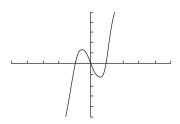
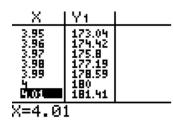
1.5 Finding Limits


1. a.

x	$y = \frac{x^2 - 4}{x + 2}$
-1.9	$\frac{(-1.9)^2 - 4}{-1.9 + 2} = -3.9$
- 1.99	- 3.99
- 1.999	- 3.999
-2.1	-4.1
-2.099	-4.099
-2.0099	-4.0099

b. The table shows that the sequence of values approach -4. Thus, $\lim_{x\to -2} \frac{x^2-4}{x+2} = -4$. 2. a.

x	$y = \frac{2x - 1}{2x^2 + 3x - 2}$
0.49	$\frac{2(0.49) - 1}{2(0.49)^2 + 3(0.49) - 2} = 0.4016$
0.495	0.4008
0.49999	0.4000
0.51	0.3984
0.5099	0.3984
0.500001	0.3999

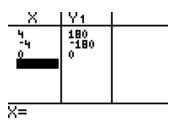

b.
$$\lim_{x \to \frac{1}{2}} \frac{2x-1}{2x^2+3x-2} = 0.4$$
, or $\frac{2}{5}$.
3. This is a graph of $p(x) = 3x^3 - 3x$:

a. Use the calculator to generate tables to determine the limit.

X	Y1	
5005 4.05 4.06 4.07 4.08 4.09 4.1	185.7 187.159 190.05 191.51 192.98 194.46	
X=4.04		

20

$$\lim_{x \to 4} (3x^3 - 3x) = 180b.$$


X	Y1	
-4.03 -4.03 -4.02 -4.01 -4.99 -3.99 -3.98	7,3,8,7 8,5,2,8,7 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	
X=-4.04		

$$\lim_{x \to -4} (3x^3 - 3x) = -180$$

c.

-008 002 001 0 .001 .002 .003	.009 .006 .003 003 006 009	
X=003		
Х	I Y 1	l
- 997	.01792 .01196	
-1998 -1998 -1999 -1	.01196 .00599 0	
- 997	.01196 .00599	

<u>X | Y1 | </u>

$$\lim_{x \to 0} \left(3x^3 - 3x \right) = 0$$

d.

The function values are the same as the limits because the function is defined at those values.

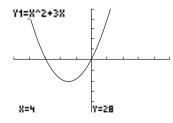
4. a. $\lim_{x\to 3} f(x) = 1.5$ because f(3) = 1.5. b. $\lim_{x\to 2} f(x) = 0$ because f(2) = 0. c. $\lim_{x\to 1} f(x) = 2$ because f(1) = 2. d. $\lim_{x\to 4} f(x)$ does not exist because the right-hand limit and the left-hand limit are not the same.

- 5. a. $\lim_{x\to 2} f(x) = 0$ because f(2) = 0.
- b. $\lim_{x\to 0} f(x)$ because the function is not defined at x = 0.
- c. $\lim_{x\to 4} f(x)$ is a number close to 1 but less than 1 because of the horizontal asymptote of y = 1.
- d. $\lim_{x\to 50} f(x)$ is a number close to 1 but less than 1 because of the horizontal asymptote of y = 1.
- 6. Use a graphing calculator to make a table of values to find the limit.

X	Y1	
2.01 2.02	6.8416 6.8809 6.9204 6.9601 7.0401 7.0804	
X=1.96		

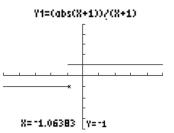
The limit exists and
$$\lim_{x\to 2} (x^2 + 3) = 7$$

7.


X	Y1	
98 99 -1 -1.01 -1.02 -1.03	5051 5055 5028 5028 5028 5028 5028 5028 5028	
X=-1.04		

The limit exists and $\lim_{x\to -1} \frac{x+1}{x^2-1} = -0.5$. (Note: you will get an error if you try to find f(-1) directly. The limit of values of both sides are approaching -0.5, but the function is not defined at x = -1.

8.


X	Y1	
1.98	1.0198 1.01	
1.99 2 2.01 2.02	1.01	
2.01 2.02	.98995 .9798	
2,03	.96954 95917	
X=2.04		
V-7.0.	+	

The limit exists and $\lim_{x\to 2} \sqrt{-2x+5} = 1$. 9.

The limit exists and $\lim_{x\to 2} (x^2 + 3x) = 28$. 10.

22

The limit does not exist. Note that there is a break in the graph when x = -1.