3.3 The First Derivative Test

- 1. The function is increasing on (0,3). The function is decreasing on (3,6). The function is constant on $(6,+\infty)$.
- 2. The function is increasing on $(-\infty, 0)$ and (3, 7). The function is decreasing on (0, 3).
- 3. a. Draw tangent lines to the graph to help you solve these problems.
- f' (-3) is positive. f' (-3) > 0.
 b. f' (1) is negative. f' (1) < 0.
 c. f' (3) = 0
- d. f'(4) is positive. f'(4) > 0.

$$f(x) = x^{2} - \frac{1}{x} = 2x - x^{-1}$$
$$f'(x) = 2x + x^{-2} = 2x + \frac{1}{x^{2}}$$

Find the critical values.

$$2x + \frac{1}{x^2} = 0$$

$$\frac{2x^3 + 1}{x^2} = 0$$

$$2x^3 + 1 = 0$$

$$2x^3 = -1$$

$$x^3 = -\frac{1}{2}$$

$$x = \sqrt[3]{-0.5} = -\sqrt[3]{0.5} = -0.79$$

$$f\left(-\sqrt[3]{0.5}\right) = 1.89$$

f'(x) is undefined for x = 0.

Set up the intervals and make a table. Find test points to substitute into the derivative and check the sign of the derivative.

Interval
$$\left(-\infty, -\sqrt[3]{0.5}\right)$$
 $\left(-\sqrt[3]{0.5}, 0\right)$ $(0, +\infty)$ Test point $x = c$ $c = -1$ $c = -0.1$ $c = 1$ $f'(c)$ $-2+1 = -2$ $-0.2 + \frac{1}{(-0.1)^2} = 99.8$ $2+1 = 3$ sign of $f'x$ $f'(x) < 0$ $f'(x) > 0$ $f'(x) > 0$

By the First Derivative Test, f' changes from negative to positive at $x = -\sqrt[3]{0.5}$. The critical value of $x = -\sqrt[3]{0.5}$ is a local minimum. The function decreases on $\left(-\infty, -\sqrt[3]{0.5}\right)$ and on $(0, +\infty)$. The function increases on $\left(-\sqrt[3]{0.5}, 0\right)$.

5.

$$f(x) = (x^{2} - 1)^{5}$$
$$f'(x) = 5(x^{2} - 1)^{4}(2x)$$

$$5(x^{2}-1)^{4}(2x) = 0$$

(x²-1)⁴ = 0 or 2x = 0
x²-1 = 0 or x = 0
x = 1 or x = -1 or x = 0
f(1) = 0
f(-1) = 0
f(0) = -1

Interval
$$(-\infty, -1)$$
 $(-1,0)$ Test point $x = c$ $c = -2$ $c = -0.5$ $f'(x) = 5(x^2 - 1)^4(2x)$ $5((-2)^2 - 1)^4(2 \times (-2))$ $5((-0.5)^2 - 1)^4(2 \times (-0.5))$ $f'(c)$ $= 5(3)^4(-4)$ $= 5(-0.25 - 1)^4(-1)$ Sign of $f'(x)$ $f'(x) < 0$ $f'(x) < 0$

Interval
$$(0,1)$$
 $(1,+\infty)$ Test point $x = c$ $c = 0.5$ $c = 2$ $f'(x) = 5(x^2 - 1)^4(2x)$ $5((0.5)^2 - 1)^4(2 \times (0.5))$ $5(2^2 - 1)^4(2 \times 2)$ $f'(c)$ $= 5(0.25 - 1)^4(1)$ $= 5(4 - 1)^4(4)$ Sign of $f'(x)$ $f'(x) > 0$

By the First Derivative Test, there is an absolute minimum at x = 0. The function is decreasing on $(-\infty, -1)$ and on (-1, 0). The function is increasing on (0, 1) and on $(1, +\infty)$.

6.

$$f(x) = (x^{2} - 1)^{4}$$
$$f'(x) = 4(x^{2} - 1)^{3}(2x)$$

$$4(x^{2}-1)^{3}(2x) = 0$$

(x²-1)³ = 0 or 2x = 0
x²-1 = 0 or x = 0
x = 1 or x = -1 or x = 0

$$f(1) = 0$$
$$f(-1) = 0$$
$$f(0) = 1$$

Interval
$$(-\infty, -1)$$
 $(-1,0)$ Test point $x = c$ $c = -2$ $c = -0.5$ $f'(x) = 4(x^2 - 1)^3(2x)$ $4((-2)^2 - 1)^3(2 \times (-2))$ $4((-0.5)^2 - 1)^3(2 \times (-0.5))$ $f'(c)$ $= 4(3)^3(-4)$ $= 4(-1.25)^3(-1)$ Sign of $f'(x)$ $f'(x) < 0$ $f'(x) < 0$

Interval
$$(0,1)$$
 $(1,+\infty)$ Test point $x = c$ $c = 0.5$ $c = 2$ $f'(x) = 4(x^2 - 1)^3(2x)$ $4((0.5)^2 - 1)^3(2 \times (0.5))$ $4(2^2 - 1)^3(2 \times 2)$ $f'(c)$ $= 4(-1.25)^3(1)$ $= 5(4-1)^3(4)$ Sign of $f'(x)$ $f'(x) < 0$ $f'(x) > 0$

By the First Derivative Test, there are absolute minimum at x = -1 and x = 1. The function is decreasing on $(-\infty, -1)$ and on (0, 1). The function is increasing on (-1, 0) and on $(1, +\infty)$.

7. a.

$$f(x) = -x^2 - 4x - 1$$

 $f'(x) = -2x - 4$

$$-2x-4 = 0$$

$$-2x = 4$$

$$x = -2$$

$$f(-2) = -4 - 4(-2) - 1 = -4 + 8 - 1 = 3$$

Interval
$$(-\infty, -2)$$
 $(-2, +\infty)$ Test point $x = c$ $c = -3$ $c = 0$ $f'(x) = -2x - 4$ $-2(-3) - 4$ $-2(0) - 4$ $f'(c)$ $= 6 - 4 = 2$ $= 0 - 4 = -4$ Sign of $f'(x)$ $f'(x) > 0$ $f'(x) < 0$

The function is increasing on $(-\infty, -2)$. The function is decreasing on $(-2, +\infty)$. b. By the First Derivative Test, there are absolute maximum at x = -2 with f(-2) = 3. c.

8. a.

$$f(x) = x^{3} + 3x^{2} - 9x + 1$$
$$f'(x) = 3x^{2} + 3x - 9$$

$$3x^{2} + 3x - 9 = 0$$

$$3(x^{2} + x - 3) = 0$$

$$x^{2} + x - 3 = 0$$

$$(x + 3)(x - 1) = 0$$

$$x+3 = 0 \text{ or } x-1 = 0$$

 $x = -3 \text{ or } x = 1$

$$f(-3) = 3^{3} + 3(3)^{2} - 9(3) + 1 = 28$$

$$f(1) = 1 + 3 - 9 + 1 = -4$$

Interval
$$(-\infty, -3)$$
 $(-3, 1)$ $(1, +\infty)$ Test point $x = c$ $c = -4$ $c = 0$ $c = 3$ $f'(x) = 3x^2 + 3x - 9$ $3(-4)^2 + 3(4) - 9$ $3(0)^2 + 3(0) - 9$ $3(3)^2 + 3(3) - 9$ $f'(c)$ $= 48 + 12 - 9 = 51$ $= -9$ $= 27 + 9 - 9 = 27$ Sign of $f'(x)$ $f'(x) > 0$ $f'(x) < 0$ $f'(x) > 0$

The function is increasing on $(-\infty, -3)$ and on $(3, +\infty)$. The function is decreasing on (-3, 1).

b. There is a relative maximum at x = -3 with f(-3) = 28. There is a relative minimum at x = 1 with f(1) = -4. c.

9.

$$f(x) = x^{\frac{2}{3}}(x-5) = x^{\frac{5}{3}} - 5x^{\frac{2}{3}}$$
$$f'(x) = \frac{5}{3}x^{\frac{2}{3}} - \frac{10}{3}x^{-\frac{1}{3}}$$

$$\frac{5}{3}x^{\frac{2}{3}} - \frac{10}{3}x^{-\frac{1}{3}} = 0$$
$$x^{\frac{1}{3}} \left(\frac{5}{3}x^{\frac{2}{3}} - \frac{10}{3}x^{-\frac{1}{3}}\right) = 0$$
$$\frac{5}{3}x - \frac{10}{3} = 0$$
$$\frac{5}{3}x = \frac{10}{3}$$
$$x = 2$$

$$f'(x) = \frac{5}{3}x^{\frac{2}{3}} - \frac{10}{3}x^{-\frac{1}{3}}$$
 is undefined for $x = 0$.

Interval
$$(-\infty,0)$$
 $(0,2)$ $(2,+\infty)$ Test pointx = c $c = -1$ $c = 1$ $c = 3$ $f'(x) = \sqrt[3]{x^2} + (x-5)\left(\frac{2}{3\sqrt[3]{x}}\right)$ $\sqrt[3]{(-1)^2} + (-1-5)\left(\frac{2}{3\sqrt[3]{x-1}}\right)$ $\sqrt[3]{(1)^2} + (1-5)\left(\frac{2}{3\sqrt[3]{x1}}\right)$ $\sqrt[3]{(3)^2} + (3-5)\left(\frac{2}{3\sqrt[3]{x3}}\right)$ $f'(c)$ $= 1+6\left(\frac{2}{3}\right)$ $= 1-4\left(\frac{2}{3}\right)$ $= \sqrt[3]{(3)^2} - 2\left(\frac{2}{3\sqrt[3]{x3}}\right) = 5.3$ sign of $f'(x)$ $f'(x) > 0$ $f'(x) < 0$ $f'(x) > 0$

The function is increasing on $(-\infty, 0)$ and on $(2, +\infty)$. The function is decreasing on (0, 2).

b. There is a relative maximum at x = 0 with f(0) = 0. There is a relative minimum at x = 2 with $f(2) = 2^{\frac{2}{3}}(2-5) = -3\left(2^{\frac{2}{3}}\right)$.

c.

$$f(x) = 2x\sqrt{x^2 + 1} = 2x(x^2 + 1)^{\frac{1}{2}}$$
$$f'(x) = 2x\left[\frac{1}{2}(x^2 + 1)^{-\frac{1}{2}}(2x)\right] + (x^2 + 1)^{\frac{1}{2}}(2)$$
$$= \frac{x^2}{2\sqrt{x^2 + 1}} + 2\sqrt{x^2 + 1}$$

Find the critical values.

There are no solutions for f'(x) = 0 and f'(x) is defined for all x. That means the function is increasing or decreasing everywhere. We can check for increasing or decreasing on the entire interval $(-\infty,\infty)$.

Interval

$$(-\infty,\infty)$$

 Test point $x = c$
 $c = 0$
 $f'(x) = \frac{x^2}{2\sqrt{x^2 + 1}} + 2\sqrt{x^2 + 1}$
 $\frac{0^2}{2\sqrt{0^2 + 1}} + 2\sqrt{0^2 + 1}$
 $f'(c)$
 $= 0 + 2$

 Sign of $f'(x)$
 $f'(x) > 0$

The function is increasing on $(-\infty,\infty)$.

b. There are no maximums or minimums.

c.

