
Steve	Friedl's	Unixwiz.net	Tech	Tips
An	Illustrated	Guide	to	Cryptographic	Hashes

Table	of	Contents

1.	 What	is	a	cryptographic	hash?
2.	 Hashes	are	"digests",	not	"encryption"
3.	 How	are	hashes	used?
4.	 But	what	about	collisions?
5.	 What's	inside	a	cryptographic	hash?
6.	 "Collision	resistance"	in	more	detail
7.	 So	what's	the	big	news?
8.	 What	does	this	mean?
9.	 Other	voices

With	the	recent	news	of	weaknesses	in	some	common	security	algorithms	(MD4,	MD5,	SHA-0),	many	are	wondering	exactly	what	these	things	are:
They	form	the	underpinning	of	much	of	our	electronic	infrastructure,	and	in	this	Guide	we'll	try	to	give	an	overview	of	what	they	are	and	how	to
understand	them	in	the	context	of	the	recent	developments.

But	note:	though	we're	fairly	strong	on	security	issues,	we	are	not	crypto	experts.	We've	done	our
best	to	assemble	(digest?)	the	best	available	information	into	this	Guide,	but	we	welcome	being
pointed	to	the	errors	of	our	ways.

What	is	a	cryptographic	hash?
A	"hash"	(also	called	a	"digest",	and	informally	a	"checksum")	is	a	kind	of	"signature"	for	a	stream	of	data	that	represents	the	contents.	The
closest	real-life	analog	we	can	think	is	"a	tamper-evident	seal	on	a	software	package":	if	you	open	the	box	(change	the	file),	it's	detected.
Let's	first	see	some	examples	of	hashes	at	work.
Many	Unix	and	Linux	systems	provide	the	md5sum	program,	which	reads	a	stream	of	data	and	produces	a	fixed,	128-bit	number	that
summarizes	that	stream	using	the	popular	"MD5"	method.	Here,	the	"streams	of	data"	are	"files"	(two	of	which	we	see	directly,	plus	one	that's	too
large	to	display).

$	cat	smallfile
This	is	a	very	small	file	with	a	few	characters

$	cat	bigfile
This	is	a	larger	file	that	contains	more	characters.
This	demonstrates	that	no	matter	how	big	the	input
stream	is,	the	generated	hash	is	the	same	size	(but
of	course,	not	the	same	value).	If	two	files	have
a	different	hash,	they	surely	contain	different	data.

$	ls	-l	empty-file	smallfile	bigfile	linux-kernel
-rw-rw-r--				1	steve				steve											0	2004-08-20	08:58	empty-file
-rw-rw-r--				1	steve				steve										48	2004-08-20	08:48	smallfile
-rw-rw-r--				1	steve				steve									260	2004-08-20	08:48	bigfile
-rw-r--r--				1	root					root						1122363	2003-02-27	07:12	linux-kernel

$	md5sum	empty-file	smallfile	bigfile	linux-kernel
d41d8cd98f00b204e9800998ecf8427e		empty-file
75cdbfeb70a06d42210938da88c42991		smallfile
6e0b7a1676ec0279139b3f39bd65e41a		bigfile
c74c812e4d2839fa9acf0aa0c915e022		linux-kernel

This	shows	that	all	input	streams	yield	hashes	of	the	same	length,	and	to	experiment,	try	changing	just	one	character	of	a	small	test	file.	You'll
find	that	even	very	small	changes	to	the	input	yields	sweeping	changes	in	the	value	of	the	hash,	and	this	is	known	as	the	avalanche	effect.
The	avalanche	effect	can	be	best	seen	by	hashing	two	files	with	nearly	identical	content.	We've	changed	the	first	character	of	a	file	from	T	to	t,
and	when	looking	at	the	binary	values	for	these	ASCII	characters,	we	see	that	they	differ	by	just	one	bit:

T	->	0x54	->	0	1	0	1		0	1	0	0
t	->	0x74	->	0	1	1	1		0	1	0	0

This	single	bit	of	change	in	the	input	produces	a	very	large	change	in	the	output:

$	cat	file1
This	is	a	very	small	file	with	a	few	characters

$	cat	file2
this	is	a	very	small	file	with	a	few	characters

$	md5sum	file?
75cdbfeb70a06d42210938da88c42991		file1
6fbe37f1eea0f802bd792ea885cd03e2		file2

Expanding	the	hex	to	binary	(in	32-bit	chunks	to	avoid	really	long	lines),	we	can	see	that	our	one	bit	of	input	change	produced	50	different	output
bits,	about	39%:

First	32	bits
0111	0101	1100	1101	1011	1111	1110	1011	75cdbfeb	file1
0110	1111	1011	1110	0011	0111	1111	0001	6fbe37f1	file2
...X	X.X.	.XXX	..XX	X...	X...	...X	X.X.	13	bits	different

Second	32	bits
0111	0000	1010	0000	0110	1101	0100	0010	70a06d42	file1
1110	1110	1010	0000	1111	1000	0000	0010	eea0f802	file2

X..X	XXX.	X..X	.X.X	.X..	10	bits	different

Third	32	bits
0010	0001	0000	1001	0011	1000	1101	1010	210938da	file1
1011	1101	0111	1001	0010	1110	1010	1000	bd792ea8	file2
X..X	XX..	.XXXX	.XX.	.XXX	..X.	14	bits	different

Fourth	32	bits
1000	1000	1100	0100	0010	1001	1001	0001	88c42991	file1
1000	0101	1100	1101	0000	0011	1110	0010	85cd03e2	file2
....	XX.X	X..X	..X.	X.X.	.XXX	..XX	13	bits	different

But	even	though	the	value	of	the	hash	changes,	its	size	does	not.

Hashes	are	"digests",	not	"encryption"
This	is	a	common	confusion,	especially	because	all	these	words	are	in	the	category	of	"cryptography",	but	it's	important	to	understand	the
difference.
Encryption	transforms	data	from	a	cleartext	to	ciphertext	and	back	(given	the	right	keys),	and	the	two	texts	should	roughly	correspond	to	each
other	in	size:	big	cleartext	yields	big	ciphertext,	and	so	on.	"Encryption"	is	a	two-way	operation.

	
Fig.	1:	Encryption	-	a	two-way	operation

Hashes,	on	the	other	hand,	compile	a	stream	of	data	into	a	small	digest	(a	summarized	form:	think	"Reader's	Digest"),	and	it's	strictly	a	one
way	operation.	All	hashes	of	the	same	type	-	this	example	shows	the	"MD5"	variety	-	have	the	same	size	no	matter	how	big	the	inputs	are:

	
Fig.	2:	Hashing	-	a	one-way	operation

"Encryption"	is	an	obvious	target	for	attack	(e.g.,	"try	to	read	the	encrypted	text	without	the	key"),	but	even	the	one-way	nature	of	hashes	admits
of	more	subtle	attacks.	We'll	cover	them	shortly,	but	first	we	must	see	for	what	purposes	hashes	are	commonly	used.
We'll	note	here	that	though	hashes	and	digests	are	often	informally	called	"checksums",	they	really	aren't.	True	checksums,	such	as	a	Cyclic
Redundancy	Check	are	designed	to	catch	data-transmission	errors	and	not	deliberate	attempts	at	tampering	with	data.	Aside	of	the	small	output
space	(usually	32	bits),	they	are	not	designed	with	the	same	properties	in	mind.	We	won't	mention	true	checksums	again.

How	are	hashes	used?
There	are	quite	a	few	uses	for	hashes,	and	we'll	mention	them	here	so	we	have	something	to	build	on	when	we	try	to	subvert	them	for	evil
purposes,	and	to	see	the	ramifications	of	the	recent	developments.

Verifying	file	integrity
The	most	obvious	use	is	"verifying	file	integrity".	If	you	have	just	downloaded	a	large	piece	of	software	from	a	website,	how	do	you	know	that
you've	received	it	correctly	and	that	it	has	not	been	tampered	with?
One	way	is	to	download	the	file	again	and	compare	the	bits:	if	the	bits	are	the	same,	you're	probably	ok,	but	if	they're	different,	which	ones
are	the	right	bits?	Finding	out	means	yet	another	download	with	compare,	and	this	gets	very	tedious	very	quickly.
Instead,	if	the	website	publishes	the	hash	values	of	its	download	bundles,	you	can	check	it	yourself.	For	instance,	the	ProFTPD	project	(an
excellent	open	source	FTP	server)	publishes	their	hashes:

	
Fig.	3:	MD5	checksums	for	downloadable	software

Now	it's	just	a	matter	of	running	the	md5sum	command	on	the	file	you	downloaded	and	comparing	it	with	the	published	values.
Important!

When	considering	hash	values,	close	does	not	count!
If	the	hashes	being	compared	differ	in	any	way,	even	by	just	a	single	bit,	the	data	being	digested	is	not	the
same!	There	is	no	equivalent	of	"roundoff	error"	or	"almost"	in	cryptographic	hashes.

Hashing	passwords
A	second	example	that's	very	common	-	but	less	obvious	-	is	the	hashing	of	access	passwords,	and	we'll	reiterate	that	"hashing	is	not
encryption".
It's	a	bad	idea	for	computer	systems	to	store	passwords	in	cleartext	(in	their	original	form),	because	if	the	bad	guy	can	somehow	get	to
where	they're	stored,	he	gets	all	the	passwords.	Knowing	how	many	people	foolishly	use	one	password	at	multiple	sites,	getting	a	stash	from
one	system	may	give	access	to	others.
A	more	secure	way	is	to	store	a	hash	of	the	password,	rather	than	the	password	itself.	Since	these	hashes	are	not	reversible,	there	is	no
way	to	find	out	for	sure	"what	password	produced	this	hash?"	-	and	the	so	consequence	of	a	compromise	is	much	lower.

	
Fig.	4:	Storing	a	hash	instead	of	a	password

Now	we	have	squirreled	away	the	password	into	a	safe	place,but	since	this	is	a	one-way	function,	how	will	we	know	that	some	future	user	at
a	login	prompt	gives	us	the	same	password?
The	answer	is	simple:	we	take	the	proposed	password	--	in	cleartext	--	run	it	through	the	same	hash	function,	and	see	whether	this	result
matches	the	hash	we've	saved	in	the	password	store.	If	they	match,	the	user	must	have	known	the	proper	password,	so	access	is	granted,
but	if	the	hashes	are	not	identical,	access	is	denied.

	
Fig.	5:	Testing	a	proposed	password	against	the	stored	hash

Note	-	in	practice	there	is	usually	an	additional	wrinkle	to	hashed	passwords:	the	introduction	of	what's	known	as	a	salt.	This	is	a	random	bit
of	text	added	to	the	cleartext	passwords	before	running	through	the	hash	function,	and	in	the	examples	above,	the	salt	is	between	the	$
signs.	This	step	improves	the	security	of	the	stored	hash,	but	we're	not	going	to	elaborate	on	this	step	in	this	document.

Digitally	Signed	Documents
This	is	quite	a	bit	more	complicated,	and	we're	going	to	gloss	over	the	details	of	this	subject,	covering	only	enough	to	show	the	role	of
cryptographic	hashes.	David	Youd	has	written	an	excellent	Introduction	to	Digital	Signatures	that	covers	this	in	much	more	detail.
Loosely	speaking,	"signing"	a	document	electronically	is	the	digital	equivalent	of	placing	an	autograph	on	paper,	and	our	discussion	revolves
around	how	the	signature	is	represented.	How	does	one	know	that	this	digital	signature	applies	to	this	document?
The	answer:	one	signs	(encrypts	with	one's	private	key)	the	hash	of	the	document,	the	result	of	which	is	a	digital	signature.	The	process	is
shown	here:

	
Fig	6:	Digitally	signing	a	document

At	some	later	date,	we	can	prove	that	you	signed	the	document	by	decrypting	the	signature	with	your	public	key,	which	yields	the	hash,	and
showing	that	the	document's	hash	matches	the	signed	one.
We'll	see	later	how	a	weakness	in	the	hash	function	could	lead	to	shenanigans.

But	what	about	collisions?
The	thoughtful	reader	may	wonder	how	this	could	work:	if	it's	possible	to	uniquely	represent	every	possible	stream	of	data	in	128	bits	-	that's	16
bytes	--	then	why	would	one	ever	need	a	file	larger	than	that?	If	this	isn't	the	case,	then	it	seems	obvious	that	many	input	streams	are	available
that	can	produce	any	given	hash.
When	different	chunks	of	data	produce	the	same	hash	value,	this	is	known	as	a	collision,	and	it	follows	from	the	previous	paragraph	that	they
inherently	must	exist:

	
Fig	7:	What	a	hash	collision	might	look	like
(just	a	hypothetical	example)

If	so,	this	seems	to	undermine	the	whole	premise	of	cryptographic	hashes	until	one	learns	that	for	industrial-strength	hashes	like	MD5,	nobody
has	found	a	collision	yet	(well,	almost	nobody,	but	we're	getting	to	that)	.
This	astonishing	fact	is	due	to	the	astonishingly	large	number	of	possible	hashes	available:	a	128-bit	hash	can	have	3.4	x	1038	possible	values,
which	is:

340,282,366,920,938,463,463,374,607,431,768,211,456	possible	hashes

If	the	hash	algorithm	is	properly	designed	and	distributes	the	hashes	uniformly	over	the	output	space,	"finding	a	hash	collision"	by	random
guessing	is	exceedingly	unlikely	(it's	more	likely	that	a	million	people	will	correctly	guess	all	the	California	Lottery	numbers	every	day	for	a	billion
trillion	years).
Other	hashes	have	even	more	bits:	the	SHA-1	algorithm	generates	160	bits,	whose	output	space	is	four	billions	times	larger	than	that	produced	by
MD5's	128	bits.

What's	inside	a	cryptographic	hash?
The	first	answer	is	"it	depends	on	the	kind	of	hash",	but	the	second	answer	usually	starts	with	"a	lot	of	math".	A	colloquial	explanation	is	that	all
the	bits	are	poured	into	a	pot	and	stirred	briskly,	and	this	is	about	as	technical	we	care	to	delve	into	here.
There	are	plenty	of	resources	that	show	the	internal	workings	of	a	hash	algorithm,	almost	all	of	which	involve	lots	of	shifting	and	rotating	through
multiple	"rounds".
A	good	explanation	for	the	SHA-1	algorithm	(a	popular	one)	can	be	found	at	Wikipedia	by	clicking	on	this	image:

Illustration	courtesy	Wikipedia	
Fig.	8	-	One	iteration	within	the	SHA-1
compression	function.	A,	B,	C,	D	and	E	are
32-bit	words	of	the	state;
F	is	a	nonlinear	function	that	varies;
<<<	denotes	left	circular	shift.
Kt	is	a	constant.

Though	we're	not	going	to	elaborate	on	the	internals,	it	does	seem	appropriate	to	mention	some	of	the	popular	hash	algorithms:

MD4	(128	bits,	obsolete)
MD5	(128	bits)
RIPEMD-160	(160	bits)
SHA-1	(160	bits)
SHA-256,	SHA-384,	and	SHA-512	(longer	versions	of	SHA-1,	with	slightly	different	designs)

Each	has	its	own	advantages	in	terms	of	performance,	several	variations	of	collision	resistance,	how	well	its	security	has	been	studied
professionally,	and	so	on.	"Picking	a	good	hash	algorithm"	is	beyond	the	scope	of	this	Tech	Tip.

"Collision	resistance"	in	more	detail
As	we've	mentioned	several	times,	"collisions"	play	a	central	role	in	the	usefulness	of	a	cryptographic	hash,	mainly	in	the	sense	that	the	easier	it
is	to	find	a	collision,	the	less	useful	the	hash	is.	Some	algorithms	are	better	than	others	at	avoiding	collisions,	and	this	is	measured	by	three
related	attributes.

Collision	Resistance
measures	how	difficult	it	is	to	pick	two	inputs	that	produce	the	same	hash	value.

	
Fig.	9:	Collision	Resistance	depicted

We	manufacture	both	of	the	inputs	in	an	attempt	to	coax	the	same	hash	value	from	each,	and	we	don't	care	what	the	particular	hash	value
generated	is	(just	that	they	both	match).
Exploiting	weak	collision	resistance:	If	we	are	able	to	create	two	inputs	that	generate	the	same	hash,	digital	signature	become	suspect.
In	our	example	above,	the	document	signed	was	"a	promise	to	pay",	and	being	able	to	substitute	one	signed	document	for	another	would
certainly	lead	to	havoc:

	
Fig.	10:	Breaking	digital	signatures

As	an	aside,	it's	been	recommended	to	always	make	a	cosmetic	change	to	any	document	you	sign:	if	the	person	giving	you	the	document
secretly	has	a	hash-equivalent	pair,	your	small	change	-	even	a	byte	or	two	-	will	render	the	"other"	file	useless.

Preimage	Resistance
measures	how	difficult	it	is	to	concoct	an	input	which	hashes	to	a	particular	value.

	
Fig.	11:	Preimage	Resistance	depicted

Exploiting	weak	preimage	resistance:	If	we	are	able	to	"work	backwards"	from	a	hash	and	create	some	text	that	produces	the	same
hash,	we	can	use	this	to	beat	hashed	passwords.	We	won't	ever	know	the	actual	input	data	that	was	used,	but	that	doesn't	matter.
Looking	at	the	flow	for	validating	against	hashed	passwords,	all	that	matters	is	that	the	hashes	match,	not	the	passwords,	so	if	we	can	find
any	other	text	that	produces	the	stored	hash,	we'll	be	granted	access.	"Collisions"	mean	"more	than	one	password	will	be	accepted".

Second	Preimage	Resistance
measures	how	difficult	it	is	to	concoct	an	input	which	hashes	to	the	same	value	that	some	other	given	input	hashes	to.

	
Fig.	12:	Second	Preimage	Resistance	depicted

This	seems	like	a	somewhat	easier	case	of	the	previous	item:	the	goal	is	to	produce	a	new	input	that	generates	the	given	hash,	but	this	time
we	know	the	original	text	that	created	it.	We're	not	entirely	clear	just	how	much	help	this	extra	knowledge	is.
Exploiting	second	weak	preimage	resistance:	As	with	preimage	resistance,	we	want	to	fool	somebody	into	authenticating	our	data	as
genuine,	and	we'd	most	likely	use	this	when	trying	to	introduce	a	corrupted	software	distribution.
Earlier	we	saw	that	ProFTPD	(and	many	other	organizations)	publishes	software	and	matching	md5	checksums,	and	if	we	are	able	to
maliciously	modify	the	source	code	but	nevertheless	keep	the	same	checksum,	downloaders	around	the	globe	will	accept	our	badware	as
genuine.

So	what's	the	big	news?
Some	very	bright	researchers	in	China	presented	a	paper,	Collisions	for	Hash	Functions	MD4,	MD5,	HAVAL-128	and	RIPEMD,	at	the	Crypto	2004
conference	in	August	2004,	and	it's	shaken	up	the	security	world	considerably.	This	was	some	outstanding	cryptography	research.
They	have	found	ways	to	reliably	generate	collisions	in	four	hash	functions	much	faster	than	brute-force	time,	and	in	one	case	(MD4,	which	is
admittedly	obsolete),	with	a	hand	calculation.	This	has	been	a	stunning	development.
These	are	all	of	the	"we	control	both	inputs"	type	-	the	first	of	our	three	kinds	of	collisions	-	and	it	holds	the	most	promise	in	the	compromise	of
digital	signatures	where	the	bad	guy	can	create	two	contradictory	documents	and	pull	a	switcheroo	later.
We've	heard	there	are	already	tools	emerging	that	can	reliably	generate	collision-pairs	in	"reasonable"	amounts	of	CPU	time,	and	with	just	a	bit	of
searching	found	one	example	for	MD5:

	
Fig.	13:	a	real	MD5	collision

This	can	be	checked	with	this	small	perl	program	that	was	posted	on	Edward	Felton's	weblog	by	Greg	Buchholz	(origin	unknown):

#!/usr/bin/perl	-w

use	strict;

my	$v1=<<END_V1;
d1	31	dd	02	c5	e6	ee	c4	69	3d	9a	06	98	af	f9	5c
2f	ca	b5	87	12	46	7e	ab	40	04	58	3e	b8	fb	7f	89
55	ad	34	06	09	f4	b3	02	83	e4	88	83	25	71	41	5a
08	51	25	e8	f7	cd	c9	9f	d9	1d	bd	f2	80	37	3c	5b

Home	 		Stephen	J.	Friedl	 		Software	Consultant	 		Orange	County,	CA	USA	 		 	 		

d8	82	3e	31	56	34	8f	5b	ae	6d	ac	d4	36	c9	19	c6
dd	53	e2	b4	87	da	03	fd	02	39	63	06	d2	48	cd	a0
e9	9f	33	42	0f	57	7e	e8	ce	54	b6	70	80	a8	0d	1e
c6	98	21	bc	b6	a8	83	93	96	f9	65	2b	6f	f7	2a	70
END_V1

my	$v2=<<END_V2;
d1	31	dd	02	c5	e6	ee	c4	69	3d	9a	06	98	af	f9	5c
2f	ca	b5	07	12	46	7e	ab	40	04	58	3e	b8	fb	7f	89
55	ad	34	06	09	f4	b3	02	83	e4	88	83	25	f1	41	5a
08	51	25	e8	f7	cd	c9	9f	d9	1d	bd	72	80	37	3c	5b
d8	82	3e	31	56	34	8f	5b	ae	6d	ac	d4	36	c9	19	c6
dd	53	e2	34	87	da	03	fd	02	39	63	06	d2	48	cd	a0
e9	9f	33	42	0f	57	7e	e8	ce	54	b6	70	80	28	0d	1e
c6	98	21	bc	b6	a8	83	93	96	f9	65	ab	6f	f7	2a	70
END_V2

my	$p=join("",map	{chr(hex($_))}	split	/\s+/,	$v1);
my	$q=join("",map	{chr(hex($_))}	split	/\s+/,	$v2);

print	`echo	-n	\'$p\'|md5sum`;
print	`echo	-n	\'$q\'|md5sum`;

There	is	also	a	buzz	about	weaknesses	in	the	SHA-0	and	SHA-1	algorithms,	but	this	is	much	more	preliminary.
A	researcher	has	managed	to	find	a	collision	in	SHA-0,	which	is	not	in	such	widespread	use,	and	another	has	found	a	collision	in	"reduced	SHA-1".
A	"reduced"	algorithm	typically	eliminates	some	steps	in	the	hashing	process	(40	rounds	rather	than	80),	and	even	though	finding	a	collision	in
what	amounts	to	1/2	of	SHA-1	doesn't	have	any	immediate	impact,	it's	like	a	neon	sign	to	the	researchers	saying	"look	here".
There	is	no	evidence	that	preimage	resistance	or	second	preimage	resistance	are	at	risk	in	any	of	the	algorithms	(e.g.,	if	you	have	an	existing
hash,	find	an	input	that	produces	that	hash),	but	many	of	the	cryptorati	believe	that	blood	is	in	the	water	and	the	sharks	are	on	their	way.
Once	a	weakness	in	an	algorithm	has	been	identified	-	even	if	it's	theoretical	or	only	on	a	reduced	version	-	it's	often	the	start	of	the	whole	thing
unraveling.

What	does	this	mean?
In	the	short	term,	this	will	have	only	a	limited	impact	on	computer	security.	The	bad	guys	can't	suddenly	start	tampering	with	software	that	can
fool	published	checksums,	and	they	can't	suddenly	start	cracking	hashed	passwords.	Previously-signed	digital	signatures	are	just	as	secure	as
they	were	before,	because	one	can't	retroactively	generate	new	documents	to	sign	with	your	matched	pair	of	inputs.
What	it	does	mean,	though,	is	that	we've	got	to	start	migrating	to	better	hash	functions.	Even	though	SHA-1	has	long	been	thought	to	be	secure,
NIST	(the	National	Institute	of	Standards	and	Technology)	has	a	standard	for	even	longer	hash	functions	which	are	named	for	the	number	of	bits	in
their	output:	SHA-224,	SHA-256,	SHA-384,	and	SHA-512.
Five	hundred	twelve	bits	of	hash	holds	1.34	x	10154	possible	values,	which	is	far,	far	more	than	the	number	of	hydrogen	atoms	in	the	universe
[ref].	This	is	likely	to	be	safe	from	brute-force	attacks	for	quite	a	while.

Other	voices
As	we	conclude	this	Tech	Tip,	we	remind	the	reader	that	we	are	not	crypto	experts,	and	have	merely	collected	information	from	far	and	wide	in
a	manner	that	we	believe	covers	the	topic	with	clarity	and	fidelity.	But	we	could	be	wrong,	and	in	the	case	of	predicting	the	future,	probably	are.
Those	wishing	the	authoritative	word	on	this	are	encouraged	to	legendary	security	expert	Bruce	Schneier,	who	has	written	an	analysis	that
appeared	in	Computerworld:

Opinion:	Cryptanalysis	of	MD5	and	SHA:	Time	for	a	new	standard	
Crypto	researchers	report	weaknesses	in	common	hash	functions

As	his	was	an	opinion	piece	and	not	a	Tech	Tip,	he	hasn't	covered	the	background,	but	his	big-picture	analysis	are	certainly	much	more	likely	to	be
correct	than	ours.
We	also	recommend	Bruce's	monumental	work	Applied	Cryptography,	which	has	been	the	gold	standard	of	crypto	texts	for	some	time.	We	refer	to
this	constantly	when	researching	security	issues	and	cannot	recommend	this	book	highly	enough.
Professor	Edward	Felten	wrote	about	this	in	his	Freedom	to	Tinker	weblog,	and	his	is	also	an	authoritative	voice	on	the	subject.
Update:	(2005/02/15)	-	Bruce	Schneier's	weblog:	SHA-1	Broken
Another	excellent	resource	is	Doxpara	Research,	with	thoughtful	papers	on	the	future	of	these	hashes.

Feedback	and/or	corrections	to	this	paper	are	gladly	accepted.
Last	modified:	Mon	May	9	09:15:29	PDT	2005

