## **1.2** Relations and Functions

1. Apply the vertical line test to the graph of the relationship shown. The graph gives a function. The domain is the set of all real numbers, or  $(-\infty, \infty)$ . The range is  $\{-2 \le y \le 2\}$ .

2. A vertical line can cross the graph in more than one place. The graph is not a function.

3. The function is a rational function. Set the denominator = 0 and solve for *x*.

$$x^{2}-1 = 0$$
  
(x-1)(x+1) = 0  
x = 1 or x = -1

The domain is  $\{x \neq -1, 1\}$ . Graph the function on your graphing calculator.



The range is  $\{y > 3\} \cup \{y < 0\}$ .

4. Looking at the graph, the domain is  $\{x < 3\}$  and the range is  $\{y \ge 0\}$ .

5. 
$$f(x) = |2x-3|-2 = |x-\frac{3}{2}|-2$$
.

The graph shows the absolute value function  $\frac{3}{2}$  units to the right and two units down. The domain is the set of all real numbers, or  $(-\infty,\infty)$ . The range is  $\{y \ge -2\}$ .

6. This function is the basic quadratic function shifted 2 units left and 5 units up and then flipped.



7. This function is the basic function  $f(x) = \frac{1}{x}$  shifted 2 units right and 3 units up and then flipped.



8.  $f(x) = -\sqrt{-x-2}+3 = -\sqrt{-(x+2)}+3$ . This function is the basic function  $f(x) = \sqrt{x}$ . Note that there is a negative sign in front of the *x*. The new function becomes  $f(x) = \sqrt{-x}$  and the graph of this function is a reflection of  $f(x) = \sqrt{x}$  around the *y*-axis. Then the function is shifted 2 units left and 3 units up. It is then flipped upside down.



9.  $(f \circ g)(x) = f(g(x)) = -3(\sqrt{x}) + 2; (g \circ f)(x) = g(f(x)) = \sqrt{-3x+2}$ 10.  $(f \circ g)(x) = f(g(x)) = (\sqrt{x})^2 = x; (g \circ f)(x) = g(f(x)) = \sqrt{x^2} = x$