left(-\sqrt{3}, -2\sqrt{3}\right)$. There is a relative minimum at $x = \sqrt{3}$ located at $\left(\sqrt{3}, 2\sqrt{3}\right)$. There are no inflection points.



$$f(x) = x^{3} - 12x$$
$$f'(x) = 3x^{2} - 12x$$
$$f''(x) = 6x$$

$$f'(x) = 3x^{2} - 12 = 0$$

$$3(x^{2} - 4) = 0$$

$$3(x - 2)(x + 2) = 0$$

$$(x - 2) = 0 \text{ or } x + 2 = 0$$

$$x = 2 \text{ or } x = -2$$

$$f''(x) = 0$$

$$6x = 0$$

$$x = 0$$

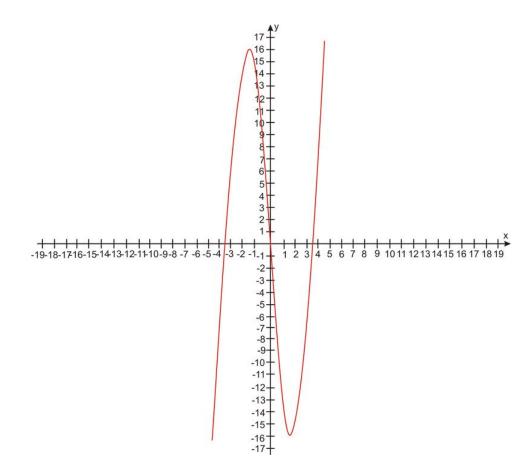
$$f(2) = 8 - 24 = -16$$

$$f(-2) = -8 + 24 = 16$$

$$f(0) = 0$$

 $(-\infty, -2)$ (-2,0)Interval (0,2)(2,∞) Text point x = c c = -3c = -1c = 1c = 3 $f'(x) = 3x^2 - 12 \quad 3x^2 - 12$ $3x^2 - 12$ $3x^2 - 12$ $3x^2 - 12$ $= 3(-3)^2 - 12 > 0 \qquad \qquad = 3(-1)^2 - 12 < 0$ $= 3(1)^2 - 12 < 0 \qquad \qquad = 3(3)^2 - 12 > 0$ f'(c)sign of f'(x)f'(x) > 0f'(x) < 0f'(x) < 0f'(x) > 0f''(x) = 6x6*x* 6*x* 6*x* 6*x* = 6(1) > 0=6(-3)<0=6(-1) < 0f''(c)= 6(3) < 0f''(x) < 0f''(x) < 0f''(x) > 0f''(x) > 0Sign of f''(x)Shape of Graph Increasing, Concave down Decreasing, Concave down Decreasing, Concave up Increasing concave up

The function has a relative maximum at x = -2 located at (-2, 16). The relative minimum is located at (2, 16). There is a point of inflection at (0, 0).



6.

$$f(x) = -\frac{1}{4}x^4 + 2x^2$$

$$f'(x) = -x^3 + 4x$$

$$f''(x) = -3x^2 + 4$$

$$f'(x) = -x^3 + 4x = 0$$

$$-x(x^2 - 4) = 0$$

$$-x(x - 2)(x + 2) = 0$$

$$x = 0 \text{ or } x - 2 = 0 \text{ or } x + 2 = 0$$

$$x = 0 \text{ or } x - 2 = 0 \text{ or } x + 2 = 0$$

$$x = 0 \text{ or } x = 2 \text{ or } x = -2$$

$$f''(x) = 0$$

$$-3x^2 + 4 = 0$$

$$x^2 = \frac{-4}{-3} = \frac{4}{3}$$

$$x = \pm \frac{2}{\sqrt{3}} = \pm \frac{2\sqrt{3}}{3}$$

94

$$f(2) = 4$$

$$f(-2) = 4$$

$$f(0) = 0$$

$$f\left(-\frac{2\sqrt{3}}{3}\right) = -\frac{1}{4}\left(-\frac{2\sqrt{3}}{3}\right)^4 + 2\left(-\frac{2\sqrt{3}}{3}\right)^2$$

$$= -\frac{1}{4}\left(\frac{16\times9}{81}\right) + 2\left(\frac{12}{9}\right)$$

$$= -\frac{4}{9} + \frac{24}{9} = \frac{20}{9}$$

$$f\left(\frac{2\sqrt{3}}{3}\right) = -\frac{1}{4}\left(\frac{2\sqrt{3}}{3}\right)^4 + 2\left(\frac{2\sqrt{3}}{3}\right)^2$$

$$= -\frac{1}{4}\left(\frac{16\times9}{81}\right) + 2\left(\frac{12}{9}\right)$$

$$= -\frac{4}{9} + \frac{24}{9} = \frac{20}{9}$$

Iı

Increasing, Concave down Decreasing, Concave down Decreasing, Concave up Increasing Shape of Graph concave up

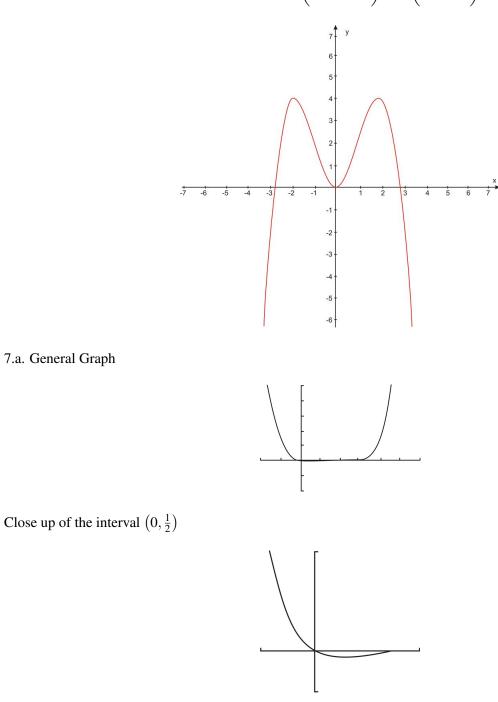
$$\begin{pmatrix} 2\sqrt{3} \\ 3 \end{pmatrix}, 2 \end{pmatrix} (2, \infty)$$

$$c = 1.5 \\ -(1.5)^3 + 4(1.5) \\ = 2.625 > 0 \\ f'(x) > 0 \\ -3(1.5)^2 + 4 \\ = -6.75 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (2, \infty)$$

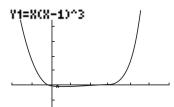
$$(2, \infty)$$

$$c = 3 \\ -(3)^3 + 4(3) \\ = -27 + 12 < 0 \\ f'(x) < 0 \\ = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''(x) < 0 \\ \end{bmatrix} (x) = -27 + 4 < 0 \\ f''($$

The relative maximums are at x = 2 and x = -2. They are located at (-2,4) and (2,4). The relative minimum is located at (0,0). There are two inflection points at $\left(-\frac{2\sqrt{3}}{3}, \frac{20}{9}\right)$ and $\left(\frac{2\sqrt{3}}{3}, \frac{20}{9}\right)$.



You may need to zoom in even more on the graph. The graph is concave up in the interval. b.



X=.25000082 Y=-.1054687

The relative minimum is at (0.25, -0.10).

8. False

Find the first and second derivatives.

$$f(x) = x^{4} + 4x^{3}$$

$$f'(x) = 4x^{3} + 12x^{2}$$

$$f''(x) = 12x^{2} + 24x$$

The critical values are:

$$4x^{3} + 12x^{2} = 0$$

$$4x^{2}(x+3) = 0$$

$$x = 0 \text{ or } x = -3$$

The possible inflection points are:

$$12x^{2} + 24x = 0$$

$$12x(x+2) = 0$$

$$x = 0 \text{ or } x = -2$$

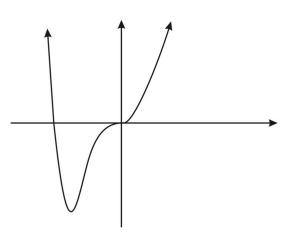
Check the possible inflection points.

Interval	$(-\infty, -2)$	(-2,0)	$(0,\infty)$
sign of $f''(x)$	f''(x) > 0	$f^{\prime\prime}\left(x\right)<0$	f''(x) > 0
Shape of Graph	Concave up	Concave down	Concave up

Both x = 0 and x = -2 are inflection points.

x = -3 is a relative minimum because f''(-3) > 0.

9. One example is $f(x) = x^2 + \frac{1}{x-1}$. It has exactly relative minimum. Look at the graph.



3.4. The Second Derivative Test

10. One example is $f(x) = \sqrt{x}$ on the interval $(0,\infty)$.

