
Introduction	to	crystals
Their	external	shapes	as	keys	to	structure

The	delicately	faceted	surfaces	of	large	crystals	that	occur	in	nature	have	always	been	a	source	of	fascination	and	delight.	In
some	ways	they	seem	to	represent	a	degree	of	perfection	that	is	not	apparent	in	other	forms	of	matter.	But	in	the	realm	of
pure	solid	substances,	crystals	are	the	rule	rather	than	the	exception,	although	this	may	not	be	apparent	unless	they	are
observed	under	a	hand-lens	or	a	microscope.
It	is	remarkable	that	the	visual	examination	of	crystals	was	able	to	establish	a	fairly	mature	science	of	crystallography
(applied	mainly	to	the	study	of	minerals)	by	the	end	of	the	19th	Century,	even	before	the	atomic	theory	of	matter	had	been
universally	accepted.	Today	this	aspect	of	crystallography	is	of	importance	not	only	to	chemists	and	physicists,	but	also	to
geologists,	amateur	minerologists	and	"rock-hounds"	who	maintain	some	of	the	best	Web	resources	on	crystals.
In	this	lesson	we	will	see	how	the	external	shape	of	a	crystal	can	reveal	much	about	the	underlying	arrangement	of	its
constituent	atoms,	ions,	or	molecules.
	
	

1		External	appearance	of	crystals
The	first	thing	we	notice	about	a	crystal	is	the	presence	of	planes	—	called	faces	—	which	constitute	the
external	boundaries	of	the	solid.	Of	course,	any	solid,	including	non-crystalline	glass,	can	be	carved,
molded	or	machined	to	display	planar	faces;	examples	of	these	can	be	found	in	any	"dollar	store"
display	of	costume	jewelry.	What	distinguishes	and	defines	a	true	crystal	is	that	these	faces	develop
spontaneously	and	naturally	as	the	solid	forms	from	a	melt	or	from	solution.	The	multiple	faces
invariably	display	certain	geometrical	relationships	to	one	another,	resulting	in	a	symmetry	that	attracts
our	attention	and	delights	the	eye.

Above:	sketch	of	a	crystal	of	sulfur

Symmetry	elements	in	crystals

One	of	the	most	apparent	elements	of	this	geometrical	regularity	are	the	sets	of	parallel	faces	that	many	crystals	display.
Nowhere	is	this	more	apparent	than	in	the	cubes	that	develop	when	sodium	chloride	crystallizes	from	solution.	We	usually
think	of	a	cubic	shape	in	terms	of	the	equality	of	its	edge	lengths	and	the	90°	angles	between	its	sides,	but	there	is	a	more
fundamental	way	of	classifying	shapes	that	chemists	find	very	useful.	This	is	to	look	at	what	geometric	transformations
(such	as	rotations	around	an	axis)	we	can	perform	that	leave	the	appearance	unchanged.



Cubic	symmetry

For	example,	you	can	rotate	a	cube	90°	around	an	axis	perpendicular	to	any	pair	of	its	six	faces
without	making	any	apparent	change	to	it.	We	say	that	the	cube	possesses	three	mutually
perpendicular	four-fold	rotational	axes,	abbreviated	C4	axes.	But	if	you	think	about	it,	a	cube
can	also	be	rotated	around	an	axis	that	extends	between	opposite	corners;	in	this	case,	it	takes
three	120°	rotations	to	go	through	a	complete	circle,	so	these	axes	(also	four	in	number)	are
three-fold	or	C3	axes.	And	finally,	there	are	two-fold	(C2)	axes	that	pass	diagonally	through	the
centers	of	the	six	pairs	of	opposite	edges.

In	addition,	there	are	imaginary	symmetry	planes	that	mirror	the	portions	of	the	cube	that	lie	on	either	side	of	them.	Three
of	these	are	parallel	to	the	three	major	axes	of	the	crystal,	and	an	additional	six	pass	diagonally	through	opposite	edges.
All	told,	there	are	13	rotational	axes	and	9	mirror	planes	(only	a	few	of	which	are	shown	above)	that	define	cubic
symmetry.	Why	is	this	important?	Although	anyone	can	recognize	a	cube	when	they	see	one,	it	turns	out	that	many
crystals,	both	natural	and	synthetic,	are	for	one	reason	or	another	unable	to	develop	all	of	their	faces	equally.	Thus	a
crystal	that	forms	on	the	bottom	of	a	container	will	be	unable	to	grow	any	faces	that	project	downward	for	the	simple
reason	that	there	is	no	supply	of	ions	or	molecules	from	that	direction.	The	same	effect	occurs	when	a	mineral	crystal	tries
to	grow	in	contact	with	other	solids.	Finally,	the	presence	of	certain	impurities	that	selectively	adsorb	to	one	or	more	faces
can	block	the	addition	of	more	material	to	them,	thus	either	completely	inhibiting	their	formation	or	forcing	them	to	grow
at	slower	rates.	These	alternative	shapes	that	can	develop	from	a	single	basic	crystal	type	are	known	as	habits.

Crystal	habits

Sodium	chloride	grown	from	pure	aqueous	solution	forms	simple	cubes,	but	the	addition	of	various	impurities	can	result	in
habits	that	can	be	regarded	as	cubes	that	have	been	truncated	along	planes	normal	to	some	of	the	symmetry	axes.	(The
same	effects	can	sometimes	be	seen	as	a	crystal	slowly	dissolves	and	material	is	released	more	rapidly	from	some
directions	than	others.)

In	this	example,	the	perfect	cube	1	develops	triangular	faces	at	the	corners	2.	If	these	enlarge	beyond	their	maximum	size
3,	the	triangular	faces	meet	in	a	new	set	of	edges	that	are	hexagonal	4.	Eventually	we	are	left	with	the	eight	faces	of	what
is	obviously	a	regular	octahedron	5.	One	might	think	that	these	five	shapes	bear	no	relationship	to	one	another,	but	in	fact
they	all	possess	the	same	set	of	set	of	symmetry	elements	as	the	simple	cube	and	are	thus	various	habits	of	the	same
underlying	cubic	structure	and	belong	to	the	cubic	crystal	system	described	further	below.

This	sketch	of	a	natural
formation	of	pyrite	crystals
(FeS2)	shows	various	habits	of
this	cubic	crystal	growing
together.

[source]



This	excellent	CalTech	site	has	much
more	on	snow	crystals.There	are	some
lovely	picture	galleries,	and
instructions	for	using	electric	fields	to
grow	"designer"	snowflakes.

(See	here	for	an	interesting	gallery	of	the	many	habits	that	occur	in	natural	quartz	crystals.)

Snowflakes

Nowhere	is	the	selective	growth	of	certain	faces	more
familiar	to	us	than	in	snowflakes.	Ice	forms	crystals	having	a
hexagonal	lattice	structure,	which	in	their	full	development
would	tend	to	form	hexagonal	prisms	very	similar	to	those

sometimes	seen	in	quartz.	This	does	occasionally	happen,	and	anyone	who	has	done	much	winter
mountaineering	has	likely	seen	needle-shaped	prisms	of	ice	crystals	floating	in	the	air.	Under
most	conditions,	however,	the	snowflake	crystals	we	see	are	flattened	into	the	beautiful	fractal-
like	hexagonal	structures	that	are	commonly	observed.

The	H2O	molecules	that	make	up	the	top	and	bottom	plane	faces	of	the	prism	are	packed	very	closely
and	linked	(through	hydrogen	bonding)	to	the	molecules	inside.	In	contrast	to	this,	the	molecules	that
make	up	the	sides	of	the	prism,	and	especially	those	at	the	hexagonal	corners,	are	much	more	exposed,
so	that	atmospheric	H2O	molecules	that	come	into	contact	with	most	places	on	the	crystal	surface	attach	very	loosely	and
migrate	along	it	until	they	are	able	to	form	hydrogen-bonded	attachments	to	these	corners,	thus	becoming	part	of	the	solid	and
extending	the	structure	along	these	six	directions.	This	process	perpetuates	itself	as	the	new	extensions	themselves	acquire	a
hexagonal	structure.

The	law	of	constant	angles

Even	though	a	given	crystal	may	be	distorted	or	broken,	the	angles	between	corresponding	faces	remain	the	same.	Thus
you	can	crush	a	crystal	underfoot	or	break	it	up	with	a	hammer,	but	you	will	always	find	that	the	fragments	possess	a
limited	set	of	interfacial	angles.

	
This	fundamental	law,	discovered	by	Nicholas	Steno	in	1669,	was	a	major	key
development	in	crystallography.	About	100	years	later,	a	protractor-like	device
(the	contact	goniometer)	was	invented	to	enable	more	accurate	measurements
than	the	rather	crude	ones	that	had	formerly	been	traced	out	on	paper.

Cleavage	planes	in	crystals

When	a	crystal	is	broken	by	applying	a	force	in	certain	directions	(as	opposed	to
being	pulverized	by	a	hammer)	it	will	often	be	seen	to	break	cleanly	into	two
pieces	along	what	are	known	as	cleavage	planes.	The	new	faces	thus	formed	always	correspond	to	the	symmetry	planes
associated	with	a	particular	crystal	type,	and	of	course	make	constant	angles	with	any	other	faces	that	may	be	present.

Halite	(natural	NaCl)	crystals	easily
cleave	along	planes	parallel	to	the	cubic
faces.	[source]

This	sample	of	gypsum	(CaSO4)	is	easily
cleaved	with	a	razor	blade.	[source]



Scientific	crystallography	began	with	an	accident

Cleavage	planes	were	first	described	in	the	late	17th	century,	but	nothing	much	was	thought
about	their	significance	until	about	a	hundred	years	later	when	the	Abbé	Haüy	accidently	dropped
a	friend's	sample	of	calcite	and	noticed	how	cleanly	it	broke.	Further	experimention	showed	that
other	calcite	crystals,	even	ones	of	different	initial	shapes	(habits),	displayed	similar
rhombohedral	shapes	upon	clevage,	and	that	these	in	turn	produced	similar	shapes	when	they
were	cleaved.	This	led	Haüy	to	suggest	that	continued	cleavages	would	ultimately	lead	to	the
smallest	possible	unit	which	would	be	the	fundamental	building	block	of	the	crystal.	(Remember
that	the	atomic	theory	of	matter	had	not	developed	at	this	time.)

	

Haüy's	elaborately	drawn	figures	(published	in	1784)	showed	how	external
faces	of	a	crystal	could	be	produced	by	stacking	the	units	in	various	ways.
For	example,	by	omitting	rows	from	a	cubic	stack	of	primal	cublets,	one
could	arrive	at	the	various	stages	between	the	cube	and	the	octahedra	for
sodium	chloride	that	we	saw	earlier	on	this	page.
The	modern	interpretation	of	these	observations	replaces	Haüy's	primal	shapes	with	atoms	or
molecules,	or	more	generally	with	points	in	space	that	these	define	the	possible	locations	of	atoms
or	molecules.	It	is	easy	to	see	how	plane	faces	can	develop	along	some	directions	and	not	others	if
one	assumes	that	the	new	faces	must	follow	a	linear	sequence	of	points.

Formation	of	plane	faces	exhibiting	constant	angles

	

Extended	plane	faces	more	readily	form	along	the	green	and
blue	lines.

	

2		Description	and	classification	of	crystals
The	presence	of	planar	surfaces	making	only	a	limited	number	of	angles	defines	a	crystal	visually,	but	what	defines	a
crystal	at	the	microscopic	level	is	its	ordered	arrangement	of	lattice	points.	Although	these	were	only	revealed	after	the
development	of	X-ray	scattering	in	the	early	1900's,	it	was	Ha¨y's	early	sketches	of	tiny	miniature	cubes	(or	more
generally,	rhombohedra)	arranged	so	as	to	replicate	the	shapes	of	various	crystals	that	led	to	the	concept	of	the	crystal
lattice	—	and	this	even	before	the	atomic	theory	of	matter	had	become	widely	accepted.

The	crystal	lattice

The	underlying	order	of	a	crystalline	solid	can	be	represented	by	an	array	of	regularly	spaced	points	that	indicate	the
locations	of	the	crystal's	basic	structural	units.	This	array	is	called	a	crystal	lattice.

Crystal	lattices	are	of	course	three-dimensional,	but	much	of	what	we	can	say	about	them	can	be	conveyed	in	simple	two-
dimensional	diagrams.

Crystal	lattices	can	be	thought	of	as	being	built	up	from	repeating	units	containing	just	a	few	atoms	or	molecules.	These
repeating	units	act	much	as	a	rubber	stamp:	press	it	on	the	paper,	move	("translate")	it	by	an	amount	equal	to	the	lattice
spacing,	and	stamp	the	paper	again.

The	gray	circles	represent	a	square
array	of	lattice	points.

The	orange	square	is	the	simplest	unit	cell	that
can	be	used	to	define	the	2-dimensional	lattice.

	

Building	out	the	lattice	by	moving	("translating")
the	unit	cell	in	a	series	of	steps,

Altough	real	crystals	do	not	actually	grow	in	this	manner,	this	process	is	conceptually	important	because	it	allows	us	to
classify	a	lattice	type	in	terms	of	the	simple	repeating	unit	that	is	used	to	"build"	it.	We	call	this	shape	the	unit	cell.

The	unit	cell	of	a	crystal	lattice•



Have	you	ever	noticed	how	the	repeating	patterns	on	a	tiled	floor	or	on	a	fabric	or	wallpaper	extend	indefinitely	to	fill	the
entire	area?	These	are	known	mathematically	as	two-dimensional	lattices	or	nets,	and	they	provide	a	nice	stepping-stone
to	the	three-dimensional	lattices	of	crystals.	Given	the	almost-infinite	variety	of	designs	of	these	kinds,	it	may	be	surprising
that	they	can	be	constructed	from	only	one	of	five	basic	unit	cells:

Square	Lattice:
x	=	y,	90°	angles

Parallelogram	lattice
x	≠	y,	angles	<	90°

Rectangular	lattice
x	≠	y,	angles	=	90°

Rhombic	or	centered-
rectangle	lattice:	x	=	y,

angles	neither	60°	or	90°;

Hexagonal	lattice
(but	unit	cell	is	a

rhombus	with	x	=	y
and	angles	60°)



More	about	M.C.	Escher

Construct	your	own	repeating
designs	online:	Escher	Web	Sketch

Although	everyone	has	seen	and	admired	the	huge	variety	of
patterns	on	printed	fabrics	or	wallpapers,	few	are	aware	that	these
are	all	based	on	one	of	five	types	of	two-dimensional	"unit	cells"
(such	as	the	rhombic	ones	superimposed	on	this	Escher	print)	that
form	the	basis	for	these	infinitely-extendable	patterns.	One	of	the
most	remarkable	uses	of	this	principle	is	in	the	work	of	the	Dutch
artist	Maurits	Escher	(1888-1972).

	

	
	

	

	

Shown
here	are
two-

dimensional	views	of	the	unit	cells	for	two	very	common	types	of	crystal	lattices,	one	having
cubic	symmetry	and	the	other	being	hexagonal.	Although	we	could	use	a	hexagon	for	the	second	of	these	lattices,	the
rhombus	is	preferred	because	it	is	simpler.

	
Notice	that	in	both	of	these	lattices,	the	corners	of	the	unit	cells	are	centered	on	a	lattice	point.
This	means	that	an	atom	or	molecule	located	on	this	point	in	a	real	crystal	lattice	is	shared	with
its	neighboring	cells.	As	is	shown	more	clearly	here	for	a	two-dimensional	square-packed
lattice,	a	single	unit	cell	can	claim	"ownership"	of	only	one-quarter	of	each	molecule,	and	thus
"contains"	4	×	¼	=	1	molecule.

	
The	unit	cell	of	the	graphite	form	of	carbon	is	also	a	rhombus,	in	keeping	with	the	hexagonal
symmetry	of	this	arrangement.Notice	that	to	generate	this	structure	from	the	unit	cell,	we	need	to
shift	the	cell	in	both	the	x-	and	y-	directions	in	order	to	leave	empty	spaces	at	the	correct	spots.	We
could	alternatively	use	regular	hexagons	as	the	unit	cells,	but	the	x+y	shifts	would	still	be	required,

so	the	simpler	rhombus	is	usually	preferred.

This	image	nicely	illustrates	the	relations
between	the	unit	cell,	the	lattice	structure,	and
the	actual	packing	of	atoms	in	a	typical	crystal.

[source]

	

Crystal	systems	and	Bravais	lattices

We	saw	above	that	five	basic	cell	shapes	can	reproduce	any	design	motif	in	two	dimensions.	If	we	go	to	the	three-
dimensional	world	of	crystals,	there	are	just	seven	possible	basic	lattice	types,	known	as	crystal	systems,	that	can
produce	an	infinite	lattice	by	successive	translations	in	three-dimensional	space	so	that	each	lattice	point	has	an	identical
environment.	Each	system	is	defined	by	the	relations	between	the	axis	lengths	and	angles	of	its	unit	cell.	For	example,	if
the	three	edge	lengths	are	identical	and	all	corner	angles	are	90°,	a	crystal	belongs	to	the	cubic	system.

The	simplest	possible	cube	is	defined	by	the	eight	lattice	points	at	its	corner,	but	variants	are	also	possible	in	which
additional	lattice	points	exist	in	the	faces	("face-centered	cubic")	or	in	the	center	of	the	cube	("body-centered	cubic").	If
variants	of	this	kind	are	taken	into	account,	the	total	number	of	possible	lattices	is	fourteen;	these	are	known	as	the
fourteen	Bravais	lattices.

crystal	system Bravais	lattices	(P	=	primitive,	I=	body-centered,	F	=	face-centered)

cubic
a	=	b	=	c
α	=	β	=	γ	=	90°

The	F	cell	corresponds	to	closest	cubical
packing,	a	very	common	and	important
structure.

A	cube	that	has	been	extended	in	one	direction,	creating	a	unique	c-
axis.	An	F	cell	would	simply	be	a	network	of	joined	I	cells.



tetragonal
a	=	b	≠	c
α	=	β	=	γ	=	90°

orthorhombic
a	≠	b	≠	c
α	=	β	=	γ	=	90°

Three	unequal	axes	at	right	angles.	The
"C"	form	has	atoms	in	the	two	faces	that
cut	the	c-axis.

hexagonal
a	=	b	≠	c
α	=	β	=	60°,	
γ	=	120°

Just	as	in	the	2-dimensional	examples	given	above,	the	unit	cell	of
the	hexagonal	lattice	has	a	rhombic	cross-section;	the	entire
hexagonal	unit	is	built	from	three	of	these	rhombic	prisms.

trigonal
(rhombohedral)
a	=	b	=	c
α	=	β	=	γ	≠	90°,	

Think	of	this	as	a	cube	that	has	been	skewed	or	distorted	to	one	side	so	that	opposite
faces	remain	parallel	to	each	other.	This	can	also	be	regarded	as	a	special	case	of	the
hexagonal	system,	and	is	often	classified	as	such	by	U.S.	minerologists	who	recognize
only	six	crystal	systems.	The	rhombohedral	form	of	the	hexagonal	system	is	difficult	to
visualize;	Steven	Dutch's	U.	Wisconson	page	does	an	excellent	job.

monoclinic
a	≠	b	≠	c
α	=	γ	=	90°,	
β	>	90°

Two	90°	angles,	one	>90°,	with	all	sides	of	different	lengths.	A	C	cell	(also
seen	in	the	orthorhombic	class)	has	additional	points	in	the	center	of	each
end.	Monoclinic	I	and	F	cells	can	be	constructed	from	C	cells.

triclinic
a	≠	b	≠	c
α	≠	β	≠	γ	≠	90°

This	is	the	most	generalized	of	the	crystal	systems,	with	all	lengths	and	angles	unequal,	and
no	right	angles.

Notes	on	the	above	diagrams:

The	labels	a,b,c	along	the	unit	cell	axes	represent	the	dimensions	of	the	unit	cell.	Visual	examination	of	a	crystal
does	not	allow	us	to	determine	their	actual	values,	but	merely	to	know	whether	any	two	(or	all	three)	are	the
same.
When	a	=	b,	both	axes	may	be	given	"a"	labels,	since	neither	is	unique.
The	angles	α,	β	and	γ	are	those	between	the	b-c,	a-c,	and	a-b	axes,	respectively.	Similarly	in	the	cube,	all	axes
are	a	axes.

Get	the	Bravais	Lattice	Song	by	W.F.	Smith

Lines	and	planes	in	unit	cells:	the	Miller	index

In	any	kind	of	repeating	pattern,	it	is	useful	to	have	a	convenient	way	of	specifying	the	orientation	of	elements	relative	to
the	unit	cell.	This	is	done	by	assigning	to	each	such	element	a	set	of	integer	numbers	known	as	its	Miller	index.

Indexing	lines	in	two-dimensions

>
To	understand	indexing,	it	will	be	easier	to	begin	with	a	unit	cell	plane	that	we	are	viewing	from	above,	along	the
[invisible]	z-axis.	The	drawing	shows	such	a	plane	with	three	lines	crossing	it	at	various	slopes.	The	index	of	each	line	is
found	by	first	determining	the	points	where	it	intersects	the	x	and	y	axes	as	fractions	of	the	unit	cell	parameters	a	and	b.
Thus	in	the	above	example:

Line	 	starts	at	the	origin	and	extends	to	the	lower	right-hand	corner	which	coresponds	to	intersections	of	the	x	axis	at	one
unit	cell	length	of	both	a	and	b	—	that	is,	at	1×a	and	1×b.	We	can	abbreviate	this	set	of	intersections	as	[1,1].

Line	 	intersects	the	x	axis	at	one-half	the	unit	cell	distance	a,	or	at	a/2.	This	line	is	parallel	to	the	y	axis,	so	it	never	intersects



it;	this	is	mathematically	the	same	as	saying	that	it	intersects	it	at	infinity,	or	in
terms	of	unit	cell	increments,	at	∞×b.	We	can	describe	this	line	in	terms	of	the	unit
cell	intercepts	by	the	pair	of	values	[½,∞].

Line	 	starts	at	the	upper	right	corner	of	the	cell	which	corresponds	to	the
coordinates	(0,1),	but	this	is	equivalent	to	the	origin	(0,0)	of	the	neighboring	unit
cell	on	the	right.	So	in	terms	of	our	coordinate	system	(which	repeats	for	each	unit
cell),	this	line	extends	in	the	negative-y	direction	and	intersects	this	axis	at	–b/2.	The
x-intercept	is	a.	These	intercepts	correspond	to	[1,–2].

The	Miller	indices	of	the	lines	are	given	by	the	reciprocals	of	these	values:

Line	1		[1,1]	→	(11) Line	2		[½,∞]	→	(20) Line	3		[1,–2]	→	1,2)

Miller	indices	are	written	in	parentheses	with	no	spaces	between	numbers.	Negative	values	are	indicated	by	an
overbar	as	in	1.

Indexing	planes	in	three-dimensions

We	proceed	in	exactly	the	same	way,	except	that	we	now	have	3-digit	Miller	indices	corresponding	to	the	axes	a,	b	and	c.

It	is	important	to	note	that	multiple	parallel	planes	that	repeat	at	the	same	interval	have	identical	Miller
indices.	This	simply	reflects	the	fact	that	we	can	repeat	the	coordinate	axes	at	any	regular	interval.
	

Identifying	crystal	faces

We	mentioned	previously	that	the	plane	faces	of	crystals	are	their	most	important
visually-distinctive	property,	so	it	is	important	to	have	a	convenient	way	of	referring	to
any	given	face.	First,	we	define	a	set	of	reference	directions	(x,y,z)	which	are	known	as
the	crystallographic	axes.	In	most	cases	these	axes	correspond	to	directions	that	are
fairly	apparent	on	visual	examination	of	one	or	more	crystals	of	a	given	kind.	They	are
parallel	to	actual	or	possible	edges	of	the	crystal,	and	they	are	not	necessarily
orthogonal.	We	now	know,	as	Haüy	first	suggested,	that	these	directions	correspond	to
rows	of	lattice	points	in	the	underlying	structure	of	the	crystal.

We	also	define	three	lattice	parameters	(a,b,c)	which	mark	out	the	boundaries	of	the	unit	cell	along	the	crystallographic
axes.
The	index	of	a	particular	face	is	determined	by	the	fractional	values	of	(a,b,c)	at	which	the	face	intersects	the	axes	(x,y,z).
Study	the	examples	shown	below	for	three	different	habits	of	a	cubic	lattice.

For	a	much	more	thorough	treatment	of	this	topic,	see	this	page	at	Stephen	Nelson's	Tulane	University	Web	site.	The
figures	here	are	adapted	from	some	of	his.	Another	useful	source	is	the	page	Lattice	Planes	and	Miller	Indices	from
Cambridge	Universiy.

Below	is	a	more	complicated	example	of	one	particular	habit	of	an	orthorhombic	crystal.	The	figure	at	the	right	shows	how
the	(113)	face	is	indexed.



In	this	case,	the	plane	at	the	top	of	the	crystal	is	extended	downward	to	the	(x,y)	plane.	This	extended	plane	cuts	the	(x,y,z)	axes
at	(2a,	2b,	2/3c).	The	corresponding	inverses	would	be	(½,½,3/2).	In	order	to	make	them	into	proper	Miller	indices	(which	should
always	be	integers)	we	multiply	everything	by	2,	yielding	(113).

Why	do	Miller	indices	use	mostly	small	numbers?

It	is	remarkable	that	the	faces	that	bound	real	crystals	generally	have	small	Miller	indices.	The	low	values	for	the	indices
suggest	that	a	given	lattice	plane	has	a	hgh	density	of	lattice	points	per	unit	area,	a	logical	consquence	of	each	molecule
being	surrounded	and	held	by	its	closely-packed	neighbors.	In	the	2-dimensional	projection	below,	compare	the	facial
lattice-point	density	in	the	(11)	plane	with	that	of	the	(31)	plane.

Crystals	with	a	single	long	unit-cell	axis	tend	to	form	planes	with	the	long	axis	normal	to	the	plane,	so	that	the
major	faces	of	the	crystal	are	planes	containing	the	short-axis	translations.	Similarly,	crystals	with	a	single,	short
unit-cell	axis	tend	to	be	needles.	The	main	faces,	on	the	sides	of	the	needles,	contain	the	short	lattice	translation
—	a	high	density	of	lattice	points.	In	general,	it	is	found	that	crystals	have	linear	dimensions	that	mirror	the
reciprocals	of	the	lattice	parameters.



Factors	affecting	crystal	growth	habits

Faces	having	a	lower	density	of	lattice	points	(as	in	the	(31)	face	shown	above)	can	acquire	new	layers	more	rapidly,	and
thus	grow	more	rapidly	than	faces	having	a	high	lattice-point	density.

The	faces	that	can	potentially	develop	in	a	crystal	are	determined	entirely	by	the	symmetry	properties	of	the	underlying
lattice.	But	the	faces	that	actually	develop	under	specific	conditions	—	and	thus	the	overall	shape	of	the	crystal	—	is
determined	by	the	relative	rates	of	growth	of	the	various	faces.	The	slower	the	growth	rate,	the	larger	the	face.

This	relation	can	be	understood	by	noting	that	faces	that	grow	normal	to	shorter	unit	cell	axes	(as	in	the	needle-shaped	crystal
shown	above)	present	a	larger	density	of	lattice	points	to	the	surface	(that	is,	more	points	per	unit	surface	area.)	This	means	that
more	time	is	required	for	diffusion	of	enough	new	particles	to	build	out	a	new	layer	on	such	a	surface.

An	interesting	experiment 	is	to	grind	a	large	crystal	of	salt	into	a	spherical	shape	and
immerse	it	in	a	saturated	solution	of	sodium	chloride.	At	first,	the	most	disturbed	and	exposed
parts	on	the	surface	dissolve,	revealing	a	large	variety	of	underlying	plane	faces.	As	growth
resumes,	the	smaller	of	these	are	rapidly	replaced	by	larger	faces.	Eventually,	the	fast-growing
faces	eliminate	themselves	and	the	high-lattice	point	density	faces	that	correspond	to	the	sides	of
the	cube	win	out.

In	addition	to	these	structural	effects,	the	conditions	under	which	a	crystal	is	grown	can	affect	its
habit.	Temperature,	degree	of	supersaturaton,	nature	of	the	solvent	all	have	their	effects,	and
these	may	affect	the	growth	of	different	faces	in	different	ways.
The	presence	of	impurities	in	the	solution	can	radically	alter	the	habit	of	a	crystal,	as	seen	in	the	following	table	for	the
growth	of	sodium	chloride:

no	impurity Fe(CN)64– formamide Pb2+,	Cd2+ polyvinyl	alcohol

cubes dendrites octahedra large	crystals needles

These	effects	presumably	come	about	because	these	substances	preferentially	adsorb	to	certain	faces,	impeding	their
growth.
For	more	on	this	topic,	see	this	page	from	the	Lappeenranta	U.	(Finland)
and	this	Google	Books	excerpt.

Some	useful	references
Addison,	W.E.:	Structural	Principles	in	Inorganic	Compounds	(Wiley	Canada,	1962)	Online	text	at	Google	Books

Hammond,	Christopher:	The	Basics	of	Crystallography	and	Diffraction	(Oxford,	2001)	Online	text	at	Google	Books

Moore,	Walter	J:	Seven	Solid	States:	An	Introduction	to	the	Chemistry	and	Physics	of	Solids	(Benjamin,	1967)	Select
excerpts	at	Google	Books

Phillips,	F.C.:	An	Introduction	to	crystallography	(Longmans,	1963)	Online	text	at	Google	Books

What	you	should	be	able	to	do
Make	sure	you	thoroughly	understand	the	following	essential	ideas	which	have	been	presented	above.	It	is	especially
imortant	that	you	know	the	precise	meanings	of	all	the	green-highlighted	terms	in	the	context	of	this	topic.

Identify	the	three	kinds	of	rotational	symmetry	axes	of	a	cube.
State	what	is	meant	by	a	crystal's	habit,	and	identify	some	factors	that	might	affect	it.
Explain	why	the	angles	between	adjacent	faces	(of	even	a	broken	crystal)	tend	to	have	the	same	small	set	of	values.
What	is	a	unit	cell,	and	how	does	it	relate	to	a	crystal	lattice?
What	are	Bravais	lattices,	and	why	are	they	important?
Find	the	Miller	index	of	a	line	or	plane	in	a	unit	cell,	or	sketch	the	line	or	plane	having	a	given	Miller	index.
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