
History	of	programming	languages
The	first	high-level	programming	language	was	Plankalkül,	created	by	Konrad	Zuse	between	1942	and	1945[1].	The	first	high-level	language
to	have	an	associated	compiler,	was	created	by	Corrado	Böhm	in	1951,	for	his	PhD	thesis	(http://e-collection.library.ethz.ch/eserv/eth:32719/
eth-32719-02.pdf).	 The	 first	 commercially	 available	 language	 was	 FORTRAN	 (FORmula	 TRANslation);	 developed	 in	 1956	 (first	 manual
appeared	in	1956,	but	first	developed	in	1954)	by	the	team	of	John	Backus	at	IBM.

When	FORTRAN	was	first	introduced	it	was	treated	with	suspicion	because	of	the	belief	that	programs	compiled	from	high-level	language
would	 be	 less	 efficient	 than	 those	written	 directly	 in	machine	 code.	 FORTRAN	 became	 popular	 because	 it	 provided	 a	means	 of	 porting
existing	code	to	new	computers,	in	a	hardware	market	that	was	rapidly	evolving.	FORTRAN	eventually	became	known	for	its	efficiency.	Over
the	years,	FORTRAN	had	been	updated,	with	standards	released	for	FORTRAN-66,	FORTRAN-77	and	FORTRAN-92.

Early	history
First	programming	languages
Establishing	fundamental	paradigms
1980s:	consolidation,	modules,	performance
1990s:	the	Internet	age
Current	trends
Prominent	people
See	also
References
Further	reading
External	links

During	 a	 nine-month	 period	 in	 1842–1843,	 Ada	Lovelace	 translated	 the	memoir	 of	 Italian	mathematician	 Luigi	Menabrea	 about	 Charles
Babbage's	newest	proposed	machine,	the	analytical	engine.	With	the	article	she	appended	a	set	of	notes	which	specified	in	complete	detail	a
method	for	calculating	Bernoulli	numbers	with	the	engine,	recognized	by	some	historians	as	the	world's	first	computer	program.[2]

The	first	computer	codes	were	specialized	for	their	applications.	In	the	first	decades	of	the	20th	century,	numerical	calculations	were	based
on	decimal	numbers.	Eventually	 it	was	 realized	 that	 logic	could	be	 represented	with	numbers,	not	only	with	words.	For	example,	Alonzo
Church	was	able	 to	express	 the	 lambda	calculus	 in	 a	 formulatic	way.	The	Turing	machine	was	 an	 abstraction	 of	 the	 operation	 of	 a	 tape-
marking	machine,	for	example,	in	use	at	the	telephone	companies.	Turing	machines	set	the	basis	for	storage	of	programs	as	data	in	the	von
Neumann	architecture	of	computers	by	representing	a	machine	through	a	finite	number.	However,	unlike	the	lambda	calculus,	Turing's	code
does	not	serve	well	as	a	basis	for	higher-level	languages—its	principal	use	is	in	rigorous	analyses	of	algorithmic	complexity.

To	some	people,	what	was	the	first	modern	programming	language	depends	on	how	much	power	and	human-readability	is	required	before
the	 status	 of	 "programming	 language"	 is	 granted.	 Jacquard	Looms	and	Charles	Babbage's	Difference	Engine	 both	 had	 simple,	 extremely
limited	languages	for	describing	the	actions	that	these	machines	should	perform.

In	 the	1940s,	 the	 first	recognizably	modern	electrically	powered	computers	were	created.	The	 limited	speed	and	memory	capacity	 forced
programmers	to	write	hand	tuned	assembly	language	programs.	It	was	eventually	realized	that	programming	in	assembly	language	required
a	great	deal	of	intellectual	effort.

The	 first	 programming	 languages	 designed	 to	 communicate	 instructions	 to	 a	 computer	 were	 written	 in	 the	 1950s.	 An	 early	 high-level
programming	language	to	be	designed	for	a	computer	was	Plankalkül,	developed	by	the	Germans	for	Z1	by	Konrad	Zuse	between	1943	and
1945.	However,	it	was	not	implemented	until	1998	and	2000.[3]

John	Mauchly's	Short	Code,	proposed	in	1949,	was	one	of	the	first	high-level	languages	ever	developed	for	an	electronic	computer.[4]	Unlike
machine	 code,	 Short	 Code	 statements	 represented	 mathematical	 expressions	 in	 understandable	 form.	 However,	 the	 program	 had	 to	 be
translated	into	machine	code	every	time	it	ran,	making	the	process	much	slower	than	running	the	equivalent	machine	code.

At	the	University	of	Manchester,	Alick	Glennie	developed	Autocode	in	the	early	1950s,	with	the	second	iteration	developed	for	the	Mark	1	by
R.	A.	Brooker	 in	 1954,	 known	 as	 the	 "Mark	 1	 Autocode".	 Brooker	 also	 developed	 an	 autocode	 for	 the	 Ferranti	Mercury	 in	 the	 1950s	 in
conjunction	 with	 the	 University	 of	 Manchester.	 The	 version	 for	 the	 EDSAC	 2	 was	 devised	 by	 D.	 F.	 Hartley	 of	 University	 of	 Cambridge

Contents

Early	history

First	programming	languages



Mathematical	Laboratory	 in	1961.	Known	as	EDSAC	2	Autocode,	 it	was	a	straight	development	 from	Mercury	Autocode	adapted	 for	 local
circumstances,	 and	 was	 noted	 for	 its	 object	 code	 optimisation	 and	 source-language	 diagnostics	 which	 were	 advanced	 for	 the	 time.	 A
contemporary	but	separate	thread	of	development,	Atlas	Autocode	was	developed	for	the	University	of	Manchester	Atlas	1	machine.

In	1954,	 language	FORTRAN	was	 invented	at	 IBM	by	a	 team	led	by	 John	Backus;	 it	was	 the	 first	widely	used	high	 level	 general	 purpose
programming	language	to	have	a	functional	implementation,	as	opposed	to	just	a	design	on	paper.[5][6]	It	is	still	a	popular	language	for	high-
performance	computing[7]	and	is	used	for	programs	that	benchmark	and	rank	the	world's	fastest	supercomputers.[8]

Another	early	programming	language	was	devised	by	Grace	Hopper	in	the	US,	called	FLOW-MATIC.	It	was	developed	for	the	UNIVAC	I	 at
Remington	Rand	during	the	period	from	1955	until	1959.	Hopper	found	that	business	data	processing	customers	were	uncomfortable	with
mathematical	notation,	and	in	early	1955,	she	and	her	team	wrote	a	specification	for	an	English	programming	language	and	implemented	a
prototype.[9]	The	FLOW-MATIC	compiler	became	publicly	available	in	early	1958	and	was	substantially	complete	in	1959.[10]	Flow-Matic	was
a	major	influence	in	the	design	of	COBOL,	since	only	it	and	its	direct	descendent	AIMACO	were	in	actual	use	at	the	time.[11]

Other	 languages	 still	 in	 use	 today	 include	 LISP	 (1958),	 invented	 by	 John	 McCarthy	 and	 COBOL	 (1959),	 created	 by	 the	 Short	 Range
Committee.	Another	milestone	in	the	late	1950s	was	the	publication,	by	a	committee	of	American	and	European	computer	scientists,	of	"a
new	language	for	algorithms";	the	ALGOL	60	Report	(the	"ALGOrithmic	Language").	This	report	consolidated	many	ideas	circulating	at	the
time	and	featured	three	key	language	innovations:

nested	block	structure:	code	sequences	and	associated	declarations	could	be	grouped	into	blocks	without	having	to	be	turned	into
separate,	explicitly	named	procedures;
lexical	scoping:	a	block	could	have	its	own	private	variables,	procedures	and	functions,	invisible	to	code	outside	that	block,	that	is,
information	hiding.

Another	innovation,	related	to	this,	was	in	how	the	language	was	described:

a	mathematically	exact	notation,	Backus–Naur	form	(BNF),	was	used	to	describe	the	language's	syntax.	Nearly	all	subsequent
programming	languages	have	used	a	variant	of	BNF	to	describe	the	context-free	portion	of	their	syntax.

Algol	60	was	particularly	influential	in	the	design	of	later	languages,	some	of	which	soon	became	more	popular.	The	Burroughs	large	systems
were	designed	to	be	programmed	in	an	extended	subset	of	Algol.

Algol's	key	ideas	were	continued,	producing	ALGOL	68:

syntax	and	semantics	became	even	more	orthogonal,	with	anonymous	routines,	a	recursive	typing	system	with	higher-order	functions,
etc.;
not	only	the	context-free	part,	but	the	full	language	syntax	and	semantics	were	defined	formally,	in	terms	of	Van	Wijngaarden	grammar,	a
formalism	designed	specifically	for	this	purpose.

Algol	68's	many	little-used	language	features	(for	example,	concurrent	and	parallel	blocks)	and	its	complex	system	of	syntactic	shortcuts	and
automatic	type	coercions	made	it	unpopular	with	implementers	and	gained	it	a	reputation	of	being	difficult.	Niklaus	Wirth	actually	walked
out	of	the	design	committee	to	create	the	simpler	Pascal	language.

Some	notable	languages	that	were	developed	in	this	period	include:

1951	–	Regional	Assembly	Language
1952	–	Autocode
1954	–	IPL	(forerunner	to	LISP)
1955	–	FLOW-MATIC	(led	to	COBOL)
1957	–	FORTRAN	(First	compiler)
1957	–	COMTRAN	(precursor	to	COBOL)
1958	–	LISP
1958	–	ALGOL	58
1959	–	FACT	(forerunner	to	COBOL)
1959	–	COBOL																					
																														

1959	–	RPG
1962	–	APL
1962	–	Simula
1962	–	SNOBOL
1963	–	CPL	(forerunner	to	C)
1964	–	Speakeasy	(computational
environment)
1964	–	BASIC
1964	–	PL/I
1966	–	JOSS
1967	–	BCPL	(forerunner	to	C)

The	period	 from	 the	 late	1960s	 to	 the	 late	1970s	brought	 a	major	 flowering	of	 programming	 languages.	Most	 of	 the
major	language	paradigms	now	in	use	were	invented	in	this	period:

Speakeasy	(computational	environment),	developed	in	1964	at	Argonne	National	Laboratory	(ANL)	by	Stanley
Cohen,	is	an	OOPS	(object-oriented	programming,	much	like	the	later	MATLAB,	IDL	(programming	language)	and
Mathematica)	numerical	package.	Speakeasy	has	a	clear	Fortran	foundation	syntax.	It	first	addressed	efficient	physics
computation	internally	at	ANL,	was	modified	for	research	use	(as	"Modeleasy")	for	the	Federal	Reserve	Board	in	the
early	1970s	and	then	was	made	available	commercially;	Speakeasy	and	Modeleasy	are	still	in	use	currently.
Simula,	invented	in	the	late	1960s	by	Nygaard	and	Dahl	as	a	superset	of	Algol	60,	was	the	first	language	designed	to
support	object-oriented	programming.
C,	an	early	systems	programming	language,	was	developed	by	Dennis	Ritchie	and	Ken	Thompson	at	Bell	Labs
between	1969	and	1973.
Smalltalk	(mid-1970s)	provided	a	complete	ground-up	design	of	an	object-oriented	language.
Prolog,	designed	in	1972	by	Colmerauer,	Roussel,	and	Kowalski,	was	the	first	logic	programming	language.

Fortran

Establishing	fundamental	paradigms

Smalltalk



ML	built	a	polymorphic	type	system	(invented	by	Robin	Milner	in	1973)	on	top	of	Lisp,[12]	pioneering	statically	typed	functional
programming	languages.

Each	of	 these	 languages	 spawned	an	entire	 family	of	descendants,	and	most	modern	 languages	count	at	 least	one	of
them	in	their	ancestry.

The	 1960s	 and	 1970s	 also	 saw	 considerable	 debate	 over	 the	 merits	 of	 "structured	programming",	 which	 essentially
meant	programming	without	the	use	of	"goto".	A	significant	 fraction	of	programmers	believed	that,	even	 in	 languages
that	provide	"goto",	it	is	bad	programming	style	to	use	it	except	in	rare	circumstances.	This	debate	was	closely	related	to
language	 design:	 some	 languages	 did	 not	 include	 a	 "goto"	 at	 all,	 which	 forced	 structured	 programming	 on	 the
programmer.

To	provide	even	 faster	compile	 times,	 some	 languages	were	 structured	 for	 "one-pass	 compilers"	which	 expect	 subordinate	 routines	 to	be
defined	first,	as	with	Pascal,	where	the	main	routine,	or	driver	function,	is	the	final	section	of	the	program	listing.

Some	notable	languages	that	were	developed	in	this	period	include:

1968	–	Logo
1969	–	B	(forerunner	to	C)
1970	–	Pascal
1970	–	Forth
1972	–	C																																																			

1972	–	Smalltalk
1972	–	Prolog
1973	–	ML
1975	–	Scheme
1978	–	SQL	(a	query	language,	later	extended)

The	1980s	were	years	of	 relative	consolidation	 in	 imperative	 languages.	Rather	 than	 inventing	new	paradigms,	 all	 of
these	 movements	 elaborated	 upon	 the	 ideas	 invented	 in	 the	 previous	 decade.	 C++	 combined	 object-oriented	 and
systems	programming.	The	United	States	government	standardized	Ada,	a	systems	programming	language	intended	for
use	 by	 defense	 contractors.	 In	 Japan	 and	 elsewhere,	 vast	 sums	 were	 spent	 investigating	 so-called	 fifth-generation
programming	languages	that	incorporated	logic	programming	constructs.	The	functional	languages	community	moved	to
standardize	ML	and	Lisp.	Research	 in	Miranda,	a	 functional	 language	with	 lazy	evaluation,	began	 to	 take	hold	 in	 this
decade.

One	important	new	trend	in	language	design	was	an	increased	focus	on	programming	for	large-scale	systems	through
the	 use	 of	modules,	 or	 large-scale	 organizational	 units	 of	 code.	Modula,	 Ada,	 and	ML	 all	 developed	 notable	module
systems	 in	 the	 1980s.	 Module	 systems	 were	 often	 wedded	 to	 generic	 programming	 constructs---generics	 being,	 in
essence,	parametrized	modules	(see	also	polymorphism	in	object-oriented	programming).

Although	major	new	paradigms	for	imperative	programming	languages	did	not	appear,	many	researchers	expanded	on
the	ideas	of	prior	languages	and	adapted	them	to	new	contexts.	For	example,	the	languages	of	the	Argus	and	Emerald
systems	adapted	object-oriented	programming	to	distributed	systems.

The	 1980s	 also	 brought	 advances	 in	 programming	 language	 implementation.	 The	 RISC	 movement	 in	 computer
architecture	postulated	that	hardware	should	be	designed	for	compilers	rather	than	for	human	assembly	programmers.
Aided	 by	 processor	 speed	 improvements	 that	 enabled	 increasingly	 aggressive	 compilation	 techniques,	 the	 RISC
movement	sparked	greater	interest	in	compilation	technology	for	high-level	languages.

Language	technology	continued	along	these	lines	well	into	the	1990s.

Some	notable	languages	that	were	developed	in	this	period	include:

1980	–	C++	(as	C	with	classes,	renamed	in	1983)
1983	–	Ada
1984	–	Common	Lisp
1984	–	MATLAB
1984	-	dBase	III,	dBase	III	Plus	(Clipper	and	FoxPro	as
FoxBASE,	later	developing	into	Visual	FoxPro
1985	–	Eiffel
1986	–	Objective-C																																																				

1986	–	LabVIEW	(Visual	Programming	Language)
1986	–	Erlang
1987	–	Perl
1988	–	Tcl
1988	–	Wolfram	Language	(as	part	of	Mathematica,
only	got	a	separate	name	in	June	2013)
1989	–	FL	(Backus)			

The	rapid	growth	of	the	Internet	in	the	mid-1990s	was	the	next	major	historic	event	in	programming	languages.	By	opening	up	a	radically
new	 platform	 for	 computer	 systems,	 the	 Internet	 created	 an	 opportunity	 for	 new	 languages	 to	 be	 adopted.	 In	 particular,	 the	 JavaScript
programming	language	rose	to	popularity	because	of	its	early	integration	with	the	Netscape	Navigator	web	browser.	Various	other	scripting
languages	 achieved	widespread	 use	 in	 developing	 customized	 applications	 for	web	 servers	 such	 as	 PHP.	 The	 1990s	 saw	no	 fundamental
novelty	in	imperative	languages,	but	much	recombination	and	maturation	of	old	ideas.	This	era	began	the	spread	of	functional	languages.	A

Scheme

1980s:	consolidation,	modules,	performance

MATLAB

Erlang

Tcl

1990s:	the	Internet	age



big	driving	philosophy	was	programmer	productivity.	Many	"rapid	application	development"	(RAD)	languages	emerged,
which	usually	came	with	an	IDE,	garbage	collection,	and	were	descendants	of	older	languages.	All	such	languages	were
object-oriented.	These	included	Object	Pascal,	Visual	Basic,	and	Java.	Java	in	particular	received	much	attention.

More	radical	and	innovative	than	the	RAD	languages	were	the	new	scripting	languages.	These	did	not	directly	descend
from	 other	 languages	 and	 featured	 new	 syntaxes	 and	 more	 liberal	 incorporation	 of	 features.	 Many	 consider	 these
scripting	languages	to	be	more	productive	than	even	the	RAD	languages,	but	often	because	of	choices	that	make	small
programs	simpler	but	large	programs	more	difficult	to	write	and	maintain.	Nevertheless,	scripting	languages	came	to	be
the	most	prominent	ones	used	in	connection	with	the	Web.

Some	notable	languages	that	were	developed	in	this	period	include:

1990	–	Haskell
1991	–	Python
1991	–	Visual	Basic
1993	–	Lua
1993	–	R
1994	–	CLOS	(part	of	ANSI	Common	Lisp)

1995	–	Ruby
1995	–	Ada	95																																																				
1995	–	Java
1995	–	Delphi	(Object	Pascal)
1995	–	JavaScript
1995	–	PHP
1997	–	Rebol

Programming	language	evolution	continues,	in	both	industry	and	research.	Some	of	the	recent	trends	have	included:

Increasing	support	for	functional	programming	in	mainstream	languages	used	commercially,	including	pure	functional
programming	for	making	code	easier	to	reason	about	and	easier	to	parallelise	(at	both	micro-	and	macro-	levels)
Constructs	to	support	concurrent	and	distributed	programming.
Mechanisms	for	adding	security	and	reliability	verification	to	the	language:	extended	static	checking,	dependent
typing,	information	flow	control,	static	thread	safety.
Alternative	mechanisms	for	composability	and	modularity:	mixins,	traits,	delegates,	aspects.
Component-oriented	software	development.
Metaprogramming,	reflection	or	access	to	the	abstract	syntax	tree
AOP	or	Aspect	Oriented	Programming	allowing	developers	to	insert	code	in	another	module	or	class	at	"join	points"
Domain	specific	languages	and	code	generation
XML	for	graphical	interface	(XUL,	XAML)

Increased	interest	in	distribution	and	mobility.
Integration	with	databases,	including	XML	and	relational	databases.
Open	source	as	a	developmental	philosophy	for	languages,	including	the	GNU	Compiler	Collection	and	languages	such
as	Python,	Ruby,	and	Scala.
Massively	parallel	languages	for	coding	2000	processor	GPU	graphics	processing	units	and	supercomputer	arrays
including	OpenCL
Early	research	into	(as-yet-unimplementable)	quantum	computing	programming	languages
More	interest	in	visual	programming	languages	like	Scratch

Some	notable	languages	developed	during	this	period	include:

2000	–	ActionScript
2001	–	C#
2001	–	D
2002	–	Scratch
2003	–	Groovy																																															
2003	–	Scala
2005	–	F#
2006	–	PowerShell
2007	–	Clojure

2009	–	Go
2010	–	Rust
2011	–	Dart
2011	–	Kotlin
2011	–	Red
2011	-	Elixir
2012	–	Julia
2014	–	Swift
2016	–	Ring	[13][14]

Some	key	people	who	helped	develop	programming	languages:

Alan	Cooper,	developer	of	Visual	Basic.
Alan	Kay,	pioneering	work	on	object-oriented	programming,	and	originator	of	Smalltalk.
Anders	Hejlsberg,	developer	of	Turbo	Pascal,	Delphi,	C#,	and	TypeScript.
Bertrand	Meyer,	inventor	of	Eiffel.
Bjarne	Stroustrup,	developer	of	C++.
Brian	Kernighan,	co-author	of	the	first	book	on	the	C	programming	language	with	Dennis	Ritchie,	coauthor	of	the	AWK	and	AMPL
programming	languages.

Haskell

Lua

PHP

RebolCurrent	trends

D
Programming
Language

Groovy

Rust

Scratch

Swift

Prominent	people



Chris	Lattner,	creator	of	Swift	and	LLVM.
Dennis	Ritchie,	inventor	of	C.	Unix	Operating	System,	Plan	9	Operating	System.
Grace	Hopper,	first	to	use	the	term	compiler	and	developer	of	Flow-Matic,	influenced	development	of	COBOL.
Popularized	machine-independent	programming	languages	and	the	term	"debugging".
Guido	van	Rossum,	creator	of	Python.
James	Gosling,	lead	developer	of	Java	and	its	precursor,	Oak.
Jean	Ichbiah,	chief	designer	of	Ada,	Ada	83.
Jean-Yves	Girard,	co-inventor	of	the	polymorphic	lambda	calculus	(System	F).
Jeff	Bezanson,	main	designer,	and	one	of	the	core	developers	of	Julia.
Joe	Armstrong,	creator	of	Erlang.
John	Backus,	inventor	of	Fortran	and	cooperated	in	the	design	of	ALGOL	58	and	ALGOL	60.
John	C.	Reynolds,	co-inventor	of	the	polymorphic	lambda	calculus	(System	F).
John	McCarthy,	inventor	of	LISP.
John	von	Neumann,	originator	of	the	operating	system	concept.
Graydon	Hoare,	inventor	of	Rust.
Ken	Thompson,	inventor	of	B,	Go	Programming	Language,	Inferno	Programming	Language,	and	Unix	Operating	System
co-author.
Kenneth	E.	Iverson,	developer	of	APL,	and	co-developer	of	J	along	with	Roger	Hui.
Konrad	Zuse,	designed	the	first	high-level	programming	language,	Plankalkül	(which	influenced	ALGOL	58[15]).
Kristen	Nygaard,	pioneered	object-oriented	programming,	co-invented	Simula.
Larry	Wall,	creator	of	the	Perl	programming	language	(see	Perl	and	Perl	6).
Martin	Odersky,	creator	of	Scala,	and	previously	a	contributor	to	the	design	of	Java.
Nathaniel	Rochester,	inventor	of	first	assembler	(IBM	701).
Niklaus	Wirth,	inventor	of	Pascal,	Modula	and	Oberon.
Ole-Johan	Dahl,	pioneered	object-oriented	programming,	co-invented	Simula.
Rasmus	Lerdorf,	creator	of	PHP
Rich	Hickey,	creator	of	Clojure.
Robin	Milner,	inventor	of	ML,	and	sharing	credit	for	Hindley–Milner	polymorphic	type	inference.
Stephen	Wolfram,	creator	of	Mathematica.
Tom	Love	and	Brad	Cox,	creator	of	Objective-C.
Walter	Bright,	creator	of	D.
Yukihiro	Matsumoto,	creator	of	Ruby.

ACM
SIGPLAN
History	of	Programming	Languages	Conference
History	of	compiler	writing
History	of	computing	hardware																																			

Programming	language
Timeline	of	computing
Timeline	of	programming	languages
List	of	programming	languages
List	of	programmers

1.	 Knuth,	Donald	E.;	Pardo,	Luis	Trabb.	"Early	development	of	programming	languages".	Encyclopedia	of	Computer
Science	and	Technology.	Marcel	Dekker.	7:	419–493.

2.	 J.	Fuegi	and	J.	Francis	(October–December	2003),	"Lovelace	&	Babbage	and	the	creation	of	the	1843	'notes' ",	Annals	of
the	History	of	Computing,	25	(4):	16,	19,	25,	doi:10.1109/MAHC.2003.1253887	(https://doi.org/10.1109%2FMAHC.200
3.1253887)

3.	 Rojas,	Raúl,	et	al.	(2000).	"Plankalkül:	The	First	High-Level	Programming	Language	and	its	Implementation".	Institut
frame	Informatik,	Freie	Universität	Berlin,	Technical	Report	B-3/2000.	(full	text)	(ftp://ftp.mi.fu-berlin.de/pub/reports/TR-
B-00-03.pdf)

4.	 Sebesta,	W.S.	(2006).	Concepts	of	Programming	Languages.	p.	44.	ISBN	0-321-33025-0.
5.	 "Fortran	creator	John	Backus	dies	-	Tech	and	gadgets-	msnbc.com"	(http://www.msnbc.msn.com/id/17704662/).
MSNBC.	2007-03-20.	Retrieved	2010-04-25.

6.	 "CSC-302	99S	:	Class	02:	A	Brief	History	of	Programming	Languages"	(http://www.math.grin.edu/~rebelsky/Courses/CS
302/99S/Outlines/outline.02.html).	Math.grin.edu.	Retrieved	2010-04-25.

7.	 Eugene	Loh	(18	June	2010).	"The	Ideal	HPC	Programming	Language"	(http://queue.acm.org/detail.cfm?id=1820518).
Queue.	Association	of	Computing	Machines.	8	(6).

8.	 "HPL	-	A	Portable	Implementation	of	the	High-Performance	Linpack	Benchmark	for	Distributed-Memory	Computers"	(ht
tp://www.netlib.org/benchmark/hpl).	Retrieved	2015-02-21.

9.	 Hopper	(1978)	p.	16.
10.	 Sammet	(1969)	p.	316
11.	 Sammet	(1978)	p.	204.
12.	 Gordon,	Michael	J.	C.	(1996).	"From	LCF	to	HOL:	a	short	history"	(http://www.cl.cam.ac.uk/~mjcg/papers/HolHistory.pdf)

(PDF).	p.	3.	Retrieved	2015-05-04.	"Edinburgh	LCF,	including	the	ML	interpreter,	was	implemented	in	Lisp."
13.	 Rubin	Liu	(28	February	2018).	"The	evolution	of	the	Ring	programming	language,	Ring	in	Top	50	programming

languages	according	to	TIOBE	Index"	(https://www.codeproject.com/Articles/1223114/The-evolution-of-the-Ring-progra
mming-language).	codeproject.com.	Code_Project.

Anders
Hejlsberg

Yukihiro
Matsumoto

Grace	M.
Hopper

Bjarne
Stroustrup

Niklaus	Wirth

See	also

References



14.	 TIOBE	(2	March	2018).	"TIOBE	Index,	Ring	in	Top	50	programming	languages	according	to	TIOBE	Index"	(https://www.ti
obe.com/tiobe-index/).	www.tiobe.com.	TIOBE_index.

15.	 Rojas,	Raúl;	Hashagen,	Ulf	(2002).	The	First	Computers:	History	and	Architectures	(https://books.google.com/books?id
=nDWPW9uwZPAC&pg=PA292&dq=algol-68+konrad+zuse).	MIT	Press.	p.	292.	ISBN	978-0262681377.	Retrieved
October	25,	2013.





Rosen,	Saul,	(editor),	Programming	Systems	and	Languages,	McGraw-Hill,	1967.
Sammet,	Jean	E.,	Programming	Languages:	History	and	Fundamentals,	Prentice-Hall,	1969.
Sammet,	Jean	E.	(July	1972).	"Programming	Languages:	History	and	Future".	Communications	of	the	ACM.	15	(7):	601–610.
doi:10.1145/361454.361485	(https://doi.org/10.1145%2F361454.361485).
Richard	L.	Wexelblat	(ed.):	History	of	Programming	Languages,	Academic	Press	1981.
Thomas	J.	Bergin	and	Richard	G.	Gibson	(eds.):	History	of	Programming	Languages,	Addison	Wesley,	1996.

History	and	evolution	of	programming	languages	(http://www.scriptol.com/programming/history.php)
Graph	of	programming	language	history	(http://www.levenez.com/lang/history.html)

Retrieved	from	"https://en.wikipedia.org/w/index.php?title=History_of_programming_languages&oldid=842160313"

This	page	was	last	edited	on	20	May	2018,	at	17:03.

Text	is	available	under	the	Creative	Commons	Attribution-ShareAlike	License;	additional	terms	may	apply.	By	using	this	site,	you	agree	to	the
Terms	of	Use	and	Privacy	Policy.	Wikipedia®	is	a	registered	trademark	of	the	Wikimedia	Foundation,	Inc.,	a	non-profit	organization.

Further	reading

External	links


