
Learning Objectives 

A student will be able to: 

• Find the limit of basic functions. 

• Use properties of limits to find limits of polynomial, rational and radical functions. 

• Find limits of composite functions. 

• Find limits of trigonometric functions. 

• Use the Squeeze Theorem to find limits. 

Introduction 

In this lesson we will continue our discussion of limits and focus on ways to evaluate 
limits. We will observe the limits of a few basic functions and then introduce a set of 
laws for working with limits. We will conclude the lesson with a theorem that will allow us 
to use an indirect method to find the limit of a function. 

Direct Substitution and Basic Limits 

Let’s begin with some observations about limits of basic functions. Consider the 
following limit problems: 

limx→25,limx→4x. 
These are examples of limits of basic constant and linear 

functions, f(x)=c and f(x)=mx+b. 
We note that each of these functions are defined for all real numbers. If we apply our 
techniques for finding the limits we see that 

limx→25limx→4x=5,=4, 
and observe that for each the limit equals the value of the function at the x−value of 

interest: 

limx→25limx→4x=f(5)=5,=f(4)=4. 
Hence limx→af(x)=f(a). This will also be true for some of our other basic functions, in 

particular all polynomial and radical functions, provided that the function is defined 

at x=a. For example, limx→3x3=f(3)=27 and limx→4x−−√=f(4)=2. The properties of 

functions that make these facts true will be discussed in Lesson 1.7. For now, we wish 
to use this idea for evaluating limits of basic functions. However, in order to evaluate 
limits of more complex function we will need some properties of limits, just as we 
needed laws for dealing with complex problems involving exponents. A simple example 
illustrates the need we have for such laws. 
Example 1: 



Evaluate limx→2(x3+2x−−√). The problem here is that while we know that the limit of 

each individual function of the sum exists, limx→2x3=8 and limx→22x−−√=2, our basic 

limits above do not tell us what happens when we find the limit of a sum of functions. 
We will state a set of properties for dealing with such sophisticated functions. 
Properties of Limits 

Suppose that limx→af(x) and limx→ag(x) both exist. Then 

1. limx→a[cf(x)]=climx→af(x) where c is a real number, 

2. limx→a[f(x)]n=[limx→af(x)]n where n is a real number, 

3. limx→a[f(x)±g(x)]=limx→af(x)±limx→ag(x), 
4. limx→a[f(x)⋅g(x)]=limx→af(x)⋅limx→ag(x), 
5. limx→a[f(x)g(x)]=limx→af(x)limx→ag(x) provided that limx→ag(x)≠0. 
With these properties we can evaluate a wide range of polynomial and radical functions. 
Recalling our example above, we see that 

limx→2(x3+2x−−√)=limx→2(x3)+limx→2(2x−−√)=8+2=10. 
Find the following limit if it exists: 

limx→−4(2x2−−x−−−√). 
Since the limit of each function within the parentheses exists, we can apply our 
properties and find 

limx→−4(2x2−−x−−−√)=limx→−42x2−limx→−4−x−−−√. 
Observe that the second limit, limx→−4−x−−−√, is an application of Law #2 with n=12. 

So we have limx→−4(2x2−−x−−−√)=limx→−42x2−limx→−4−x−−−√=32−2=30. 
In most cases of sophisticated functions, we simplify the task by applying the Properties 
as indicated. We want to examine a few exceptions to these rules that will require 
additional analysis. 

Strategies for Evaluating Limits of Rational Functions 

Let’s recall our example 

limx→1x2−1x−1. 
We saw that the function did not have to be defined at a particular value for the limit to 

exist. In this example, the function was not defined for x=1. However we were able to 

evaluate the limit numerically by checking functional values around x=1 and 

found limx→1x2−1x−1=2. 

Note that if we tried to evaluate by direct substitution, we would get the quantity 0/0, 

which we refer to as an indeterminate form. In particular, Property #5 for finding limits 

does not apply since limx→1(x−1)=0. Hence in order to evaluate the limit without using 

numerical or graphical techniques we make the following observation. The numerator of 



the function can be factored, with one factor common to the denominator, and the 
fraction simplified as follows: 

x2−1x−1=(x+1)(x−1)x−1=x+1. 
In making this simplification, we are indicating that the original function can be viewed 

as a linear function for x values close to but not equal to 1, that is, 

x2−1x−1=x+1 for x≠1. In terms of our limits, we can say 

limx→1x2−1x−1=limx→1(x+1)=1+1=2. 
Example 2: 

Find limx→0x2+5xx. 
This is another case where direct substitution to evaluate the limit gives the 

indeterminate form 0/0. Reducing the fraction as before gives: 

limx→0x2+5xx=limx→0(x+5)=5. 
Example 3: 

limx→9x−−√−3x−9. 
In order to evaluate the limit, we need to recall that the difference of squares of real 

numbers can be factored as x2−y2=(x+y)(x−y). 
We then rewrite and simplify the original function as follows: 

x−−√−3x−9=x−−√−3(x−−√+3)(x−−√−3)=1(x−−√+3). 
Hence limx→9x−−√−3x−9=limx→91x−−√+3=16. 

You will solve similar examples in the homework where some clever applications of 
factoring to reduce fractions will enable you to evaluate the limit. 

Limits of Composite Functions 

While we can use the Properties to find limits of composite functions, composite 
functions will present some difficulties that we will fully discuss in the next Lesson. We 
can illustrate with the following examples, one where the limit exists and the other 
where the limit does not exist. 

Example 4: 

Consider f(x)=1x+1, g(x)=x2. Find limx→−1(f∘g)(x). 
We see that (f∘g)(x)=1x2+1 and note that property #5 does hold. Hence by direct 

substitution we have limx→−1(f∘g)(x)=1(−1)2+1=12. 
Example 5: 

Consider f(x)=1x+1, g(x)=−1. Then we have that f (g(x)) is undefined and we get the 

indeterminate form 1/0. Hence limx→−1(f∘g)(x) does not exist. 

Limits of Trigonometric Functions 



In evaluating limits of trigonometric functions we will look to rely more on numerical and 
graphical techniques due to the unique behavior of these functions. Let’s look at a 
couple of examples. 

Example 6: 

Find limx→0sin(x). 
We can find this limit by observing the graph of the sine function and using the [CALC 

VALUE] function of our calculator to show that limx→0sinx=0. 

While we could have found the limit by direct substitution, in general, when dealing with 
trigonometric functions, we will rely less on formal properties of limits for finding limits of 
trigonometric functions and more on our graphing and numerical techniques. 

The following theorem provides us a way to evaluate limits of complex trigonometric 
expressions. 

Squeeze Theorem 

Suppose that f(x)≤g(x)≤h(x) for x near a, and limx→af(x)=limx→ah(x)=L. 

Then limx→ag(x)=L. 

In other words, if we can find bounds for a function that have the same limit, then the 
limit of the function that they bound must have the same limit. 

Example 7: 

Find limx→0x2cos(10πx). 

 

From the graph we note that: 

1. The function is bounded by the graphs of x2 and −x2 
2. limx→0x2=limx→0(−x2)=0. 

Hence the Squeeze Theorem applies and we conclude that limx→0x2cos(10πx)=0. 

Lesson Summary 

1. We learned to find the limit of basic functions. 

2. We learned to find the limit of polynomial, rational and radical functions. 

3. We learned how to find limits of composite and trigonometric functions. 

4. We used the Squeeze Theorem to find special limits. 

 



Learning Objectives 

A student will be able to: 

• Find infinite limits of functions. 

• Analyze properties of infinite limits. 

• Identify asymptotes of functions. 

• Analyze end behavior of functions. 

Introduction 

In this lesson we will discuss infinite limits. In our discussion the notion of infinity is 
discussed in two contexts. First, we can discuss infinite limits in terms of the value a 

function as we increase x without bound. In this case we speak of the limit 

of f(x) as x approaches ∞ and write limx→∞f(x). We could similarly refer to the limit 

of f(x) as x approaches -∞ and write limx→−∞f(x). 
The second context in which we speak of infinite limits involves situations where the 
function values increase without bound. For example, in the case of a rational function 

such as f(x)=(x+1)/(x2+1), a function we discussed in previous lessons: 

 

At x=1, we have the situation where the graph grows without bound in both a positive 

and a negative direction. We say that we have a vertical asymptote at x=1, and this is 

indicated by the dotted line in the graph above. 

In this example we note that limx→1f(x) does not exist. But we could compute both one-

sided limits as follows. 

limx→1−f(x)=−∞ and limx→1−f(x)=+∞. 



More formally, we define these as follows: 

Definition: 

The right-hand limit of the function f(x) at x=a is infinite, and we write limx→a+f(x)=∞, 

if for every positive number k, there exists an open interval (a,a+δ) contained in the 

domain of f(x), such that f(x) is in (k,∞) for every x in (a,a+δ). 

The definition for negative infinite limits is similar. 

Suppose we look at the function f(x)=(x+1)/(x2−1) and determine the infinite 

limits limx→∞f(x) and limx→−∞f(x). 
We observe that as x increases in the positive direction, the function values tend to get 

smaller. The same is true if we decrease x in the negative direction. Some of these 

extreme values are indicated in the following table. 

x100200−100−200f(x).0101.0053−.0099−.005 
We observe that the values are getting closer 

to f(x)=0. Hence limx→∞f(x)=0 and limx→−∞f(x)=0. 

Since our original function was roughly of the form f(x)=1x, this enables us to 

determine limits for all other functions of the form f(x)=1xp with p>0. Specifically, we 

are able to conclude that limx→∞1xp=0. This shows how we can find infinite limits of 

functions by examining the end behavior of the function f(x)=1xp,p>0. 

The following example shows how we can use this fact in evaluating limits of rational 

functions. 

Example 1: 

Find limx→∞2x3−x2+x−1x6−x5+3x4−2x+1. 

Solution: 

Note that we have the indeterminate form, so Limit Property #5 does not hold. However, 

if we first divide both numerator and denominator by the quantity x6, we will then have a 

function of the form 

f(x)g(x)=2x3x6−x2x6+xx6−1x6x6x6−x5x6+3x4x6−2xx6+1x6=2x3−1x4+1x5−1x61−1x+3x2−2x5+1x6. 
We observe that the limits limx→∞ f(x) and limx→∞g(x) both exist. In 

particular, limx→∞f(x)=0 and limx→∞g(x)=1. Hence Property #5 now applies and we 

have limx→∞2x3−x2+x−1x6−x5+3x4−2x+1=01=0. 

Lesson Summary 

1. We learned to find infinite limits of functions. 

2. We analyzed properties of infinite limits. 



3. We identified asymptotes of functions. 

4. We analyzed end behavior of functions. 

 

Review Questions 

In problems 1 - 7, find the limits if they exist. 

1. limx→3+(x+2)2(x−2)2−1 

2. limx→∞(x+2)2(x−2)2−1 

3. limx→1+(x+2)2(x−2)2−1 

4. limx→∞2x−1x+1 

5. limx→−∞x5+3x4+1x3−1 

6. limx→∞3x4−2x2+3x+12x4−2x2+x−3 

7. limx→∞2x2−x+3x5−2x3+2x−3 

In problems 8 - 10, analyze the given function and identify all asymptotes and the end 
behavior of the graph. 

8. f(x)=(x+4)2(x−4)2−1 

9. f(x)=−3x3−x2+2x+2 

10. f(x)=2x2−8x+2 

11. Consider f(x)=1x+1,g(x)=x2. We previously found limx→−1(f∘g)(x)=12. 

Find limx→−1(g∘f)(x). 
 


