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Background
It	all	started	innocently	enough.	A	family	let	loose	a	few	rabbits	on	Foxless	Island,	thinking	the	rabbits	would	be	happier	outside	than	inside
being	rough	handled	by	their	children.	Without	predators	on	the	island,	though,	the	rabbits	became	a	little	too	happy,	and	soon	the	island
became	overrun	by	rabbits.

The	ability	for	rabbits	to	multiply	has	turned	into	a	big	headache	for	you,	the	head	the	Foxless	animal	control	team	(FACT).	In	your	first
attempt	to	control	the	rabbit	population,	you	and	your	team	tried	“harvesting”	each	month	a	fixed	fraction	of	the	rabbit	population,	hoping	to
reach	a	steady	population	of	around	a	thousand	rabbits.	The	effort	turned	into	a	colossal	failure,	as	no	matter	what	fraction	you	tried,	you
seemed	to	be	either	harvesting	too	many	or	too	few	rabbits.	You	couldn't	get	the	balance	right.

Then,	you	tried	being	smarter,	counting	the	number	of	rabbits	on	the	island	each	month,	and	adjusting	the	fraction	of	rabbits	harvested	based
on	that	count.	This	effort	seemed	promising,	but	it	was	much	too	difficult	for	you	and	your	small	team	to	keep	up.	For	one	thing,	counting
rabbits	is	hard	work,	and	FACT	simply	doesn't	have	enough	resources	to	keep	up	the	monthly	count.	You	can't	push	your	team	members	any
harder,	as	they	have	begun	to	rebel	against	your	demands	for	frequent	rabbit	counting.	Moreover,	your	“rabbit	harvesting”	activities	have
made	your	solution	increasingly	unpopular	among	key	segments	of	Foxless	residents.	To	keep	the	situation	from	spinning	further	out	of
control,	you	must	devise	a	new	method	for	rabbit	control.

While	brooding	about	the	incorrigible	nature	of	Foxless	human	and	animal	populations,	you	realize	the	perfect	solution	to	your	woes.
Introducing	foxes	to	the	island	will	provide	a	natural	way	to	control	the	rabbit	population.	Foxes	don't	need	to	count	rabbits	each	month	in
order	to	decide	how	many	rabbits	to	eat.	They	can	respond	naturally	to	fluctuations	in	the	rabbit	population	size,	reproducing	to	yield	more
foxes	should	more	rabbits	need	to	be	eaten.	The	best	part	is	that	the	foxes	will	do	their	work	for	free	and	without	complaining.

Before	you	propose	this	radical	change	to	the	Foxless	community,	you	better	do	your	homework	well.	You	can	already	hear	the	objections.
“The	fox	population	will	explode,	and	soon	we'll	have	a	bigger	problem	with	the	foxes	than	we	had	with	the	rabbits.”	“The	foxes	will	eat	all	the
rabbits	and	we	won't	have	any	rabbits	left	to	watch.”	You'll	make	sure	you	are	prepared	to	address	all	these	concerns	before	you	propose	your
fox	solution.

The	mathematical	model
The	best	way	to	have	a	persuasive	argument	in	factor	of	your	proposal,	you	believe,	is	to	have	it	backed	by	a	mathematical	model.	You	decide
to	make	some	important	changes	from	your	initial	rabbit	model.	The	first	change	is	to	move	from	discrete	time	to	continuous	time.	That	way,
you'll	have	a	more	impressive	sounding	differential	equation	model.	You	let	 	represent	time	in	years,	denoting	the	rabbit	population	size	at
time	 	by	 	and	the	fox	population	size	at	time	 	by	 	( 	for	predator).

As	you've	discovered,	the	rabbits	population	will	grow	exponentially	without	foxes	to	control	them.	You	imagine	that	Greek	letters	will	make
the	model	look	sophisticated	and	choose	 	(alpha)	for	the	growth	rate	parameter	of	the	rabbits,	modeling	their	fox-free	evolution	with	the
differential	equation

You	model	the	rabbit-free	foxes	a	bit	differently.	Assuming	that	they	depend	on	rabbits	for	food,	their	population	size	should	shrink	in	the
absence	of	rabbits.	Using	 	(gamma)	for	this	rate	of	decay,	you	can	model	the	hungry,	rabbitless,	fox	population	as

As	a	warm	up,	solve	the	foxless	rabbit	equation	 	and	the	rabbitless	fox	equation	 ,	to	obtain	an	expression	for	these	separate	populations.
(Guessing	the	solution	is	an	OK	method.)	What	happens	to	the	rabbit	population	as	time	increases?	What	happens	to	the	fox	population	as	time
increases?

Your	main	goal	for	your	modeling	effort	is	to	show	how	the	foxes	will	decrease	the	rabbit	population.	To	model	the	harvesting	of	rabbits	by
foxes,	you	subtract	a	harvesting	term	off	the	rabbit-change	equation,	(i.e.,	the	 	equation	 ).	Letting	the	rate	of	rabbit	kills	be	proportional
to	the	number	of	rabbits	and	the	number	of	foxes,	you	write	the	harvesting	term	as	 ,	where	the	Greek	letter	 	(beta)	is	a	parameter	that
indicates	how	quickly	a	fox	can	reduce	the	rabbit	population.	The	rabbit	equation	becomes

If	the	fox	population	size	 	remained	constant,	this	harvesting	by	the	foxes	is	strikingly	similar	to	your	initial	harvesting	strategy,	where	a
fixed	fraction	were	harvested	each	month.	The	new	feature	is	that	the	foxes	can	increase	their	population	size	when	there	are	plenty	of	rabbits
around.	Again,	to	keep	everything	as	simple	as	possible,	you	model	the	addition	to	the	fox	population	as	being	proportional	to	the	rate	that
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rabbits	are	eaten.	You	add	a	term	to	the	fox	equation	of	the	form	 ,	where	 	(delta)	captures	how	efficiently	the	eaten	rabbits	are	turned
into	new	foxes.	(Since	each	rabbit	consumed	doesn't	lead	to	a	new	fox,	you	expect	that	 	should	be	quite	a	bit	smaller	than	 .)	The	fox
equation	becomes

Equations	 	and	 	form	a	system	of	two	autonomous	differential	equations	for	the	joint	evolution	of	the	rabbit	and	fox	populations.	This
equations,	known	as	the	Lotka-Volterra	equations,	are	a	simple	example	of	predator-prey	equations	that	model	the	interactions	among	these
two	populations.

Solving	the	model
The	next	step	is	to	determine	what	the	equations	predict	about	the	future	of	the	rabbit	and	fox	population	in	the	event	that	you	add	some	foxes
to	the	island.	Having	these	four	unknown	parameters	 ,	 ,	 ,	and	 	is	too	confusing,	so	you	realize	you	better	give	them	specific	values.	Based
on	your	intuition	on	animal	behavior,	you	decide	to	set	the	parameters	to	 ,	 ,	 ,	and	 .	Since	you	aren't	certain
these	are	exactly	the	right	values,	you'll	have	to	check	out	the	effect	of	changing	them	later.

You	are	left	with	the	system	of	equations

They	look	simple	enough,	but	you	don't	know	how	to	solve	them.	To	determine	what	they	predict	about	the	future	of	the	rabbits	and	foxes,
you'll	need	to	somehow	estimate	the	solution.

Computer	visualization

As	best	as	you	can	tell,	the	rabbit	population	has	grown	to	about	3000	rabbits.	Your	plan	is	to	introduce	70	foxes	to	Foxless	Island.	You'll	use
those	values	as	your	initial	conditions.	By	plugging	those	values,	you	calculate	that	the	initial	rates	of	change	are

Oh	no,	 	is	positive.	This	means	the	change	in	the	number	of	rabbits	is	positive:	the	rabbit	population	is	still	growing!	Aren't	the	foxes	doing
their	job?	It	looks	like	70	foxes	isn't	enough	to	keep	the	rabbits	in	check.	But,	the	fact	that	the	fox	population	is	growing	at	a	healthy	rate	is
promising.	Once	the	fox	population	gets	larger,	you	hope	they'll	start	to	bring	down	the	rabbit	population.

You	realize	it	would	be	too	difficult	to	estimate	this	evolution	yourself,	using	an	algorithm	like	the	Forward	Euler	algorithm.	You	doubt	you
could	do	all	the	required	calculations	accurately	yourself	(and	you	don't	feel	like	spending	all	day	crunching	numbers)	and	decide	to	hire	a
computer	programmer	to	create	a	tool	to	let	you	see	the	solution	to	the	differential	equations.	You	figure	the	programmer	will	be	worth	the
expense,	as	such	a	tool	will	also	be	useful	in	persuading	others	that	you	have	a	good	solution.

The	programmer	scoffs	at	your	suggestion	of	using	of	the	Forward	Euler	algorithm.	Why	are	you	using	an	algorithm	from	the	1700's,	he	asks,
when	you	can	at	least	get	into	the	1900's	with	the	Runge-Kutta	algorithm?	You	have	no	idea	what	he	is	talking	about,	but	you	like	the	solution
he	made	for	you,	which	is	shown	in	the	following	applet.

Use	the	applet	to	investigate	what	happens	to	the	rabbits	and	foxes	when	you	use	the	above	parameters	and	start	with	3000	rabbits	and	70
foxes.	Describe	the	behavior	of	the	system	as	time	evolves.	Using	the	model	equation,	explain	why	this	occurs.	Does	this	make	sense	for	the
biological	system?	Do	you	expect	the	evolution	of	the	rabbit	and	fox	populations	to	have	this	type	of	behavior?

Since	the	applet	is	slow	to	load,	we	just	include	a	link	here.

Applet:	Lotka-Volterra	model,	with	phase	plane,	functions	of	time	and	population	display

You	find	the	oscillatory	behavior	of	the	solution	to	your	system	of	equations	a	bit	surprising.	You	wonder	if	maybe	the	result	was	just	a	strange
coincidence	given	that	you	started	with	3000	rabbits	and	70	foxes.	If	you	try	different	initial	conditions,	do	you	get	similar	behavior?	Does	the
solution	still	oscillate?

Maybe	the	oscillations	are	just	an	artifact	of	the	value	of	the	four	parameters	that	you	chose.	Change	the	parameters	 ,	 ,	 ,	and	 )	by	small
amounts,	and	see	if	the	behavior	of	the	system	is	roughly	similar	or	has	dramatically	different	behavior.

Not	only	does	the	above	applet	show	the	plots	of	 	and	 	versus	time,	but	it	also	shows	a	representation	of	the	state	 	of	the	system	as	a
phase	plane	plot	of	 	versus	 .	In	the	phase	plane,	the	oscillation	looks	like	loop.	The	phase	plane	visualization	helps	you	better	see	how	the
oscillations	work	and	what	controls	the	size	of	the	oscillations.	By	dragging	the	initial	condition	point	 	around	the	phase	plane,	you
can	see	how	the	initial	conditions	influence	the	oscillations.	What	initial	conditions	lead	to	the	largest	oscillations	in	the	population	sizes?
What	initial	conditions	lead	to	the	smallest	oscillations?	Can	you	find	an	initial	condition	where	the	oscillations	are	essentially	eliminated
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(using	the	original	parameters	 ,	 ,	 ,	and	 )?

Equilibria

As	always,	equilibria	are	an	important	feature	of	a	dynamical	system	and	can	be	used	to	understand	the	behavior	of	the	system.	For	the	two-

dimensional	system	 ,	an	equilibrium	is	a	point	 	in	the	phase	plane	where	both	derivatives	 	and	 	are	zero.	If	you	start	with	an
initial	condition	that	is	an	equilibrium,	the	system	will	stay	at	the	value	forever.

Show	that	the	system	 	has	the	trivial	equilibrium	 	with	no	rabbits	or	foxes.	You	just	need	to	plug	in	 	into	the	right	hand

sides	for	 	and	 	to	show	you	get	zero	for	both	derivatives.	This	makes	sense,	as	we	shouldn't	get	rabbits	or	foxes	materializing	out	of
nowhere.

Is	there	another	equilibrium	to	the	system?	When	you	were	exploring	the	behavior	of	the	system	for	different	initial	conditions	in	the	phase
plane,	did	you	find	a	point	where	the	oscillations	are	essentially	eliminated?	If	you	found	a	point	where	the	system	did	not	change	at	all,	then
you	found	an	equilibrium.	You	should	be	able	to	get	an	idea	of	its	value	by	exploring	the	phase	plane.	From	that,	you	may	be	able	to	guess
what	are	the	values	of	 	and	 	at	the	non-zero	equilibrium.

You	can	also	calculate	the	equilibria	analytically	from	the	equations	 .	If	you	set	both	 	and	 ,	you	obtain	a	system	of	two	equations
and	two	unknowns:

At	an	equilibrium,	both	equations	have	to	be	zero.	To	find	the	equilibrium	points,	you	can	easily	factor	both	equations.	You	should	be	able	to
find	two	equilibria,	confirming	the	results	that	you	obtained	when	you	were	exploring	the	phase	plane.

Are	the	equilibria	stable	or	unstable?	If	you	start	with	any	initial	condition	close	to	the	equilibrium,	does	the	solution	stay	close	to	that
equilibrium	or	even	converge	to	the	equilibrium?	In	that	case,	it	is	stable.	Can	you	find	an	initial	condition	close	to	the	equilibrium	for	which
the	solution	diverges	away	from	the	equilibrium?	In	that	case,	the	equilibrium	is	unstable.	Classify	both	equilibria	as	stable	or	unstable.

For	the	trivial	equilibrium	(0,0),	we	know	that	if	we	start	without	any	rabbits,	the	system	will	evolve	toward	to	the	equilibrium.	However,	that
is	not	enough	to	state	that	the	equilibrium	is	stable.	If	you	can	find	any	other	initial	conditions	close	to	(0,0)	from	which	the	solution	moves
away	from	(0,0),	that's	enough	to	conclude	that	the	equilibrium	is	unstable.

Model	stupidity
What	does	the	model	predict	will	happen	if	you	introduced	only	two	foxes	rather	than	70?	Look	closely	at	the	values	of	 	after	the	rabbit
population	size	is	brought	down	from	its	initial	peak.	Does	that	value	make	any	sense?	Or,	more	importantly,	does	it	make	sense	that	the	rabbit
population	eventually	recovers	from	that	value	to	shoot	upward	again?	What	should	have	happened	to	the	rabbit	population	if	it	got	that	low?
Also,	does	it	make	any	sense	that	the	fox	population	survives	for	many	years	on	so	few	rabbits?	(The	model	isn't	suppose	to	be	including	other
food	sources	for	the	foxes.)	If	you	want	people	to	believe	your	model,	you	probably	shouldn't	focus	on	such	initial	conditions.

Conclusion
What	can	you	conclude	from	your	model	analysis?	Can	you	make	a	convincing	case	that	introducing	foxes	to	Foxless	Island	will	help	control
the	rabbit	population?	Even	if	it	doesn't	show	that	one	will	get	good	results	in	all	cases,	can	you	use	the	model	to	develop	a	strategy	that	will
lead	to	a	more	or	less	stable	population	of	around	a	thousand	rabbits?

If	we	estimate	that	Foxless	Island	currently	has	around	3000	rabbits,	can	you	get	to	a	more	or	less	stable	population	of	a	thousand	rabbits	just
by	introducing	an	appropriate	number	of	foxes?	In	other	words,	if	you	set	the	initial	condition	for	rabbits	to	be	 ,	can	you	find	a
solution	(by	changing	the	number	of	foxes	 	introduced)	where	 	eventually	stays	close	to	1000?

Can	you	improve	your	result	if	you	help	the	foxes	out	by	initially	harvesting	some	rabbits	yourself?	In	other	words,	if	you	lower	the	initial
condition	 	to	a	smaller	number,	can	you	find	a	solution	(by	changing	the	number	of	foxes	 	introduced)	where	 	eventually
stays	close	to	1000?

Does	the	model	help	you	address	the	two	objections	that	you	envisioned	people	making?	Why	or	why	not?

Project
The	introducing	rabbit	predators	project	page	gives	instructions	for	writing	up	a	project	report	based	on	this	analysis.

See	also
Controlling	a	rabbit	population
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