
Function	object
From	Wikipedia,	the	free	encyclopedia
Jump	to:	navigation,	search
This	article	is	about	the	computer	programming	concept.	For	functors	in	category	theory,	see	Functor.

A	function	object[a]	is	a	computer	programming	construct	allowing	an	object	to	be	invoked	or	called	as	if	it	were	an	ordinary
function,	usually	with	the	same	syntax	(a	function	parameter	that	can	also	be	a	function).

Description
A	typical	use	of	a	function	object	is	in	writing	callback	functions.	A	callback	in	procedural	languages,	such	as	C,	may	be
performed	by	using	function	pointers.[2]	However	it	can	be	difficult	or	awkward	to	pass	a	state	into	or	out	of	the	callback
function.	This	restriction	also	inhibits	more	dynamic	behavior	of	the	function.	A	function	object	solves	those	problems	since	the
function	is	really	a	façade	for	a	full	object,	carrying	its	own	state.

Many	modern	(and	some	older)	languages,	e.g.	C++,	Eiffel,	Groovy,	Lisp,	Smalltalk,	Perl,	PHP,	Python,	Ruby,	Scala,	and	many
others,	support	first-class	function	objects	and	may	even	make	significant	use	of	them.[3]	Functional	programming	languages
additionally	support	closures,	i.e.	first-class	functions	that	can	'close	over'	variables	in	their	surrounding	environment	at
creation	time.	During	compilation,	a	transformation	known	as	lambda	lifting	converts	the	closures	into	function	objects.

In	C	and	C++
Consider	the	example	of	a	sorting	routine	that	uses	a	callback	function	to	define	an	ordering	relation	between	a	pair	of	items.	A
C	program	using	function	pointers	may	appear	as:

#include	<stdlib.h>

/*	qsort()	callback	function,	returns	<	0	if	a	<	b,	>	0	if	a	>	b,	0	if	a	==	b	*/
int	compareInts(const	void*	a,	const	void*	b)
{
				return	(*(int	*)a	>	*(int	*)b)	-	(*(int	*)a	<	*(int	*)b);
}
...
//	prototype	of	qsort	is
//	void	qsort(void	*base,	size_t	nel,	size_t	width,	int	(*compar)(const	void	*,	const	void	*));
...
int	main(void)
{
				int	items[]	=	{	4,	3,	1,	2	};
				qsort(items,	sizeof(items)	/	sizeof(items[0]),	sizeof(items[0]),	compareInts);
				return	0;
}

In	C++,	a	function	object	may	be	used	instead	of	an	ordinary	function	by	defining	a	class	that	overloads	the	function	call
operator	by	defining	an	operator()	member	function.	In	C++,	this	may	appear	as	follows:

//	comparator	predicate:	returns	true	if	a	<	b,	false	otherwise
struct	IntComparator
{
		bool	operator()(const	int	&a,	const	int	&b)	const
		{
				return	a	<	b;
		}
};

int	main()
{
				std::vector<int>	items	{	4,	3,	1,	2	};
				std::sort(items.begin(),	items.end(),	IntComparator());
				return	0;
}

Notice	that	the	syntax	for	providing	the	callback	to	the	std::sort()	function	is	identical,	but	an	object	is	passed	instead	of	a
function	pointer.	When	invoked,	the	callback	function	is	executed	just	as	any	other	member	function,	and	therefore	has	full
access	to	the	other	members	(data	or	functions)	of	the	object.	Of	course,	this	is	just	a	trivial	example.	To	understand	what
power	a	functor	provides	more	than	a	regular	function,	consider	the	common	use	case	of	sorting	objects	by	a	particular	field.	In
the	following	example,	a	functor	is	used	to	sort	a	simple	employee	database	by	each	employee's	ID	number.

struct	CompareBy
{
				const	std::string	SORT_FIELD;
				CompareBy(const	std::string&	sort_field="name")
						:	SORT_FIELD(sort_field)
				{
								/*	validate	sort_field	*/
				}
				
				bool	operator()(const	Employee&	a,	const	Employee&	b)
				{
								if	(SORT_FIELD	==	"name")
												return	a.name	<	b.name;
								else	if	(SORT_FIELD	==	"age")
												return	a.age	<	b.age;
								else	if	(SORT_FIELD	==	"idnum")
												return	a.idnum	<	b.idnum;
								else

												/*	throw	exception	or	something	*/
				}
};

int	main()
{
				std::vector<Employee>	emps;
				
				/*	code	to	populate	database	*/
				
				//	Sort	the	database	by	employee	ID	number
				std::sort(emps.begin(),	emps.end(),	CompareBy("idnum"));
				
				return	0;
}

In	C++11,	the	lambda	expression	provides	a	more	succinct	way	to	do	the	same	thing.

int	main()
{
				std::vector<Employee>	emps;
				/*	code	to	populate	database	*/
				const	std::string	sort_field	=	"idnum";
				std::sort(emps.begin(),	emps.end(),	[&sort_field](const	Employee&	a,	const	Employee&	b){	/*	code	to	select	and	compare	field	*/	});
				return	0;
}

It	is	possible	to	use	function	objects	in	situations	other	than	as	callback	functions.	In	this	case,	the	shortened	term	functor	is
normally	not	used	about	the	function	object.	Continuing	the	example,

		IntComparator	cpm;
		bool	result	=	cpm(a,	b);

In	addition	to	class	type	functors,	other	kinds	of	function	objects	are	also	possible	in	C++.	They	can	take	advantage	of	C++'s
member-pointer	or	template	facilities.	The	expressiveness	of	templates	allows	some	functional	programming	techniques	to	be
used,	such	as	defining	function	objects	in	terms	of	other	function	objects	(like	function	composition).	Much	of	the	C++	Standard
Template	Library	(STL)	makes	heavy	use	of	template-based	function	objects.

Maintaining	state

Another	advantage	of	function	objects	is	their	ability	to	maintain	a	state	that	affects	operator()	between	calls.	For	example,	the
following	code	defines	a	generator	counting	from	10	upwards	and	is	invoked	11	times.

#include	<iostream>
#include	<iterator>
#include	<algorithm>

class	CountFrom	{
private:
		int	&count;
public:
		CountFrom(int	&n)	:	count(n)	{}
		int	operator()()	{	return	count++;	}
};

int	main()
{
		int	state(10);
		std::generate_n(std::ostream_iterator<int>(std::cout,	"\n"),	11,	CountFrom(state));
		return	0;
}

In	C#
In	C#,	function	objects	are	declared	via	delegates.	A	delegate	can	be	declared	using	a	named	method	or	a	lambda	expression.
Here	is	an	example	using	a	named	method.

using	System;
using	System.Collections.Generic;

public	class	ComparisonClass1	{
				public	static	int	CompareFunction(int	x,	int	y)	{
								return	x	-	y;
				}

				public	static	void	Main()	{
								List<int>	items	=	new	List<int>	{	4,	3,	1,	2	};

								Comparison<int>	del	=	CompareFunction;

								items.Sort(del);
				}
}

Here	is	an	example	using	a	lambda	expression.

using	System;
using	System.Collections.Generic;

public	class	ComparisonClass2	{
				public	static	void	Main()	{
								List<int>	items	=	new	List<int>	{	4,	3,	1,	2	};
								items.Sort((x,	y)	=>	x	-	y);

				}
}

In	D
D	provides	several	ways	to	declare	function	objects:	Lisp/Python-style	via	closures	or	C#-style	via	delegates,	respectively:

bool	find(T)(T[]	haystack,	bool	delegate(T)	needle_test)	{
		foreach	(straw;	haystack)	{
				if	(needle_test(straw))
						return	true;
		}
		return	false;
}

void	main()	{
				int[]	haystack	=	[345,	15,	457,	9,	56,	123,	456];
				int			needle	=	123;
				bool	needleTest(int	n)	{
						return	n	==	needle;
				}
				assert(
						find(haystack,	&needleTest)
);
}

The	difference	between	a	delegate	and	a	closure	in	D	is	automatically	and	conservatively	determined	by	the	compiler.	D	also
supports	function	literals,	that	allow	a	lambda-style	definition:

void	main()	{
				int[]	haystack	=	[345,	15,	457,	9,	56,	123,	456];
				int			needle	=	123;
				assert(
							find(haystack,	(int	n)	{	return	n	==	needle;	})
);
}

To	allow	the	compiler	to	inline	the	code	(see	above),	function	objects	can	also	be	specified	C++-style	via	operator	overloading:

bool	find(T,	F)(T[]	haystack,	F	needle_test)	{
		foreach	(straw;	haystack)	{
				if	(needle_test(straw))
						return	true;
		}
		return	false;
}

void	main()	{
				int[]	haystack	=	[345,	15,	457,	9,	56,	123,	456];
				int			needle	=	123;
				class	NeedleTest	{
						int	needle;
						this(int	n)	{	needle	=	n;	}
						bool	opCall(int	n)	{
								return	n	==	needle;
						}
				}
				assert(
						find(haystack,	new	NeedleTest(needle))
);
}

In	Eiffel
In	the	Eiffel	software	development	method	and	language,	operations	and	objects	are	seen	always	as	separate	concepts.
However,	the	agent	mechanism	facilitates	the	modeling	of	operations	as	runtime	objects.	Agents	satisfy	the	range	of	application
attributed	to	function	objects,	such	as	being	passed	as	arguments	in	procedural	calls	or	specified	as	callback	routines.	The
design	of	the	agent	mechanism	in	Eiffel	attempts	to	reflect	the	object-oriented	nature	of	the	method	and	language.	An	agent	is
an	object	that	generally	is	a	direct	instance	of	one	of	the	two	library	classes,	which	model	the	two	types	of	routines	in	Eiffel:
PROCEDURE	and	FUNCTION.	These	two	classes	descend	from	the	more	abstract	ROUTINE.

Within	software	text,	the	language	keyword	agent	allows	agents	to	be	constructed	in	a	compact	form.	In	the	following	example,
the	goal	is	to	add	the	action	of	stepping	the	gauge	forward	to	the	list	of	actions	to	be	executed	in	the	event	that	a	button	is
clicked.

												my_button.select_actions.extend	(agent	my_gauge.step_forward)

The	routine	extend	referenced	in	the	example	above	is	a	feature	of	a	class	in	a	graphical	user	interface	(GUI)	library	to	provide
event-driven	programming	capabilities.

In	other	library	classes,	agents	are	seen	to	be	used	for	different	purposes.	In	a	library	supporting	data	structures,	for	example,
a	class	modeling	linear	structures	effects	universal	quantification	with	a	function	for_all	of	type	BOOLEAN	that	accepts	an	agent,
an	instance	of	FUNCTION,	as	an	argument.	So,	in	the	following	example,	my_action	is	executed	only	if	all	members	of	my_list	contain
the	character	'!':

				my_list:	LINKED_LIST	[STRING]
								...
												if	my_list.for_all	(agent	{STRING}.has	('!'))	then
																my_action
												end
								...

When	agents	are	created,	the	arguments	to	the	routines	they	model	and	even	the	target	object	to	which	they	are	applied	can	be
either	closed	or	left	open.	Closed	arguments	and	targets	are	given	values	at	agent	creation	time.	The	assignment	of	values	for
open	arguments	and	targets	is	deferred	until	some	point	after	the	agent	is	created.	The	routine	for_all	expects	as	an	argument
an	agent	representing	a	function	with	one	open	argument	or	target	that	conforms	to	actual	generic	parameter	for	the	structure
(STRING	in	this	example.)

When	the	target	of	an	agent	is	left	open,	the	class	name	of	the	expected	target,	enclosed	in	braces,	is	substituted	for	an	object
reference	as	shown	in	the	text	agent	{STRING}.has	('!')	in	the	example	above.	When	an	argument	is	left	open,	the	question	mark
character	('?')	is	coded	as	a	placeholder	for	the	open	argument.

The	ability	to	close	or	leave	open	targets	and	arguments	is	intended	to	improve	the	flexibility	of	the	agent	mechanism.	Consider
a	class	that	contains	the	following	procedure	to	print	a	string	on	standard	output	after	a	new	line:

				print_on_new_line	(s:	STRING)
												--	Print	`s'	preceded	by	a	new	line
								do
												print	("%N"	+	s)
								end

The	following	snippet,	assumed	to	be	in	the	same	class,	uses	print_on_new_line	to	demonstrate	the	mixing	of	open	arguments	and
open	targets	in	agents	used	as	arguments	to	the	same	routine.

				my_list:	LINKED_LIST	[STRING]
								...
												my_list.do_all	(agent	print_on_new_line	(?))
												my_list.do_all	(agent	{STRING}.to_lower)
												my_list.do_all	(agent	print_on_new_line	(?))
								...

This	example	uses	the	procedure	do_all	for	linear	structures,	which	executes	the	routine	modeled	by	an	agent	for	each	item	in
the	structure.

The	sequence	of	three	instructions	prints	the	strings	in	my_list,	converts	the	strings	to	lowercase,	and	then	prints	them	again.

Procedure	do_all	iterates	across	the	structure	executing	the	routine	substituting	the	current	item	for	either	the	open	argument
(in	the	case	of	the	agents	based	on	print_on_new_line),	or	the	open	target	(in	the	case	of	the	agent	based	on	to_lower).

Open	and	closed	arguments	and	targets	also	allow	the	use	of	routines	that	call	for	more	arguments	than	are	required	by	closing
all	but	the	necessary	number	of	arguments:

												my_list.do_all	(agent	my_multi_arg_procedure	(closed_arg_1,	?,	closed_arg_2,	closed_arg_3)

The	Eiffel	agent	mechanism	is	detailed	in	the	Eiffel	ISO/ECMA	standard	document.

In	Java
Java	has	no	first-class	functions,	so	function	objects	are	usually	expressed	by	an	interface	with	a	single	method	(most	commonly
the	Callable	interface),	typically	with	the	implementation	being	an	anonymous	inner	class,	or,	starting	in	Java	8,	a	lambda.

For	an	example	from	Java's	standard	library,	java.util.Collections.sort()	takes	a	List	and	a	functor	whose	role	is	to	compare
objects	in	the	List.	Without	first-class	functions,	the	function	is	part	of	the	Comparator	interface.	This	could	be	used	as	follows.

List<String>	list	=	Arrays.asList("10",	"1",	"20",	"11",	"21",	"12");
	 	
Comparator<String>	numStringComparator	=	new	Comparator<String>()	{
				public	int	compare(String	str1,	String	str2)	{
								return	Integer.valueOf(str1).compareTo(Integer.valueOf(str2));
				}
};

Collections.sort(list,	numStringComparator);

In	Java	8+,	this	can	be	written	as:

List<String>	list	=	Arrays.asList("10",	"1",	"20",	"11",	"21",	"12");
	 	
Comparator<String>	numStringComparator	=	(str1,	str2)	->	Integer.valueOf(str1).compareTo(Integer.valueOf(str2));

Collections.sort(list,	numStringComparator);

In	JavaScript
In	JavaScript,	functions	are	first	class	objects.	JavaScript	also	supports	closures.

Compare	the	following	with	the	subsequent	Python	example.

function	Accumulator(start)	{
		var	current	=	start;
		return	function	(x)	{
				return	current	+=	x;
		};
}

An	example	of	this	in	use:

var	a	=	Accumulator(4);
var	x	=	a(5);			//	x	has	value	9
x	=	a(2);							//	x	has	value	11

var	b	=	Accumulator(42);
x	=	b(7);							//	x	has	value	49	(current	=	42	in	closure	b)
x	=	a(7);							//	x	has	value	18	(current	=	11	in	closure	a)

In	Lisp	and	Scheme
In	Lisp	family	languages	such	as	Common	Lisp,	Scheme,	and	others,	functions	are	objects,	just	like	strings,	vectors,	lists,	and
numbers.	A	closure-constructing	operator	creates	a	function	object	from	a	part	of	the	program:	the	part	of	code	given	as	an
argument	to	the	operator	is	part	of	the	function,	and	so	is	the	lexical	environment:	the	bindings	of	the	lexically	visible	variables
are	captured	and	stored	in	the	function	object,	which	is	more	commonly	called	a	closure.	The	captured	bindings	play	the	role	of
member	variables,	and	the	code	part	of	the	closure	plays	the	role	of	the	anonymous	member	function,	just	like	operator	()	in
C++.

The	closure	constructor	has	the	syntax	(lambda	(parameters	...)	code	...).	The	(parameters	...)	part	allows	an	interface	to	be
declared,	so	that	the	function	takes	the	declared	parameters.	The	code	...	part	consists	of	expressions	that	are	evaluated	when
the	functor	is	called.

Many	uses	of	functors	in	languages	like	C++	are	simply	emulations	of	the	missing	closure	constructor.	Since	the	programmer
cannot	directly	construct	a	closure,	they	must	define	a	class	that	has	all	of	the	necessary	state	variables,	and	also	a	member
function.	Then,	construct	an	instance	of	that	class	instead,	ensuring	that	all	the	member	variables	are	initialized	through	its
constructor.	The	values	are	derived	precisely	from	those	local	variables	that	ought	to	be	captured	directly	by	a	closure.

A	function-object	using	the	class	system,	no	use	of	closures:

(defclass	counter	()
		((value	:initarg	:value	:accessor	value-of)))

(defmethod	functor-call	((c	counter))
		(incf	(value-of	c)))

(defun	make-counter	(initial-value)
		(make-instance	'counter	:value	initial-value))

;;;	use	the	counter:
(defvar	*c*	(make-counter	10))
(functor-call	*c*)	-->	11
(functor-call	*c*)	-->	12

Since	there	is	no	standard	way	to	make	funcallable	objects	in	Lisp,	we	fake	it	by	defining	a	generic	function	called	FUNCTOR-
CALL.	This	can	be	specialized	for	any	class	whatsoever.	The	standard	FUNCALL	function	is	not	generic;	it	only	takes	function
objects.

It	is	this	FUNCTOR-CALL	generic	function	that	gives	us	function	objects,	which	are	a	computer	programming	construct
allowing	an	object	to	be	invoked	or	called	as	if	it	were	an	ordinary	function,	usually	with	the	same	syntax.	We	have	almost	the
same	syntax:	FUNCTOR-CALL	instead	of	FUNCALL.	Some	Lisps	provide	funcallable	objects	as	a	simple	extension.	Making
objects	callable	using	the	same	syntax	as	functions	is	a	fairly	trivial	business.	Making	a	function	call	operator	work	with
different	kinds	of	function	things,	whether	they	be	class	objects	or	closures	is	no	more	complicated	than	making	a	+	operator
that	works	with	different	kinds	of	numbers,	such	as	integers,	reals	or	complex	numbers.

Now,	a	counter	implemented	using	a	closure.	This	is	much	more	brief	and	direct.	The	INITIAL-VALUE	argument	of	the	MAKE-
COUNTER	factory	function	is	captured	and	used	directly.	It	does	not	have	to	be	copied	into	some	auxiliary	class	object	through
a	constructor.	It	is	the	counter.	An	auxiliary	object	is	created,	but	that	happens	behind	the	scenes.

(defun	make-counter	(value)
		(lambda	()	(incf	value)))

;;;	use	the	counter
(defvar	*c*	(make-counter	10))
(funcall	*c*)	;	-->	11
(funcall	*c*)	;	-->	12

Scheme	makes	closures	even	simpler,	and	Scheme	code	tends	to	use	such	higher-order	programming	somewhat	more
idiomatically.

(define	(make-counter	value)
		(lambda	()	(set!	value	(+	value	1))	value))
;;;	use	the	counter
(define	c	(make-counter	10))
(c)	;	-->	11
(c)	;	-->	12

More	than	one	closure	can	be	created	in	the	same	lexical	environment.	A	vector	of	closures,	each	implementing	a	specific	kind
of	operation,	can	quite	faithfully	emulate	an	object	that	has	a	set	of	virtual	operations.	That	type	of	single	dispatch	object-
oriented	programming	can	be	done	fully	with	closures.

Thus	there	exists	a	kind	of	tunnel	being	dug	from	both	sides	of	the	proverbial	mountain.	Programmers	in	OOP	languages
discover	function	objects	by	restricting	objects	to	have	one	main	function	to	do	that	object's	functional	purpose,	and	even
eliminate	its	name	so	that	it	looks	like	the	object	is	being	called!	While	programmers	who	use	closures	are	not	surprised	that	an
object	is	called	like	a	function,	they	discover	that	multiple	closures	sharing	the	same	environment	can	provide	a	complete	set	of
abstract	operations	like	a	virtual	table	for	single	dispatch	type	OOP.

In	Objective-C
In	Objective-C,	a	function	object	can	be	created	from	the	NSInvocation	class.	Construction	of	a	function	object	requires	a	method
signature,	the	target	object,	and	the	target	selector.	Here	is	an	example	for	creating	an	invocation	to	the	current	object's
myMethod:

//	Construct	a	function	object
SEL	sel	=	@selector(myMethod);
NSInvocation*	inv	=	[NSInvocation	invocationWithMethodSignature:
																					[self	methodSignatureForSelector:sel]];
[inv	setTarget:self];
[inv	setSelector:sel];

//	Do	the	actual	invocation
[inv	invoke];

An	advantage	of	NSInvocation	is	that	the	target	object	can	be	modified	after	creation.	A	single	NSInvocation	can	be	created	and
then	called	for	each	of	any	number	of	targets,	for	instance	from	an	observable	object.	An	NSInvocation	can	be	created	from	only	a
protocol,	but	it	is	not	straightforward.	See	here.

In	Perl
In	Perl,	a	function	object	can	be	created	either	from	a	class's	constructor	returning	a	function	closed	over	the	object's	instance
data,	blessed	into	the	class:

package	Acc1;
sub	new	{
				my	$class	=	shift;
				my	$arg	=	shift;
				my	$obj	=	sub	{
								my	$num	=	shift;
								$arg	+=	$num;
				};
				bless	$obj,	$class;
}
1;

or	by	overloading	the	&{}	operator	so	that	the	object	can	be	used	as	a	function:

package	Acc2;
use	overload
				'&{}'	=>
								sub	{
												my	$self	=	shift;
												sub	{
																my	$num	=	shift;
																$self->{arg}	+=	$num;
												}
								};

sub	new	{
				my	$class	=	shift;
				my	$arg	=	shift;
				my	$obj	=	{	arg	=>	$arg	};
				bless	$obj,	$class;
}
1;

In	both	cases	the	function	object	can	be	used	either	using	the	dereferencing	arrow	syntax	$ref->(@arguments):

use	Acc1;
my	$a	=	Acc1->new(42);
print	$a->(10),	"\n";				#	prints	52
print	$a->(8),	"\n";					#	prints	60

or	using	the	coderef	dereferencing	syntax	&$ref(@arguments):

use	Acc2;
my	$a	=	Acc2->new(12);
print	&$a(10),	"\n";					#	prints	22
print	&$a(8),	"\n";						#	prints	30

In	PHP
PHP	5.3+	has	first-class	functions	that	can	be	used	e.g.	as	parameter	to	the	usort()	function:

$a	=	array(3,	1,	4);
usort($a,	function	($x,	$y)	{	return	$x	-	$y;	});

It	is	also	possible	in	PHP	5.3+	to	make	objects	invokable	by	adding	a	magic	__invoke()	method	to	their	class:[4]

class	Minus	{
				public	function	__invoke($x,	$y)	{
								return	$x	-	$y;
				}
}

$a	=	array(3,	1,	4);
usort($a,	new	Minus());

In	PowerShell
In	the	Windows	PowerShell	language,	a	script	block	is	a	collection	of	statements	or	expressions	that	can	be	used	as	a	single
unit.	A	script	block	can	accept	arguments	and	return	values.	A	script	block	is	an	instance	of	a	Microsoft	.NET	Framework	type
System.Management.Automation.ScriptBlock.

Function	Get-Accumulator($x)	{
				{

								param($y)
								return	$script:x	+=	$y
				}.GetNewClosure()
}

PS	C:\>	$a	=	Get-Accumulator	4
PS	C:\>	&	$a	5
9
PS	C:\>	&	$a	2
11
PS	C:\>	$b	=	Get-Accumulator	32
PS	C:\>	&	$b	10
42

In	Python
In	Python,	functions	are	first-class	objects,	just	like	strings,	numbers,	lists	etc.	This	feature	eliminates	the	need	to	write	a
function	object	in	many	cases.	Any	object	with	a	__call__()	method	can	be	called	using	function-call	syntax.

An	example	is	this	accumulator	class	(based	on	Paul	Graham's	study	on	programming	language	syntax	and	clarity):[5]

class	Accumulator(object):
				def	__init__(self,	n):
								self.n	=	n

				def	__call__(self,	x):
								self.n	+=	x
								return	self.n

An	example	of	this	in	use	(using	the	interactive	interpreter):

>>>	a	=	Accumulator(4)
>>>	a(5)
9
>>>	a(2)
11
>>>	b	=	Accumulator(42)
>>>	b(7)
49

Since	functions	are	objects,	they	can	also	be	defined	locally,	given	attributes,	and	returned	by	other	functions	,[6]	as
demonstrated	in	the	following	two	examples:

def	Accumulator(n):
				def	inc(x):
								inc.n	+=	x
								return	inc.n
				inc.n	=	n
				return	inc

Function	object	creation	using	a	closure	referencing	a	non-local	variable	in	Python	3:

def	Accumulator(n):
				def	inc(x):
								nonlocal	n
								n	+=	x
								return	n
				return	inc

In	Ruby
In	Ruby,	several	objects	can	be	considered	function	objects,	in	particular	Method	and	Proc	objects.	Ruby	also	has	two	kinds	of
objects	that	can	be	thought	of	as	semi-function	objects:	UnboundMethod	and	block.	UnboundMethods	must	first	be	bound	to	an
object	(thus	becoming	a	Method)	before	they	can	be	used	as	a	function	object.	Blocks	can	be	called	like	function	objects,	but	to
be	used	in	any	other	capacity	as	an	object	(e.g.	passed	as	an	argument)	they	must	first	be	converted	to	a	Proc.	More	recently,
symbols	(accessed	via	the	literal	unary	indicator	:)	can	also	be	converted	to	Procs.	Using	Ruby's	unary	&	operator—equivalent	to
calling	to_proc	on	an	object,	and	assuming	that	method	exists—the	Ruby	Extensions	Project	created	a	simple	hack.

class	Symbol
		def	to_proc
				proc	{	|obj,	*args|	obj.send(self,	*args)	}
		end
end

Now,	method	foo	can	be	a	function	object,	i.e.	a	Proc,	via	&:foo	and	used	via	takes_a_functor(&:foo).	Symbol.to_proc	was	officially
added	to	Ruby	on	June	11,	2006	during	RubyKaiga2006.	[1]

Because	of	the	variety	of	forms,	the	term	Functor	is	not	generally	used	in	Ruby	to	mean	a	Function	object.	Just	a	type	of
dispatch	delegation	introduced	by	the	Ruby	Facets	project	is	named	as	Functor.	The	most	basic	definition	of	which	is:

class	Functor
		def	initialize(&func)
				@func	=	func
		end
		def	method_missing(op,	*args,	&blk)
				@func.call(op,	*args,	&blk)
		end
end

This	usage	is	more	akin	to	that	used	by	functional	programming	languages,	like	ML,	and	the	original	mathematical	terminology.

Other	meanings
In	a	more	theoretical	context	a	function	object	may	be	considered	to	be	any	instance	of	the	class	of	functions,	especially	in
languages	such	as	Common	Lisp	in	which	functions	are	first-class	objects.

The	functional	programming	languages	ML	and	Haskell	use	the	term	functor	to	represent	a	mapping	from	modules	to	modules,
or	from	types	to	types	and	is	a	technique	for	reusing	code.	Functors	used	in	this	manner	are	analogous	to	the	original
mathematical	meaning	of	functor	in	category	theory,	or	to	the	use	of	generic	programming	in	C++,	Java	or	Ada.

In	Prolog	and	related	languages,	functor	is	a	synonym	for	function	symbol.

See	also
Callback	(computer	science)
Closure	(computer	science)
Function	pointer
Higher-order	function
Command	pattern
Currying

Notes
1.	 ^	In	C++,	a	functionoid	is	an	object	that	has	one	major	method,	and	a	functor	is	a	special	case	of	a	functionoid.[1]	They

are	similar	to	a	function	object,	but	not	the	same.

References
1.	 ^	What's	the	difference	between	a	functionoid	and	a	functor?
2.	 ^	Silan	Liu.	"C++	Tutorial	Part	I	-	Basic:	5.10	Function	pointers	are	mainly	used	to	achieve	call	back	technique,	which	will

be	discussed	right	after.".	TRIPOD:	Programming	Tutorials	Copyright	©	Silan	Liu	2002.	Retrieved	2012-09-07.	“Function
pointers	are	mainly	used	to	achieve	call	back	technique,	which	will	be	discussed	right	after.”

3.	 ^	Paweł	Turlejski	(2009-10-02).	"C++	Tutorial	Part	I	-	Basic:	5.10	Function	pointers	are	mainly	used	to	achieve	call	back
technique,	which	will	be	discussed	right	after.".	Just	a	Few	Lines.	Retrieved	2012-09-07.	“PHP	5.3,	along	with	many	other
features,	introduced	closures.	So	now	we	can	finally	do	all	the	cool	stuff	that	Ruby	/	Groovy	/	Scala	/	any_modern_language
guys	can	do,	right?	Well,	we	can,	but	we	probably	won’t…	Here's	why.”

4.	 ^	PHP	Documentation	on	Magic	Methods
5.	 ^	Accumulator	Generator
6.	 ^	Python	reference	manual	-	Function	definitions

Further	reading
David	Vandevoorde	&	Nicolai	M	Josuttis	(2006).	C++	Templates:	The	Complete	Guide,	ISBN	0-201-73484-2:	Specifically,
chapter	22	is	devoted	to	function	objects.

External	links
Description	from	the	Portland	Pattern	Repository
C++	Advanced	Design	Issues	-	Asynchronous	C++	by	Kevlin	Henney
The	Function	Pointer	Tutorials	by	Lars	Haendel	(2000/2001)
Article	"Generalized	Function	Pointers"	by	Herb	Sutter
Generic	Algorithms	for	Java
PHP	Functors	-	Function	Objects	in	PHP
What	the	heck	is	a	functionoid,	and	why	would	I	use	one?	(C++	FAQ)

Retrieved	from	"https://en.wikipedia.org/w/index.php?title=Function_object&oldid=774214428"
Categories:

Object	(computer	science)
Subroutines
Articles	with	example	Ruby	code

Hidden	categories:

Articles	needing	additional	references	from	February	2009
All	articles	needing	additional	references
Articles	with	example	C	code
Articles	with	example	C++	code
Articles	with	example	Java	code
Articles	with	example	Perl	code
Articles	with	example	Python	code
Pages	using	ISBN	magic	links

Navigation	menu
Personal	tools

Not	logged	in
Talk
Contributions
Create	account
Log	in

Namespaces

Article
Talk

Variants

Views

Read
Edit
View	history

More

Search

Search	Wikipedia Go

Navigation

Main	page
Contents
Featured	content
Current	events
Random	article
Donate	to	Wikipedia
Wikipedia	store

Interaction

Help
About	Wikipedia
Community	portal
Recent	changes
Contact	page

Tools

What	links	here
Related	changes
Upload	file
Special	pages
Permanent	link
Page	information
Wikidata	item
Cite	this	page

Print/export

Create	a	book
Download	as	PDF

Languages

Italiano
⽇本語
Русский
Українська
中⽂

Edit	links

This	page	was	last	edited	on	7	April	2017,	at	00:06.
Text	is	available	under	the	Creative	Commons	Attribution-ShareAlike	License;	additional	terms	may	apply.	By	using	this
site,	you	agree	to	the	Terms	of	Use	and	Privacy	Policy.	Wikipedia®	is	a	registered	trademark	of	the	Wikimedia	Foundation,
Inc.,	a	non-profit	organization.

Privacy	policy
About	Wikipedia
Disclaimers
Contact	Wikipedia

Developers
Cookie	statement
Mobile	view

