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Cubic	crystal	lattices	and	close-packing
The	origins	of	long-range	order	in	solids

When	substances	form	solids,	they	tend	to	pack	together	to	form	ordered	arrays
of	atoms,	ions,	or	molecules	that	we	call	crystals.	Why	does	this	order	arise,
and	what	kinds	of	arrangements	are	possible?
These	are	some	of	the	questions	we	will	explore	in	this	lesson.
We	will	limit	our	discussion	to	cubic	crystals,	which	form	the	simplest	and	most
symmetric	of	all	the	lattice	types.	Cubic	lattices	are	also	very	common	—	they
are	formed	by	many	metallic	crystals,	and	also	by	most	of	the	alkali	halides,
several	of	which	we	will	study	as	examples.

	

1		Close-packing	of	identical	spheres
Crystals	are	of	course	three-dimensional	objects,	but	we	will	begin	by	exploring	the	properties	of	arrays	in	two-
dimensional	space.	This	will	make	it	easier	to	develop	some	of	the	basic	ideas	without	the	added	complication	of	getting
you	to	visualize	in	3-D	—	something	that	often	requires	a	bit	of	practice.

Cubic	and	hexagonal	close	packing

Suppose	you	have	a	dozen	or	so	marbles.	How	can	you	arrange	them	in	a	single	compact	layer	on	a	table	top?	Obviously,
they	must	be	in	contact	with	each	other	in	order	to	minimize	the	area	they	cover.	It	turns	out	that	there	are	two	efficient
ways	of	achieving	this,	depending	on	the	number	of	points	of	contact	between	a	given	atom	and	its	nearest	neighbors.	

The	essential	difference	between	cubic-	and	hexagonal	close
packing	is	illustrated	by	the	number	of	tiny	blue	"x"	marks	in	the
two-dimensional	views	shown	here.	Any	marble	within	the	interior
of	the	square-packed	array	is	in	contact	with	four	other	marbles,
while	this	number	rises	to	six	in	the	hexagonal-packed
arrangement.
It	should	also	be	apparent	that	the	latter	scheme	covers	a	smaller
area,	meaning	that	it	contains	less	empty	space	and	is	therefore	a
more	efficient	packing	arrangement.	It	can	be	shown	from
geometry	that	that	square	packing	of	spheres	covers	78	percent	of

the	area,	while	hexagonal	packing	yields	91	percent	coverage.

If	we	go	from	the	world	of	marbles	to	that	of	atoms,	which	kind	of	packing	would	the	atoms	of	a	given	element	prefer?

If	the	atoms	are	identical	and	are	bound	together	mainly	by	dispersion	forces	which	are	completely
non-directional,	they	will	favor	a	structure	in	which	as	many	atoms	can	be	in	direct	contact	as
possible.	This	will,	of	course,	be	the	hexagonal	arrangement.

Directed	chemical	bonds	between	atoms	have	a	major	effect	on	the	packing.
The	version	of	hexagonal	packing	shown	at	the	right	occurs	in	the	form	of	carbon	known	as	graphite
which	forms	2-dimensional	sheets.	Each	carbon	atom	within	a	sheet	is	bonded	to	three	other	carbon
atons.	The	result	is	just	the	basic	hexagonal	structure	with	some	atoms	missing.	[More	on	graphite
here]

The	coordination	number	of	3	reflects	the	sp2-hybridization	of	carbon	in	graphite,	resulting	in	plane-trigonal	bonding	and	thus
the	sheet	structure.	Adjacent	sheets	are	bound	by	weak	dispersion	forces,	allowing	the	sheets	to	slip	over	one	another	and
giving	rise	to	the	lubricating	and	flaking	properties	of	graphite.

2		Crystal	lattices
The	underlying	order	of	a	crystalline	solid	can	be	represented	by	an	array	of	regularly	spaced	points	that	indicate	the
locations	of	the	crystal's	basic	structural	units.	This	array	is	called	a	crystal	lattice.

Crystal	lattices	can	be	thought	of	as	being	built	up	from	repeating	units	containing	just	a	few	atoms.	These	repeating	units
act	much	as	a	rubber	stamp:	press	it	on	the	paper,	move	("translate")	it	by	an	amount	equal	to	the	lattice	spacing,	and
stamp	the	paper	again.

The	gray
circles	represent	a	square	array	of

lattice	points.

The	orange	square	is	the
simplest	unit	cell	that	can	be	used	to	define	the	2-

dimensional	lattice.
Building	out	the	lattice	by	moving	("translating")
the	unit	cell	in	a	series	of	steps,

Altough	real	crystals	do	not	actually	grow	in	this	manner,	this	process	is	conceptually	important	because	it	allows	us	to



classify	a	lattice	type	in	terms	of	the	simple	repeating	unit	that	is	used	to	"build"	it.	We	call	this	shape	the	unit	cell.
Any	number	of	primitive	shapes	can	be	used	to	define	the	unit	cell	of	a	given	crystal	lattice.	The	one
that	is	actually	used	is	largely	a	matter	of	convenience,	and	it	may	contain	a	lattice	point	in	its	center,
as	you	see	in	two	of	the	unit	cells	shown	here.	In	general,	the	best	unit	cell	is	the	simplest	one	that	is
capable	of	building	out	the	lattice.
	

Shown	here	are	unit	cells	for
the	close-packed	square	and
hexagonal	lattices	we
discussed	near	the	start	of
this	lesson.	Notice	that	we
use	a	rhombus	(rather	than	a
hexagon)	to	define	the
hexagonal	lattice	because	it
is	simpler.

	
Iin	both	of	these	lattices,	the	corners	of	the	unit	cells	are	centered	on	a	lattice	point.	This
means	that	an	atom	or	molecule	located	on	this	point	in	a	real	crystal	lattice	is	shared	with	its
neighboring	cells.	As	is	shown	more	clearly	here	for	a	two-dimensional	square-packed	lattice,	a
single	unit	cell	can	claim	"ownership"	of	only	one-quarter	of	each	molecule,	and	thus	"contains"
4	×	¼	=	1	molecule.

	

The	graphite	form	of	carbon	is	based	on	an	hexagonal	lattice,	but	the
directed	bonds	prevent	it	from	being	close-packed.	Nevertheless,	its	unit
cell	is	also	a	rhombus,	although	one	that	encompass	two	carbon	atoms.

Notice	that	to	generate	this	structure	from	the	unit	cell,	we	need	to	shift	the	cell	in	both	the	x-	and	y-
directions	in	order	to	leave	empty	spaces	at	the	correct	spots.	We	could	alternatively	use	regular	hexagons
as	the	unit	cells,	but	the	x+y	shifts	would	still	be	required,	so	the	simpler	rhombus	is	usually	preferred.

As	you	will	see	in	the	next	sections,	the	empty	spaces	within	these	unit	cells	play	an	important	role
when	we	move	from	two-	to	three-dimensional	lattices.

3		Cubic	crystals
In	order	to	keep	this	lesson	within	reasonable	bounds,	we	are	limiting	it	mostly	to	crystals	belonging	to	the	so-called	cubic
system.	In	doing	so,	we	can	develop	the	major	concepts	that	are	useful	for	understanding	more	complicated	structures	(as
if	there	are	not	enough	complications	in	cubics	alone!)	But	in	addition,	it	happens	that	cubic	crystals	are	very	commonly
encountered;	most	metallic	elements	have	cubic	structures,	and	so	does	ordinary	salt,	sodium	chloride.
We	usually	think	of	a	cubic	shape	in	terms	of	the	equality	of	its	edge	lengths	and	the	90°
angles	between	its	sides,	but	there	is	another	way	of	classifying	shapes	that	chemists	find	very
useful.	This	is	to	look	at	what	geometric	transformations	(such	as	rotations	around	an	axis)	we
can	perform	that	leave	the	appearance	unchanged.	For	example,	you	can	rotate	a	cube	90°
around	an	axis	perpendicular	to	any	of	its	six	faces	without	making	any	apparent	change	to	it.
We	say	that	the	cube	possesses	three	mutually	perpendicular	four-fold	rotational	axes,
abbreviated	C4	axes.	But	if	you	think	about	it,	a	cube	can	also	be	rotated	around	the	axes	that
extend	between	opposite	corners;	in	this	case,	it	takes	three	120°	rotations	to	go	through	a	complete	circle,	so	these	axes
(also	four	in	number)	are	three-fold	or	C3	axes.

There	is	even	more	to	cubic	symmetry;	this	NYU	page	shows	all	the	symmetry	operations	of	the	cube;	see	this	video	for	a	live
demonstration.

Cubic	crystals	belong	to	one	of	the	seven	crystal	systems	whose	lattice	points	can	be	extended	indefinitely	to	fill
three-dimensional	space	and	which	can	be	constructed	by	successive	translations	(movements)	of	a	primitive	unit
cell	in	three	dimensions.	As	we	will	see	below,	the	cubic	system,	as	well	as	some	of	the	others,	can	have	variants	in
which	additional	lattice	points	can	be	placed	at	the	center	of	the	unit	or	at	the	center	of	each	face.	This	gives	a	total
of	14	possible	Bravais	lattices	on	which	all	crystals	(or	any	repeating	array	of	points	in	three	dimensions)	are	based.



The	three	types	of	cubic	lattices

The	three	Bravais	lattices	which	form	the	cubic	crystal	system	are	shown	here.

Structural	examples	of	all	three	are	known,	with	body-	and	face-centered	(BCC	and	FCC)	being	much	more	common;	most
metallic	elements	crystallize	in	one	of	these	latter	forms.	But	although	the	simple	cubic	structure	is	uncommon	by	itself,	it
turns	out	that	many	BCC	and	FCC	structures	composed	of	ions	can	be	regarded	as	interpenetrating	combinations	of	two
simple	cubic	lattices,	one	made	up	of	positive	ions	and	the	other	of	negative	ions.	Notice	that	only	the	FCC	structure,
which	we	will	describe	below,	is	a	close-packed	lattice	within	the	cubic	system.

4		Close-packed	lattices	in	three	dimensions
Close-packed	lattices	allow	the	maximum	amount	of	interaction	between	atoms.	If	these	interactions	are	mainly	attractive,
then	close-packing	usually	leads	to	more	energetically	stable	structures.	These	lattice	geometries	are	widely	seen	in
metallic,	atomic,	and	simple	ionic	crystals.

As	we	pointed	out	above,	hexagonal	packing	of	a	single	layer	is	more	efficient	than	square-packing,	so	this	is	where	we
begin.	Imagine	that	we	start	with	the	single	layer	of	green	atoms	shown	below.	We	will	call	this	the	A	layer.	
If	we	place	a	second	layer	of	atoms	(orange)	on	top	of	the	A-layer,	we	would	expect	the	atoms	of	the	new	layer	to	nestle	in
the	hollows	in	the	first	layer.	But	if	all	the	atoms	are	identical,	only	some	of	these	void	spaces	will	be	accessible.

In	the	diagram	on	the	left,	notice	that	there	are	two	classes	of	void	spaces	between	the	A	atoms;	one	set	(colored	blue)	has
a	vertex	pointing	up,	while	the	other	set	(not	colored)	has	down-pointing	vertices.	Each	void	space	constitutes	a	depression
in	which	atoms	of	a	second	layer	(the	B-layer)	can	nest.	The	two	sets	of	void	spaces	are	completely	equivalent,	but	only	one
of	these	sets	can	be	occupied	by	a	second	layer	of	atoms	whose	size	is	similar	to	those	in	the	bottom	layer.	In	the
illustration	on	the	right	above	we	have	arbitrarily	placed	the	B-layer	atoms	in	the	blue	voids,	but	could	just	as	well	have
selected	the	white	ones.

Two	choices	for	the	third	layer	lead	to	two	different	close-packed	lattice	types

Now	consider	what	happens	when	we	lay	down	a	third	layer	of	atoms.	These	will	fit	into	the	void	spaces	within	the	B-layer.
As	before,	there	are	two	sets	of	these	positions,	but	unlike	the	case	described	above,	they	are	not	equivalent.

The	atoms	in	the	third	layer	are	represented	by	open	blue	circles	in	order	to	avoid	obscuring	the	layers	underneath.	In	the
illustration	on	the	left,	this	third	layer	is	placed	on	the	B-layer	at	locations	that	are	directly	above	the	atoms	of	the	A-layer,
so	our	third	layer	is	just	a	another	A	layer.	If	we	add	still	more	layers,	the	vertical	sequence	A-B-A-B-A-B-A...	repeats
indefinitely.

In	the	diagram	on	the	right	above,	the	blue	atoms	have	been	placed	above	the	white	(unoccupied)	void	spaces	in	layer	A.
Because	this	third	layer	is	displaced	horizontally	(in	our	view)	from	layer	A,	we	will	call	it	layer	C.	As	we	add	more	layers	of



For	the	purposes	of	clarity,	only	three
atoms	of	the	A	and	C	layers	are	shown
in	the	following	diagrams.	But	in
reality,	each	layer	consists	of	an
extended	hexagonal	array;	the	two
layers	are	simply	displaced	from	one
another.

atoms,	the	sequence	of	layers	is	A-B-C-A-B-C-A-B-C...,	so	we	call	it	ABC	packing.

These	two	exploded	views	of	the	vertical
stacking	further	illustrate	the	rather	small
fundamental	difference	between	the	HCP
and	FCC	arrangements—	but,	as	you	will
see	below,	they	have	widely	divergent
structural	consequences.	Note	the	opposite
orientations	of	the	A	and	C	layers



Notice	that	the	two	shaded	planes
cutting	along	diagonals	within	the
interior	of	the	cube	contain	atoms	of
different	colors,	meaning	that	they
belong	to	different	layers	of	the	CCP
stack.	Each	plane	contains	three
atoms	from	the	B	layer	and	three
from	the	C	layer,	thus	reducing	the
symmetry	to	C3,	which	a	cubic	lattice
must	have.

The	Hexagonal	closed-packed	structure

	

	

The	HCP	stacking	shown	on	the	left	just	above	takes	us	out	of	the
cubic	crystal	system	into	the	hexagonal	system,	so	we	will	not	say
much	more	about	it	here	except	to	point	out	each	atom	has	12
nearest	neighbors:	six	in	its	own	layer,	and	three	in	each	layer	above
and	below	it.

	

	

The	cubic	close-packed	structure

Here	on	the	left	we	reproduce	the	FCC	structure	that	was	shown	above.	You	will	notice	that	the	B-
layer	atoms	form	a	hexagon,	but	this	is	nevertheless	a	cubic	structure.	How	can	this	be?	The	answer
is	that	the	FCC	stack	is	inclined	with	respect	to	the	faces	of	the	cube,	and	is	in	fact	concident	with
one	of	the	three-fold	axes	that	passes	through	opposite	corners.	It	requires	a	bit	of	study	to	see	the
relationship,	and	we	have	provided	two	views	to	help	you.	The	one	on	the	left	shows	the	cube	in	the
normal	isometric	projection;	the	one	on	the	right	looks	down	upon	the	top	of	the	cube	at	a	slightly
inclined	angle.

Both	the	CCP	and	HCP	structures	fill	74	percent	of	the	available	space	when	the	atoms	have	the	same	size.

The	FCC	unit	cell

The	figure	at	the	right	shows	the	the	face-centered	cubic	unit	cell	of	a	cubic-close	packed	lattice.
How	many	atoms	are	contained	in	a	unit	cell?	Each	corner	atom	is	shared	with	eight	adjacent	unit	cells
and	so	a	single	unit	cell	can	claim	only	1/8	of	each	of	the	eight	corner	atoms.	Similarly,	each	of	the	six
atoms	centered	on	a	face	is	only	half-owned	by	the	cell.	The	grand	total	is	then	(8	×	1/8)	+	(6	×	½)	=	4
atoms	per	unit	cell.

5		Interstitial	void	spaces
The	atoms	in	each	layer	in	these	close-packing	stacks	sit	in	a	depression	in	the	layer	below	it.	As
we	explained	above,	these	void	spaces	are	not	completely	filled.	(It	is	geometrically	impossible
for	more	than	two	identical	spheres	to	be	in	contact	at	a	single	point.)	We	will	see	later	that	these	interstitial	void	spaces
can	sometimes	accommodate	additional	(but	generally	smaller)	atoms	or	ions.

If	we	look	down	on	top	of	two	layers	of	close-packed	spheres,	we	can	pick	out	two
classes	of	void	spaces	which	we	call	tetrahedral	and	octahedral	holes.
	



Tetrahedral	holes

If	we	direct	our	attention	to	a	region	in	the	above	diagram	where	a	single	atom	is	in	contact	with	the
three	atoms	in	the	layers	directly	below	it,	the	void	space	is	known	as	a	tetrahedral	hole.	A	similar
space	will	be	be	found	between	this	single	atom	and	the	three	atoms	(not	shown)	that	would	lie	on
top	of	it	in	an	extended	lattice.	Any	interstitial	atom	that	might	occupy	this	site	will	interact	with	the
four	atoms	surrounding	it,	so	this	is	also	called	a	four-coordinate	interstitial	space.

Don't	be	misled	by	this	name;	the	boundaries	of	the	void	space	are	spherical	sections,	not	tetrahedra.	The
tetrahedron	is	just	an	imaginary	construction	whose	four	corners	point	to	the	centers	of	the	four	atoms	that	are	in	contact.



It	can	be	shown	from	elementary
trigonometry	that	an	atom	will	fit
exactly	into	an	octahedral	site	if	its
radius	is	0.414	as	great	as	that	of	the
host	atoms.	The	corresponding	figure
for	the	smaller	tetrahedral	holes	is
0.225.

Octahedral	holes

Similarly,	when	two	sets	of	three	trigonally-oriented	spheres	are	in	close-
packed	contact,	they	will	be	oriented	60°	apart	and	the	centers	of	the	spheres
will	define	the	six	corners	of	an	imaginary	octahedron	centered	in	the	void
space	between	the	two	layers,	so	we	call	these	octahedral	holes	or	six-
coordinate	interstitial	sites.	Octahedral	sites	are	larger	than	tetrahedral	sites.
An	octahedron	has	six	corners	and	eight	sides.	We	usually	draw	octahedra	as	a	double
square	pyramid	standing	on	one	corner	(left),	but	in	order	to	visualize	the	octahedral
shape	in	a	close-packed	lattice,	it	is	better	to	think	of	the	octahedron	as	lying	on	one	of
its	faces	(right).

	

Each	sphere	in	a	close-packed	lattice	is	associated	with	one	octahedral	site,	whereas
there	are	only	half	as	many	tetrahedral	sites.	This	can	be	seen	in	this	diagram	that
shows	the	central	atom	in	the	B	layer	in	alignment	with	the	hollows	in	the	C	and	A
layers	above	and	below.

	
The	face-centered	cubic	unit	cell	contains	a	single
octahedral	hole	within	itself,	but	octahedral	holes
shared	with	adjacent	cells	exist	at	the	centers	of
each	edge.
Each	of	these	twelve	edge-located	sites	is	shared	with	four
adjacent	cells,	and	thus	contributes	(12	×	¼)	=	3	atoms	to	the	cell.	Added	to	the	single	hole
contained	in	the	middle	of	the	cell,	this	makes	a	total	of	4	octahedral	sites	per	unit	cell.	This	is
the	same	as	the	number	we	calculated	above	for	the	number	of	atoms	in	the	cell.

6		Some	common	cubic	close-packed	structures
Many	ion-derived	compounds	and	pure	metals	form	face-centered	cubic	(cubic	close-
packed)	structures.	The	existence	of	tetrahedral	and	octahedral	holes	in	these	lattices
presents	an	opportunity	for	"foreign"	atoms	to	occupy	some	or	all	of	these	interstitial
sites.	In	order	to	retain	close-packing,	the	interstitial	atoms	must	be	small	enough	to
fit	into	these	holes	without	disrupting	the	host	CCP	lattice.	When	these	atoms	are	too
large,	which	is	commonly	the	case	in	ionic	compounds,	the	atoms	in	the	interstitial

sites	will	push	the	host	atoms	apart	so	that	the	face-centered	cubic	lattice	is	somewhat	opened	up	and	loses	its	close-
packing	character.



The	rock	salt	structure

Alkali	halides	that	crystallize	with	the	"rock-salt"
structure	exemplified	by	sodium	chloride	can	be	regarded
either	as	a	FCC	structure	of	one	kind	of	ion	in	which	the
octahedral	holes	are	occupied	by	ions	of	opposite	charge,
or	as	two	interpenetrating	FCC	lattices	made	up	of	the
two	kinds	of	ions.	The	two	shaded	octahedra	illustrate	the
identical	coordination	of	the	two	kinds	of	ions;	each	atom
or	ion	of	a	given	kind	is	surrounded	by	six	of	the	opposite
kind,	resulting	in	a	coordination	expressed	as	(6:6).

How	many	NaCl	units	are	contained	in	the	unit	cell?	If	we
ignore	the	atoms	that	were	placed	outside	the	cell	in
order	to	construct	the	octahedra,	you	should	be	able	to
count	fourteen	"orange"	atoms	and	thirteen	"blue"	ones.
But	many	of	these	are	shared	with	adjacent	unit	cells.

	

An	atom	at	the	corner	of	the	cube	is	shared	by	eight
adjacent	cubes,	and	thus	makes	a	1/8	contribution	to	any
one	cell.	Similarly,	the	center	of	an	edge	is	common	to
four	other	cells,	and	an	atom	centered	in	a	face	is	shared
with	two	cells.	Taking	all	this	into	consideration,	you

should	be	able	to	confirm	the	following	tally	showing	that	there	are	four	AB	units	in	a	unit	cell	of	this	kind.

border="1"	cellspacing="2"	cellpadding="2">
Orange	atoms Blue	atoms

8	at	corners:	8	x	1/8	=	1 12	at	edge	centers:	12	x	¼	=	3
6	at	face	centers:	6	x	½	=	3 1	at	body	center	=	1
total:	4 total:	4



If	we	take	into	consideration	the	actual	sizes	of	the	ions	(Na+	=	116	pm,	Cl–	=	167	pm),	it	is
apparent	that	neither	ion	will	fit	into	the	octahedral	holes	with	a	CCP	lattice	composed	of	the
other	ion,	so	the	actual	structure	of	NaCl	is	somewhat	expanded	beyond	the	close-packed
model.

The	space-filling	model	on	the	right	depicts	a	face-centered	cubic	unit	cell	of	chloride	ions
(purple),	with	the	sodium	ions	(green)	occupying	the	octahedral	sites.	[source]

The	zinc-blende	structure:	using	some	tetrahedral	holes

Since	there	are	two	tetrahedral	sites	for	every	atom	in	a	close-packed	lattice,	we	can	have	binary	compounds	of	1:1	or	1:2
stoichiometry	depending	on	whether	half	or	all	of	the	tetrahedral	holes	are	occupied.

Zinc-blende	is	the	mineralogical	name	for	zinc	sulfide,	ZnS.	An	impure
form	known	as	sphalerite	is	the	major	ore	from	which	zinc	is	obtained.
This	structure	consists	essentially	of	a	FCC	(CCP)	lattice	of	sulfur	atoms
(orange)	(equivalent	to	the	lattice	of	chloride	ions	in	NaCl)	in	which	zinc
ions	(green)	occupy	half	of	the	tetrahedral	sites.	As	with	any	FCC
lattice,	there	are	four	atoms	of	sulfur	per	unit	cell,	and	the	the	four	zinc
atoms	are	totally	contained	in	the	unit	cell.

	
Each	atom	in	this	structure	has	four	nearest	neighbors,	and	is	thus
tetrahedrally	coordinated.
It	is	interesting	to	note	that	if	all	the	atoms	are	replaced	with	carbon,	this
would	correspond	to	the	diamond	structure.



The	fluorite	structure:	all	tetrahedral	sites	occupied

Fluorite,	CaF2,	having	twice	as	many	ions	of	fluoride	as	of	calcium,
makes	use	of	all	eight	tetrahedral	holes	in	the	CPP	lattice	of	calcium
ions	(orange)	depicted	here.	To	help	you	understand	this	structure,	we
have	shown	some	of	the	octahedral	sites	in	the	next	cell	on	the	right;
you	can	see	that	the	calcium	ion	at	A	is	surrounded	by	eight	fluoride
ions,	and	this	is	of	course	the	case	for	all	of	the	calcium	sites.	Since
each	fluoride	ion	has	four	nearest-neighbor	calcium	ions,	the
coordination	in	this	structure	is	described	as	(8:4).

Although	the	radii	of	the	two	ions	(F–=	117	pm,	Ca2+	=	126	pm	does
not	allow	true	close	packing,	they	are	similar	enough	that	one	could
just	as	well	describe	the	structure	as	a	FCC	lattice	of	fluoride	ions	with
calcium	ions	in	the	octahedral	holes.

7		Simple-	and	body-centered	cubic
structures

In	Section	4	we	saw	that	the	only	cubic	lattice
that	can	allow	close	packing	is	the	face-centered
cubic	structure.	The	simplest	of	the	three	cubic
lattice	types,	the	simple	cubic	lattice,	lacks	the
hexagonally-arranged	layers	that	are	required
for	close	packing.	But	as	shown	in	this	exploded
view,	the	void	space	between	the	two	square-
packed	layers	of	this	cell	constitutes	an
octahedral	hole	that	can	accommodate	another
atom,	yielding	a	packing	arrangement	that	in
favorable	cases	can	approximate	true	close-

packing.		Each	second-layer	B	atom	(blue)	resides	within	the	unit	cell	defined	the	A	layers	above	and	below	it.

The	A	and	B	atoms	can	be	of	the	same	kind	or	they	can	be	different.	If	they	are	the	same,	we	have	a	body-centered	cubic
lattice.	If	they	are	different,	and	especially	if	they	are	oppositely-charged	ions	(as	in	the	CsCl	structure),	there	are	size
restrictions:	if	the	B	atom	is	too	large	to	fit	into	the	interstitial	space,	or	if	it	is	so	small	that	the	A	layers	(which	all	carry
the	same	electric	charge)	come	into	contact	without	sufficient	A-B	coulombic	attractions,	this	structural	arrangement	may
not	be	stable.

The	cesium	chloride	structure



CsCl	is	the	common	model	for	the	BCC	structure.	As	with	so
many	other	structures	involving	two	different	atoms	or	ions,	we
can	regard	the	same	basic	structure	in	different	ways.	Thus	if	we
look	beyond	a	single	unit	cell,	we	see	that	CsCl	can	be
represented	as	two	interpenetrating	simple	cubic	lattices	in
which	each	atom	occupies	an	octahedral	hole	within	the	cubes	of
the	other	lattice.

What	you	should	be	able	to	do
Make	sure	you	thoroughly	understand	the	following	essential
ideas	which	have	been	presented	above.

The	difference	between	square	and	hexagonal	packing	in	two
dimensions.
The	definition	and	significance	of	the	unit	cell.
Sketch	the	three	Bravais	lattices	of	the	cubic	system,	and
calculate	the	number	of	atoms	contained	in	each	of	these	unit
cells.
Show	how	alternative	ways	of	stacking	three	close-packed	layers
can	lead	to	the	hexagonal	or	cubic	close	packed	structures.
Explain	the	origin	and	significance	of	octahedral	and	tetrahedral	holes	in	stacked	close-packed	layers,	and	show	how	they	can
arise.

Concept	map



Gallery

BIG	halite	(NaCl)	crystals	in	a	salt	mine	[Merkers]

fluorite	(CaF2)	[R.	Weller]

The	colors	are	due	to	impurities

sphalerite	(ZnS)	
[theImage]
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