
An	Overview	of	Cryptography
Gary	C.	Kessler
30	June	2016

©	1998-2016	—	A	much	shorter,	edited	version	of	this	paper	appears	in	the	1999	Edition	of	Handbook	on
Local	Area	Networks,

published	by	Auerbach	in	September	1998.	Since	that	time,	this	paper	has	taken	on	a	life	of	its	own...

CONTENTS

1.	INTRODUCTION
2.	THE	PURPOSE	OF	CRYPTOGRAPHY
3.	TYPES	OF	CRYPTOGRAPHIC	ALGORITHMS

3.1.	Secret	Key	Cryptography
3.2.	Public-Key	Cryptography
3.3.	Hash	Functions
3.4.	Why	Three	Encryption	Techniques?
3.5.	The	Significance	of	Key	Length

4.	TRUST	MODELS
4.1.	PGP	Web	of	Trust
4.2.	Kerberos
4.3.	Public	Key	Certificates	and	Certification
Authorities
4.4.	Summary

5.	CRYPTOGRAPHIC	ALGORITHMS	IN	ACTION
5.1.	Password	Protection
5.2.	Some	of	the	Finer	Details	of	Diffie-Hellman
Key	Exchange
5.3.	Some	of	the	Finer	Details	of	RSA	Public-Key
Cryptography
5.4.	Some	of	the	Finer	Details	of	DES,	Breaking
DES,	and	DES	Variants
5.5.	Pretty	Good	Privacy	(PGP)
5.6.	IP	Security	(IPsec)	Protocol
5.7.	The	SSL	Family	of	Secure	Transaction
Protocols	for	the	World	Wide	Web
5.8.	Elliptic	Curve	Cryptography	(ECC)
5.9.	The	Advanced	Encryption	Standard	(AES)
and	Rijndael
5.10.	Cisco's	Stream	Cipher
5.11.	TrueCrypt
5.12.	Encrypting	File	System	(EFS)
5.13.	Some	of	the	Finer	Details	of	RC4
5.14.	Challenge-Handshake	Authentication
Protocol	(CHAP)

6.	CONCLUSION...	OF	SORTS
7.	REFERENCES	AND	FURTHER	READING
A.	SOME	MATH	NOTES

A.1.	The	Exclusive-OR	(XOR)	Function
A.2.	The	modulo	Function
A.3.	Information	Theory	and	Entropy

ABOUT	THE	AUTHOR
ACKNOWLEDGEMENTS

	

FIGURES

1.	 Three	types	of	cryptography:	secret-key,
public	key,	and	hash	function.

2.	 Use	of	the	three	cryptographic	techniques
for	secure	communication.

3.	 Kerberos	architecture.
4.	 VeriSign	Class	3	certificate.
5.	 Sample	entries	in	Unix/Linux	password

files.
6.	 DES	enciphering	algorithm.
7.	 A	PGP	signed	message.
8.	 A	PGP	encrypted	message.
9.	 The	decrypted	message.

10.	 IPsec	Authentication	Header	format.
11.	 IPsec	Encapsulating	Security	Payload

format.
12.	 IPsec	tunnel	and	transport	modes	for	AH.
13.	 IPsec	tunnel	and	transport	modes	for	ESP.
14.	 Keyed-hash	MAC	operation.
15.	 Browser	encryption	configuration	screen

(Firefox).
16.	 SSL/TLS	protocol	handshake.
17.	 Elliptic	curve	addition.
18.	 AES	pseudocode.
19.	 TrueCrypt	screen	shot	(Windows).
20.	 TrueCrypt	screen	shot	(MacOS).
21.	 TrueCrypt	hidden	encrypted	volume	within

an	encrypted	volume.
22.	 EFS	and	Windows	Explorer.
23.	 The	cipher	command.
24.	 EFS	key	storage.
25.	 The	$LOGGED_UTILITY_STREAM

Attribute.
26.	 CHAP	Handshake.

TABLES

1.	 Minimum	Key	Lengths	for	Symmetric
Ciphers.

2.	 Contents	of	an	X.509	V3	Certificate.
3.	 Other	Crypto	Algorithms	and	Systems	of

Note.
4.	 ECC	and	RSA	Key	Comparison.

1.	INTRODUCTION

Does	increased	security	provide	comfort	to	paranoid	people?	Or	does	security	provide	some	very	basic	protections
that	we	are	naive	to	believe	that	we	don't	need?	During	this	time	when	the	Internet	provides	essential
communication	between	tens	of	millions	of	people	and	is	being	increasingly	used	as	a	tool	for	commerce,	security
becomes	a	tremendously	important	issue	to	deal	with.

There	are	many	aspects	to	security	and	many	applications,	ranging	from	secure	commerce	and	payments	to
private	communications	and	protecting	passwords.	One	essential	aspect	for	secure	communications	is	that	of
cryptography.	But	it	is	important	to	note	that	while	cryptography	is	necessary	for	secure	communications,	it	is	not
by	itself	sufficient.	The	reader	is	advised,	then,	that	the	topics	covered	here	only	describe	the	first	of	many	steps
necessary	for	better	security	in	any	number	of	situations.

http://www.garykessler.net/library/crypto.html Go MAY JUL AUG

02
2015 2016 2017

468	captures
	 	
	

� ⍰❎
f �

12	Dec	2000	-	2	Apr	2018 ▾	About	this	capture

This	paper	has	two	major	purposes.	The	first	is	to	define	some	of	the	terms	and	concepts	behind	basic
cryptographic	methods,	and	to	offer	a	way	to	compare	the	myriad	cryptographic	schemes	in	use	today.	The	second
is	to	provide	some	real	examples	of	cryptography	in	use	today.

I	would	like	to	say	at	the	outset	that	this	page	is	very	focused	on	terms,	concepts,	and	schemes	in	current	use	and
is	not	a	treatise	of	the	whole	field.	No	mention	is	made	here	about	pre-computerized	crypto	schemes,	the
difference	between	a	substitution	and	transposition	cipher,	cryptanalysis,	or	other	history.	Interested	readers
should	check	out	some	of	the	books	in	the	references	section	below,	a	short	list	of	my	crypto	URLs,	or	the	Learn
Cryptography	page	for	detailed	—	and	interesting!	—	background	information.

2.	THE	PURPOSE	OF	CRYPTOGRAPHY

Cryptography	is	the	science	of	writing	in	secret	code	and	is	an	ancient	art;	the	first	documented	use	of
cryptography	in	writing	dates	back	to	circa	1900	B.C.	when	an	Egyptian	scribe	used	non-standard	hieroglyphs	in
an	inscription.	Some	experts	argue	that	cryptography	appeared	spontaneously	sometime	after	writing	was
invented,	with	applications	ranging	from	diplomatic	missives	to	war-time	battle	plans.	It	is	no	surprise,	then,	that
new	forms	of	cryptography	came	soon	after	the	widespread	development	of	computer	communications.	In	data	and
telecommunications,	cryptography	is	necessary	when	communicating	over	any	untrusted	medium,	which	includes
just	about	any	network,	particularly	the	Internet.

Within	the	context	of	any	application-to-application	communication,	there	are	some	specific	security	requirements,
including:

Authentication:	The	process	of	proving	one's	identity.	(The	primary	forms	of	host-to-host	authentication	on	the
Internet	today	are	name-based	or	address-based,	both	of	which	are	notoriously	weak.)
Privacy/confidentiality:	Ensuring	that	no	one	can	read	the	message	except	the	intended	receiver.
Integrity:	Assuring	the	receiver	that	the	received	message	has	not	been	altered	in	any	way	from	the	original.
Non-repudiation:	A	mechanism	to	prove	that	the	sender	really	sent	this	message.

Cryptography,	then,	not	only	protects	data	from	theft	or	alteration,	but	can	also	be	used	for	user	authentication.
There	are,	in	general,	three	types	of	cryptographic	schemes	typically	used	to	accomplish	these	goals:	secret	key
(or	symmetric)	cryptography,	public-key	(or	asymmetric)	cryptography,	and	hash	functions,	each	of	which	is
described	below.	In	all	cases,	the	initial	unencrypted	data	is	referred	to	as	plaintext.	It	is	encrypted	into	ciphertext,
which	will	in	turn	(usually)	be	decrypted	into	usable	plaintext.

In	many	of	the	descriptions	below,	two	communicating	parties	will	be	referred	to	as	Alice	and	Bob;	this	is	the
common	nomenclature	in	the	crypto	field	and	literature	to	make	it	easier	to	identify	the	communicating	parties.	If
there	is	a	third	or	fourth	party	to	the	communication,	they	will	be	referred	to	as	Carol	and	Dave.	Mallory	is	a
malicious	party,	Eve	is	an	eavesdropper,	and	Trent	is	a	trusted	third	party.

3.	TYPES	OF	CRYPTOGRAPHIC	ALGORITHMS

There	are	several	ways	of	classifying	cryptographic	algorithms.	For	purposes	of	this	paper,	they	will	be	categorized
based	on	the	number	of	keys	that	are	employed	for	encryption	and	decryption,	and	further	defined	by	their
application	and	use.	The	three	types	of	algorithms	that	will	be	discussed	are	(Figure	1):

Secret	Key	Cryptography	(SKC):	Uses	a	single	key	for	both	encryption	and	decryption
Public	Key	Cryptography	(PKC):	Uses	one	key	for	encryption	and	another	for	decryption
Hash	Functions:	Uses	a	mathematical	transformation	to	irreversibly	"encrypt"	information

	

FIGURE	1:	Three	types	of	cryptography:	secret-key,	public	key,
and	hash	function.

3.1.	Secret	Key	Cryptography

With	secret	key	cryptography,	a	single	key	is	used	for	both	encryption	and	decryption.	As	shown	in	Figure	1A,	the
sender	uses	the	key	(or	some	set	of	rules)	to	encrypt	the	plaintext	and	sends	the	ciphertext	to	the	receiver.	The
receiver	applies	the	same	key	(or	ruleset)	to	decrypt	the	message	and	recover	the	plaintext.	Because	a	single	key
is	used	for	both	functions,	secret	key	cryptography	is	also	called	symmetric	encryption.

With	this	form	of	cryptography,	it	is	obvious	that	the	key	must	be	known	to	both	the	sender	and	the	receiver;	that,
in	fact,	is	the	secret.	The	biggest	difficulty	with	this	approach,	of	course,	is	the	distribution	of	the	key.

Secret	key	cryptography	schemes	are	generally	categorized	as	being	either	stream	ciphers	or	block	ciphers.
Stream	ciphers	operate	on	a	single	bit	(byte	or	computer	word)	at	a	time	and	implement	some	form	of	feedback
mechanism	so	that	the	key	is	constantly	changing.	A	block	cipher	is	so-called	because	the	scheme	encrypts	one
block	of	data	at	a	time	using	the	same	key	on	each	block.	In	general,	the	same	plaintext	block	will	always	encrypt
to	the	same	ciphertext	when	using	the	same	key	in	a	block	cipher	whereas	the	same	plaintext	will	encrypt	to
different	ciphertext	in	a	stream	cipher.

Stream	ciphers	come	in	several	flavors	but	two	are	worth	mentioning	here.	Self-synchronizing	stream	ciphers
calculate	each	bit	in	the	keystream	as	a	function	of	the	previous	n	bits	in	the	keystream.	It	is	termed	"self-
synchronizing"	because	the	decryption	process	can	stay	synchronized	with	the	encryption	process	merely	by
knowing	how	far	into	the	n-bit	keystream	it	is.	One	problem	is	error	propagation;	a	garbled	bit	in	transmission	will
result	in	n	garbled	bits	at	the	receiving	side.	Synchronous	stream	ciphers	generate	the	keystream	in	a	fashion
independent	of	the	message	stream	but	by	using	the	same	keystream	generation	function	at	sender	and	receiver.
While	stream	ciphers	do	not	propagate	transmission	errors,	they	are,	by	their	nature,	periodic	so	that	the
keystream	will	eventually	repeat.

Block	ciphers	can	operate	in	one	of	several	modes;	the	following	four	are	the	most	important:

Electronic	Codebook	(ECB)	mode	is	the	simplest,	most	obvious	application:	the	secret	key	is	used	to	encrypt
the	plaintext	block	to	form	a	ciphertext	block.	Two	identical	plaintext	blocks,	then,	will	always	generate	the
same	ciphertext	block.	Although	this	is	the	most	common	mode	of	block	ciphers,	it	is	susceptible	to	a	variety
of	brute-force	attacks.
Cipher	Block	Chaining	(CBC)	mode	adds	a	feedback	mechanism	to	the	encryption	scheme.	In	CBC,	the
plaintext	is	exclusively-ORed	(XORed)	with	the	previous	ciphertext	block	prior	to	encryption.	In	this	mode,
two	identical	blocks	of	plaintext	never	encrypt	to	the	same	ciphertext.
Cipher	Feedback	(CFB)	mode	is	a	block	cipher	implementation	as	a	self-synchronizing	stream	cipher.	CFB
mode	allows	data	to	be	encrypted	in	units	smaller	than	the	block	size,	which	might	be	useful	in	some
applications	such	as	encrypting	interactive	terminal	input.	If	we	were	using	1-byte	CFB	mode,	for	example,
each	incoming	character	is	placed	into	a	shift	register	the	same	size	as	the	block,	encrypted,	and	the	block
transmitted.	At	the	receiving	side,	the	ciphertext	is	decrypted	and	the	extra	bits	in	the	block	(i.e.,	everything
above	and	beyond	the	one	byte)	are	discarded.
Output	Feedback	(OFB)	mode	is	a	block	cipher	implementation	conceptually	similar	to	a	synchronous	stream
cipher.	OFB	prevents	the	same	plaintext	block	from	generating	the	same	ciphertext	block	by	using	an	internal
feedback	mechanism	that	is	independent	of	both	the	plaintext	and	ciphertext	bitstreams.

A	nice	overview	of	these	different	modes	can	be	found	at	CRYPTO-IT.

Secret	key	cryptography	algorithms	in	use	today	—	or,	at	least,	important	today	even	if	not	in	use	—	include:

Data	Encryption	Standard	(DES):	The	most	common	SKC	scheme	used	today,	DES	was	designed	by	IBM	in	the
1970s	and	adopted	by	the	National	Bureau	of	Standards	(NBS)	[now	the	National	Institute	for	Standards	and
Technology	(NIST)]	in	1977	for	commercial	and	unclassified	government	applications.	DES	is	a	block-cipher
employing	a	56-bit	key	that	operates	on	64-bit	blocks.	DES	has	a	complex	set	of	rules	and	transformations
that	were	designed	specifically	to	yield	fast	hardware	implementations	and	slow	software	implementations,
although	this	latter	point	is	becoming	less	significant	today	since	the	speed	of	computer	processors	is	several
orders	of	magnitude	faster	today	than	twenty	years	ago.	IBM	also	proposed	a	112-bit	key	for	DES,	which	was
rejected	at	the	time	by	the	government;	the	use	of	112-bit	keys	was	considered	in	the	1990s,	however,
conversion	was	never	seriously	considered.

DES	was	defined	in	American	National	Standard	X3.92	and	three	Federal	Information	Processing	Standards
(FIPS),	all	withdrawn	in	2005:

FIPS	46-3:	DES	(Archived	file)
FIPS	74:	Guidelines	for	Implementing	and	Using	the	NBS	Data	Encryption	Standard
FIPS	81:	DES	Modes	of	Operation

Information	about	vulnerabilities	of	DES	can	be	obtained	from	the	Electronic	Frontier	Foundation.

Two	important	variants	that	strengthen	DES	are:

Triple-DES	(3DES):	A	variant	of	DES	that	employs	up	to	three	56-bit	keys	and	makes	three
encryption/decryption	passes	over	the	block;	3DES	is	also	described	in	FIPS	46-3	and	is	the
recommended	replacement	to	DES.

DESX:	A	variant	devised	by	Ron	Rivest.	By	combining	64	additional	key	bits	to	the	plaintext	prior	to
encryption,	effectively	increases	the	keylength	to	120	bits.

More	detail	about	DES,	3DES,	and	DESX	can	be	found	below	in	Section	5.4.

Advanced	Encryption	Standard	(AES):	In	1997,	NIST	initiated	a	very	public,	4-1/2	year	process	to	develop	a
new	secure	cryptosystem	for	U.S.	government	applications.	The	result,	the	Advanced	Encryption	Standard,
became	the	official	successor	to	DES	in	December	2001.	AES	uses	an	SKC	scheme	called	Rijndael,	a	block
cipher	designed	by	Belgian	cryptographers	Joan	Daemen	and	Vincent	Rijmen.	The	algorithm	can	use	a
variable	block	length	and	key	length;	the	latest	specification	allowed	any	combination	of	keys	lengths	of	128,
192,	or	256	bits	and	blocks	of	length	128,	192,	or	256	bits.	NIST	initially	selected	Rijndael	in	October	2000
and	formal	adoption	as	the	AES	standard	came	in	December	2001.	FIPS	PUB	197	describes	a	128-bit	block
cipher	employing	a	128-,	192-,	or	256-bit	key.	The	AES	process	and	Rijndael	algorithm	are	described	in	more
detail	below	in	Section	5.9.

As	an	aside,	the	AES	selection	process	managed	by	NIST	was	very	public.	A	similar	project,	the	New
European	Schemes	for	Signatures,	Integrity	and	Encryption	(NESSIE),	was	designed	as	an
independent	project	meant	to	augment	the	work	of	NIST	by	putting	out	an	open	call	for	new
cryptographic	primitives.	NESSIE	ran	from	about	2000-2003.	While	several	new	algorithms	were
found	during	the	NESSIE	process,	no	new	stream	cipher	survived	cryptanalysis.	As	a	result,	the
ECRYPT	Stream	Cipher	Project	(eSTREAM)	was	created,	which	has	approved	a	number	of	new
stream	ciphers	for	both	software	and	hardware	implementation.

Similar	—	but	different	—	is	the	Japanese	Government	Cryptography	Research	and	Evaluation
Committees	(CRYPTREC)	efforts	to	evaluate	algorithms	submitted	for	government	and	industry
applications.	They,	too,	have	approved	a	number	of	cipher	suites	for	various	applications.

CAST-128/256:	CAST-128,	described	in	Request	for	Comments	(RFC)	2144,	is	a	DES-like	substitution-
permutation	crypto	algorithm,	employing	a	128-bit	key	operating	on	a	64-bit	block.	CAST-256	(RFC	2612)	is
an	extension	of	CAST-128,	using	a	128-bit	block	size	and	a	variable	length	(128,	160,	192,	224,	or	256	bit)	key.
CAST	is	named	for	its	developers,	Carlisle	Adams	and	Stafford	Tavares,	and	is	available	internationally.	CAST-
256	was	one	of	the	Round	1	algorithms	in	the	AES	process.

International	Data	Encryption	Algorithm	(IDEA):	Secret-key	cryptosystem	written	by	Xuejia	Lai	and	James
Massey,	in	1992	and	patented	by	Ascom;	a	64-bit	SKC	block	cipher	using	a	128-bit	key.	Also	available
internationally.

Rivest	Ciphers	(aka	Ron's	Code):	Named	for	Ron	Rivest,	a	series	of	SKC	algorithms.

RC1:	Designed	on	paper	but	never	implemented.

RC2:	A	64-bit	block	cipher	using	variable-sized	keys	designed	to	replace	DES.	It's	code	has	not	been
made	public	although	many	companies	have	licensed	RC2	for	use	in	their	products.	Described	in	RFC
2268.

RC3:	Found	to	be	breakable	during	development.

RC4:	A	stream	cipher	using	variable-sized	keys;	it	is	widely	used	in	commercial	cryptography	products.
An	update	to	RC4,	called	Spritz	(see	also),	was	designed	by	Rivest	and	Jacob	Schuldt.	More	detail	about
RC4	(and	a	little	about	Spritz)	can	be	found	below	in	Section	5.13.

RC5:	A	block-cipher	supporting	a	variety	of	block	sizes	(32,	64,	or	128	bits),	key	sizes,	and	number	of
encryption	passes	over	the	data.	Described	in	RFC	2040.

RC6:	A	128-bit	block	cipher	based	upon,	and	an	improvement	over,	RC5;	RC6	was	one	of	the	AES	Round
2	algorithms.

Blowfish:	A	symmetric	64-bit	block	cipher	invented	by	Bruce	Schneier;	optimized	for	32-bit	processors	with
large	data	caches,	it	is	significantly	faster	than	DES	on	a	Pentium/PowerPC-class	machine.	Key	lengths	can
vary	from	32	to	448	bits	in	length.	Blowfish,	available	freely	and	intended	as	a	substitute	for	DES	or	IDEA,	is
in	use	in	a	large	number	of	products.

Twofish:	A	128-bit	block	cipher	using	128-,	192-,	or	256-bit	keys.	Designed	to	be	highly	secure	and	highly
flexible,	well-suited	for	large	microprocessors,	8-bit	smart	card	microprocessors,	and	dedicated	hardware.
Designed	by	a	team	led	by	Bruce	Schneier	and	was	one	of	the	Round	2	algorithms	in	the	AES	process.

Camellia:	A	secret-key,	block-cipher	crypto	algorithm	developed	jointly	by	Nippon	Telegraph	and	Telephone
(NTT)	Corp.	and	Mitsubishi	Electric	Corporation	(MEC)	in	2000.	Camellia	has	some	characteristics	in
common	with	AES:	a	128-bit	block	size,	support	for	128-,	192-,	and	256-bit	key	lengths,	and	suitability	for
both	software	and	hardware	implementations	on	common	32-bit	processors	as	well	as	8-bit	processors	(e.g.,
smart	cards,	cryptographic	hardware,	and	embedded	systems).	Also	described	in	RFC	3713.	Camellia's
application	in	IPsec	is	described	in	RFC	4312	and	application	in	OpenPGP	in	RFC	5581.

MISTY1:	Developed	at	Mitsubishi	Electric	Corp.,	a	block	cipher	using	a	128-bit	key	and	64-bit	blocks,	and	a
variable	number	of	rounds.	Designed	for	hardware	and	software	implementations,	and	is	resistant	to
differential	and	linear	cryptanalysis.	Described	in	RFC	2994.

Secure	and	Fast	Encryption	Routine	(SAFER):	Secret-key	crypto	scheme	designed	for	implementation	in
software.	Versions	have	been	defined	for	40-,	64-,	and	128-bit	keys.

KASUMI:	A	block	cipher	using	a	128-bit	key	that	is	part	of	the	Third-Generation	Partnership	Project	(3gpp),
formerly	known	as	the	Universal	Mobile	Telecommunications	System	(UMTS).	KASUMI	is	the	intended
confidentiality	and	integrity	algorithm	for	both	message	content	and	signaling	data	for	emerging	mobile
communications	systems.

SEED:	A	block	cipher	using	128-bit	blocks	and	128-bit	keys.	Developed	by	the	Korea	Information	Security
Agency	(KISA)	and	adopted	as	a	national	standard	encryption	algorithm	in	South	Korea.	Also	described	in
RFC	4269.

ARIA:	A	128-bit	block	cipher	employing	128-,	192-,	and	256-bit	keys.	Developed	by	large	group	of	researchers
from	academic	institutions,	research	institutes,	and	federal	agencies	in	South	Korea	in	2003,	and
subsequently	named	a	national	standard.	Described	in	RFC	5794.

CLEFIA:	Described	in	RFC	6114,	CLEFIA	is	a	128-bit	block	cipher	employing	key	lengths	of	128,	192,	and	256
bits	(which	is	compatible	with	AES).	The	CLEFIA	algorithm	was	first	published	in	2007	by	Sony	Corporation.
CLEFIA	is	one	of	the	new-generation	lightweight	blockcipher	algorithms	designed	after	AES,	offering	high
performance	in	software	and	hardware	as	well	as	a	lightweight	implementation	in	hardware.

SMS4:	SMS4	is	a	128-bit	block	cipher	using	128-bit	keys	and	32	rounds	to	process	a	block.	Declassified	in
2006,	SMS4	is	used	in	the	Chinese	National	Standard	for	Wireless	Local	Area	Network	(LAN)	Authentication
and	Privacy	Infrastructure	(WAPI).	SMS4	had	been	a	proposed	cipher	for	the	Institute	of	Electrical	and
Electronics	Engineers	(IEEE)	802.11i	standard	on	security	mechanisms	for	wireless	LANs,	but	has	yet	to	be
accepted	by	the	IEEE	or	International	Organization	for	Standardization	(ISO).	SMS4	is	described	in	SMS4
Encryption	Algorithm	for	Wireless	Networks	(translated	and	typeset	by	Whitfield	Diffie	and	George	Ledin,
2008)	or	in	the	original	Chinese.

Skipjack:	SKC	scheme	proposed,	along	with	the	Clipper	chip,	as	part	of	the	never-implemented	Capstone
project.	Although	the	details	of	the	algorithm	were	never	made	public,	Skipjack	was	a	block	cipher	using	an
80-bit	key	and	32	iteration	cycles	per	64-bit	block.	Capstone,	proposed	by	NIST	and	the	NSA	as	a	standard	for
public	and	government	use,	met	with	great	resistance	by	the	crypto	community	laregly	because	the	design	of
Skipjack	was	classified	(coupled	with	the	key	escrow	requirement	of	the	Clipper	chip).

GSM	(Global	System	for	Mobile	Communications,	originally	Groupe	Spécial	Mobile)	encryption:	GSM	mobile
phone	systems	use	several	stream	ciphers	for	over-the-air	communication	privacy.	A5/1	was	developed	in
1987	for	use	in	Europe	and	the	U.S.	A5/2,	developed	in	1989,	is	a	weaker	algorithm	and	intended	for	use
outside	of	Europe	and	the	U.S.	Significant	flaws	were	found	in	both	ciphers	after	the	"secret"	specifications
were	leaked	in	1994,	however,	and	A5/2	has	been	withdrawn	from	use.	The	newest	version,	A5/3,	employs	the
KASUMI	block	cipher.	NOTE:	Unfortunately,	although	A5/1	has	been	repeatedly	"broken"	(e.g.,	see	"Secret
code	protecting	cellphone	calls	set	loose"	[2009]	and	"Cellphone	snooping	now	easier	and	cheaper	than	ever"
[2011]),	this	encryption	scheme	remains	in	widespread	use,	even	in	3G	and	4G	mobile	phone	networks.	Use	of
this	scheme	is	reportedly	one	of	the	reasons	that	the	National	Security	Agency	(NSA)	can	easily	decode	voice
and	data	calls	over	mobile	phone	networks.

GPRS	(General	Packet	Radio	Service)	encryption:	GSM	mobile	phone	systems	use	GPRS	for	data	applications,
and	GPRS	uses	a	number	of	encryption	methods,	offering	different	levels	of	data	protection.	GEA/0	offers	no
encryption	at	all.	GEA/1	and	GEA/2	are	proprietary	stream	ciphers,	employing	a	64-bit	key	and	a	96-bit	or
128-bit	state,	respectively.	GEA/1	and	GEA/2	are	most	widely	used	by	network	service	providers	today
although	both	have	been	reportedly	broken.	GEA/3	is	a	128-bit	block	cipher	employing	a	64-bit	key	that	is
used	by	some	carriers;	GEA/4	is	a	128-bit	clock	cipher	with	a	128-bit	key,	but	is	not	yet	deployed.

KCipher-2:	Described	in	RFC	7008,	KCipher-2	is	a	stream	cipher	with	a	128-bit	key	and	a	128-bit	initialization
vector.	Using	simple	arithmetic	operations,	the	algorithms	offers	fast	encryption	and	decryption	by	use	of
efficient	implementations.	KCipher-2	has	been	used	for	industrial	applications,	especially	for	mobile	health
monitoring	and	diagnostic	services	in	Japan.

Salsa	and	ChaCha:	Salsa20	is	a	stream	cipher	proposed	for	the	eSTREAM	project	by	Daniel	Bernstein.
Salsa20	uses	a	pseudorandom	function	based	on	32-bit	(whole	word)	addition,	bitwise	addition	(XOR),	and
rotation	operations,	aka	add-rotate-xor	(ARX)	operations.	Salsa20	uses	a	256-bit	key	although	a	128-bit	key
variant	also	exists.	In	2008,	Bernstein	published	ChaCha,	a	new	family	of	ciphers	related	to	Salsa20.
ChaCha20,	defined	in	RFC	7539,	is	employed	(with	the	Poly1305	authenticator)	in	IETF	protocols,	most
notably	for	IPsec	and	Internet	Key	Exchange	(IKE),	per	RFC	7634,	and	Transaction	Layer	Security	(TLS),	per
RFC	7905.	In	2014,	Google	adopted	ChaCha20/Poly1305	for	use	in	OpenSSL,	and	they	are	also	a	part	of
OpenSSH.

There	are	several	other	references	that	describe	interesting	algorithms	and	even	SKC	codes	dating	back	decades.
Two	that	leap	to	mind	are	the	Crypto	Museum's	Crypto	List	and	John	J.G.	Savard's	(albeit	old)	A	Cryptographic
Compendium	page.

3.2.	Public-Key	Cryptography

Public-key	cryptography	has	been	said	to	be	the	most	significant	new	development	in	cryptography	in	the	last	300-
400	years.	Modern	PKC	was	first	described	publicly	by	Stanford	University	professor	Martin	Hellman	and	graduate
student	Whitfield	Diffie	in	1976.	Their	paper	described	a	two-key	crypto	system	in	which	two	parties	could	engage
in	a	secure	communication	over	a	non-secure	communications	channel	without	having	to	share	a	secret	key.

PKC	depends	upon	the	existence	of	so-called	one-way	functions,	or	mathematical	functions	that	are	easy	to

compute	whereas	their	inverse	function	is	relatively	difficult	to	compute.	Let	me	give	you	two	simple	examples:

1.	 Multiplication	vs.	factorization:	Suppose	you	have	two	prime	numbers,	3	and	7,	and	you	need	to	calculate	the
product;	it	should	take	almost	no	time	to	calculate	that	value,	which	is	21.	Now	suppose,	instead,	that	you
have	a	number	that	is	a	product	of	two	primes,	21,	and	you	need	to	determine	those	prime	factors.	You	will
eventually	come	up	with	the	solution	but	whereas	calculating	the	product	took	milliseconds,	factoring	will
take	longer.	The	problem	becomes	much	harder	if	we	start	with	primes	that	have	400	digits	or	so,	because	the
product	will	have	~800	digits.

2.	 Exponentiation	vs.	logarithms:	Suppose	you	take	the	number	3	to	the	6th	power;	again,	it	is	relatively	easy	to
calculate	36	=	729.	But	if	if	you	start	with	the	number	729	and	need	to	determine	the	two	integers,	x	and	y	so
that	logx	729	=	y,	it	will	take	longer	to	find	the	two	values.

While	the	examples	above	are	trivial,	they	do	represent	two	of	the	functional	pairs	that	are	used	with	PKC;	namely,
the	ease	of	multiplication	and	exponentiation	versus	the	relative	difficulty	of	factoring	and	calculating	logarithms,
respectively.	The	mathematical	"trick"	in	PKC	is	to	find	a	trap	door	in	the	one-way	function	so	that	the	inverse
calculation	becomes	easy	given	knowledge	of	some	item	of	information.

Generic	PKC	employs	two	keys	that	are	mathematically	related	although	knowledge	of	one	key	does	not	allow
someone	to	easily	determine	the	other	key.	One	key	is	used	to	encrypt	the	plaintext	and	the	other	key	is	used	to
decrypt	the	ciphertext.	The	important	point	here	is	that	it	does	not	matter	which	key	is	applied	first,	but	that
both	keys	are	required	for	the	process	to	work	(Figure	1B).	Because	a	pair	of	keys	are	required,	this	approach	is
also	called	asymmetric	cryptography.

In	PKC,	one	of	the	keys	is	designated	the	public	key	and	may	be	advertised	as	widely	as	the	owner	wants.	The
other	key	is	designated	the	private	key	and	is	never	revealed	to	another	party.	It	is	straight	forward	to	send
messages	under	this	scheme.	Suppose	Alice	wants	to	send	Bob	a	message.	Alice	encrypts	some	information	using
Bob's	public	key;	Bob	decrypts	the	ciphertext	using	his	private	key.	This	method	could	be	also	used	to	prove	who
sent	a	message;	Alice,	for	example,	could	encrypt	some	plaintext	with	her	private	key;	when	Bob	decrypts	using
Alice's	public	key,	he	knows	that	Alice	sent	the	message	and	Alice	cannot	deny	having	sent	the	message	(non-
repudiation).

Public-key	cryptography	algorithms	that	are	in	use	today	for	key	exchange	or	digital	signatures	include:

RSA:	The	first,	and	still	most	common,	PKC	implementation,	named	for	the	three	MIT	mathematicians	who
developed	it	—	Ronald	Rivest,	Adi	Shamir,	and	Leonard	Adleman.	RSA	today	is	used	in	hundreds	of	software
products	and	can	be	used	for	key	exchange,	digital	signatures,	or	encryption	of	small	blocks	of	data.	RSA	uses
a	variable	size	encryption	block	and	a	variable	size	key.	The	key-pair	is	derived	from	a	very	large	number,	n,
that	is	the	product	of	two	prime	numbers	chosen	according	to	special	rules;	these	primes	may	be	100	or	more
digits	in	length	each,	yielding	an	n	with	roughly	twice	as	many	digits	as	the	prime	factors.	The	public	key
information	includes	n	and	a	derivative	of	one	of	the	factors	of	n;	an	attacker	cannot	determine	the	prime
factors	of	n	(and,	therefore,	the	private	key)	from	this	information	alone	and	that	is	what	makes	the	RSA
algorithm	so	secure.	(Some	descriptions	of	PKC	erroneously	state	that	RSA's	safety	is	due	to	the	difficulty	in
factoring	large	prime	numbers.	In	fact,	large	prime	numbers,	like	small	prime	numbers,	only	have	two
factors!)	The	ability	for	computers	to	factor	large	numbers,	and	therefore	attack	schemes	such	as	RSA,	is
rapidly	improving	and	systems	today	can	find	the	prime	factors	of	numbers	with	more	than	200	digits.
Nevertheless,	if	a	large	number	is	created	from	two	prime	factors	that	are	roughly	the	same	size,	there	is	no
known	factorization	algorithm	that	will	solve	the	problem	in	a	reasonable	amount	of	time;	a	2005	test	to
factor	a	200-digit	number	took	1.5	years	and	over	50	years	of	compute	time	(see	the	Wikipedia	article	on
integer	factorization.)	Regardless,	one	presumed	protection	of	RSA	is	that	users	can	easily	increase	the	key
size	to	always	stay	ahead	of	the	computer	processing	curve.	As	an	aside,	the	patent	for	RSA	expired	in
September	2000	which	does	not	appear	to	have	affected	RSA's	popularity	one	way	or	the	other.	A	detailed
example	of	RSA	is	presented	below	in	Section	5.3.

Diffie-Hellman:	After	the	RSA	algorithm	was	published,	Diffie	and	Hellman	came	up	with	their	own	algorithm.
D-H	is	used	for	secret-key	key	exchange	only,	and	not	for	authentication	or	digital	signatures.	More	detail
about	Diffie-Hellman	can	be	found	below	in	Section	5.2.

Digital	Signature	Algorithm	(DSA):	The	algorithm	specified	in	NIST's	Digital	Signature	Standard	(DSS),
provides	digital	signature	capability	for	the	authentication	of	messages.	Described	in	FIPS	186-4.

ElGamal:	Designed	by	Taher	Elgamal,	a	PKC	system	similar	to	Diffie-Hellman	and	used	for	key	exchange.

Elliptic	Curve	Cryptography	(ECC):	A	PKC	algorithm	based	upon	elliptic	curves.	ECC	can	offer	levels	of
security	with	small	keys	comparable	to	RSA	and	other	PKC	methods.	It	was	designed	for	devices	with	limited
compute	power	and/or	memory,	such	as	smartcards	and	PDAs.	More	detail	about	ECC	can	be	found	below	in
Section	5.8.	Other	references	include	the	Elliptic	Curve	Cryptography	page	and	the	Online	ECC	Tutorial	page,
both	from	Certicom.	See	also	RFC	6090	for	a	review	of	fundamental	ECC	algorithms	and	The	Elliptic	Curve
Digital	Signature	Algorithm	(ECDSA)	for	details	about	the	use	of	ECC	for	digital	signatures.

Public-Key	Cryptography	Standards	(PKCS):	A	set	of	interoperable	standards	and	guidelines	for	public-key
cryptography,	designed	by	RSA	Data	Security	Inc.

PKCS	#1:	RSA	Cryptography	Standard	(Also	RFC	3447)
PKCS	#2:	Incorporated	into	PKCS	#1.
PKCS	#3:	Diffie-Hellman	Key-Agreement	Standard
PKCS	#4:	Incorporated	into	PKCS	#1.
PKCS	#5:	Password-Based	Cryptography	Standard	(PKCS	#5	V2.0	is	also	RFC	2898)
PKCS	#6:	Extended-Certificate	Syntax	Standard	(being	phased	out	in	favor	of	X.509v3)
PKCS	#7:	Cryptographic	Message	Syntax	Standard	(Also	RFC	2315)

PKCS	#8:	Private-Key	Information	Syntax	Standard	(Also	RFC	5208)
PKCS	#9:	Selected	Attribute	Types	(Also	RFC	2985)
PKCS	#10:	Certification	Request	Syntax	Standard	(Also	RFC	2986)
PKCS	#11:	Cryptographic	Token	Interface	Standard
PKCS	#12:	Personal	Information	Exchange	Syntax	Standard	(Also	RFC	7292)
PKCS	#13:	Elliptic	Curve	Cryptography	Standard
PKCS	#14:	Pseudorandom	Number	Generation	Standard	is	no	longer	available
PKCS	#15:	Cryptographic	Token	Information	Format	Standard

Cramer-Shoup:	A	public-key	cryptosystem	proposed	by	R.	Cramer	and	V.	Shoup	of	IBM	in	1998.

Key	Exchange	Algorithm	(KEA):	A	variation	on	Diffie-Hellman;	proposed	as	the	key	exchange	method	for	the
NIST/NSA	Capstone	project.

LUC:	A	public-key	cryptosystem	designed	by	P.J.	Smith	and	based	on	Lucas	sequences.	Can	be	used	for
encryption	and	signatures,	using	integer	factoring.

McEliece:	A	public-key	cryptosystem	based	on	algebraic	coding	theory.

For	additional	information	on	PKC	algorithms,	see	"Public-Key	Encryption"	(Chapter	8)	in	Handbook	of	Applied
Cryptography,	by	A.	Menezes,	P.	van	Oorschot,	and	S.	Vanstone	(CRC	Press,	1996).

A	digression:	Who	invented	PKC?	I	tried	to	be	careful	in	the	first	paragraph	of	this	section	to	state
that	Diffie	and	Hellman	"first	described	publicly"	a	PKC	scheme.	Although	I	have	categorized	PKC	as	a
two-key	system,	that	has	been	merely	for	convenience;	the	real	criteria	for	a	PKC	scheme	is	that	it	allows
two	parties	to	exchange	a	secret	even	though	the	communication	with	the	shared	secret	might	be
overheard.	There	seems	to	be	no	question	that	Diffie	and	Hellman	were	first	to	publish;	their	method	is
described	in	the	classic	paper,	"New	Directions	in	Cryptography,"	published	in	the	November	1976	issue
of	IEEE	Transactions	on	Information	Theory	(IT-22(6),	644-654).	As	shown	in	Section	5.2,	Diffie-Hellman
uses	the	idea	that	finding	logarithms	is	relatively	harder	than	performing	exponentiation.	And,	indeed,	it
is	the	precursor	to	modern	PKC	which	does	employ	two	keys.	Rivest,	Shamir,	and	Adleman	described	an
implementation	that	extended	this	idea	in	their	paper,	"A	Method	for	Obtaining	Digital	Signatures	and
Public-Key	Cryptosystems,"	published	in	the	February	1978	issue	of	the	Communications	of	the	ACM
(CACM)	(2192),	120-126).	Their	method,	of	course,	is	based	upon	the	relative	ease	of	finding	the	product
of	two	large	prime	numbers	compared	to	finding	the	prime	factors	of	a	large	number.

Some	sources,	though,	credit	Ralph	Merkle	with	first	describing	a	system	that	allows	two	parties	to
share	a	secret	although	it	was	not	a	two-key	system,	per	se.	A	Merkle	Puzzle	works	where	Alice	creates	a
large	number	of	encrypted	keys,	sends	them	all	to	Bob	so	that	Bob	chooses	one	at	random	and	then	lets
Alice	know	which	he	has	selected.	An	eavesdropper	(Eve)	will	see	all	of	the	keys	but	can't	learn	which
key	Bob	has	selected	(because	he	has	encrypted	the	response	with	the	chosen	key).	In	this	case,	Eve's
effort	to	break	in	is	the	square	of	the	effort	of	Bob	to	choose	a	key.	While	this	difference	may	be	small	it
is	often	sufficient.	Merkle	apparently	took	a	computer	science	course	at	UC	Berkeley	in	1974	and
described	his	method,	but	had	difficulty	making	people	understand	it;	frustrated,	he	dropped	the	course.
Meanwhile,	he	submitted	the	paper	"Secure	Communication	Over	Insecure	Channels,"	which	was
published	in	the	CACM	in	April	1978;	Rivest	et	al.'s	paper	even	makes	reference	to	it.	Merkle's	method
certainly	wasn't	published	first,	but	did	he	have	the	idea	first?

An	interesting	question,	maybe,	but	who	really	knows?	For	some	time,	it	was	a	quiet	secret	that	a	team
at	the	UK's	Government	Communications	Headquarters	(GCHQ)	had	first	developed	PKC	in	the	early
1970s.	Because	of	the	nature	of	the	work,	GCHQ	kept	the	original	memos	classified.	In	1997,	however,
the	GCHQ	changed	their	posture	when	they	realized	that	there	was	nothing	to	gain	by	continued	silence.
Documents	show	that	a	GCHQ	mathematician	named	James	Ellis	started	research	into	the	key
distribution	problem	in	1969	and	that	by	1975,	James	Ellis,	Clifford	Cocks,	and	Malcolm	Williamson	had
worked	out	all	of	the	fundamental	details	of	PKC,	yet	couldn't	talk	about	their	work.	(They	were,	of
course,	barred	from	challenging	the	RSA	patent!)	By	1999,	Ellis,	Cocks,	and	Williamson	began	to	get
their	due	credit	in	a	break-through	article	in	WIRED	Magazine.

And	the	National	Security	Agency	(NSA)	claims	to	have	knowledge	of	this	type	of	algorithm	as	early	as
1966	but	there	is	no	supporting	documentation...	yet.	So	this	really	was	a	digression...

3.3.	Hash	Functions

Hash	functions,	also	called	message	digests	and	one-way	encryption,	are	algorithms	that,	in	some	sense,	use	no
key	(Figure	1C).	Instead,	a	fixed-length	hash	value	is	computed	based	upon	the	plaintext	that	makes	it	impossible
for	either	the	contents	or	length	of	the	plaintext	to	be	recovered.	Hash	algorithms	are	typically	used	to	provide	a
digital	fingerprint	of	a	file's	contents,	often	used	to	ensure	that	the	file	has	not	been	altered	by	an	intruder	or
virus.	Hash	functions	are	also	commonly	employed	by	many	operating	systems	to	encrypt	passwords.	Hash
functions,	then,	provide	a	measure	of	the	integrity	of	a	file.

Hash	algorithms	that	are	in	common	use	today	include:

Message	Digest	(MD)	algorithms:	A	series	of	byte-oriented	algorithms	that	produce	a	128-bit	hash	value	from
an	arbitrary-length	message.

MD2	(RFC	1319):	Designed	for	systems	with	limited	memory,	such	as	smart	cards.	(MD2	has	been
relegated	to	historical	status,	per	RFC	6149.)

MD4	(RFC	1320):	Developed	by	Rivest,	similar	to	MD2	but	designed	specifically	for	fast	processing	in
software.	(MD4	has	been	relegated	to	historical	status,	per	RFC	6150.)

MD5	(RFC	1321):	Also	developed	by	Rivest	after	potential	weaknesses	were	reported	in	MD4;	this
scheme	is	similar	to	MD4	but	is	slower	because	more	manipulation	is	made	to	the	original	data.	MD5	has
been	implemented	in	a	large	number	of	products	although	several	weaknesses	in	the	algorithm	were
demonstrated	by	German	cryptographer	Hans	Dobbertin	in	1996	("Cryptanalysis	of	MD5	Compress").

Secure	Hash	Algorithm	(SHA):	Algorithm	for	NIST's	Secure	Hash	Standard	(SHS),	described	in	FIPS	180-4.

SHA-1	produces	a	160-bit	hash	value	and	was	originally	published	as	FIPS	PUB	180-1	and	RFC	3174.	It
was	deprecated	by	NIST	as	of	the	end	of	2013	although	it	is	still	widely	used.	In	October	2015,	the	SHA-
1	Freestart	Collision	was	announced;	see	a	report	by	Bruce	Schneier	and	the	developers	of	the	attack.

SHA-2,	originally	described	in	FIPS	PUB	180-2	and	eventually	replaced	by	FIPS	PUB	180-3	(and	FIPS
PUB	180-4),	comprises	five	algorithms	in	the	SHS:	SHA-1	plus	SHA-224,	SHA-256,	SHA-384,	and	SHA-
512	which	can	produce	hash	values	that	are	224,	256,	384,	or	512	bits	in	length,	respectively.	SHA-2
recommends	use	of	SHA-1,	SHA-224,	and	SHA-256	for	messages	less	than	264	bits	in	length,	and
employs	a	512	bit	block	size;	SHA-384	and	SHA-512	are	recommended	for	messages	less	than	2128	bits
in	length,	and	employs	a	1,024	bit	block	size.	FIPS	PUB	180-4	also	introduces	the	concept	of	a	truncated
hash	in	SHA-512/t,	a	generic	name	referring	to	a	hash	value	based	upon	the	SHA-512	algorithm	that	has
been	truncated	to	t	bits;	SHA-512/224	and	SHA-512/256	are	specifically	described.	SHA-224,	-256,	-384,
and	-512	are	also	described	in	RFC	4634.

SHA-3	is	the	current	SHS	algorithm.	Although	there	had	not	been	any	successful	attacks	on	SHA-2,	NIST
decided	that	having	an	alternative	to	SHA-2	using	a	different	algorithm	would	be	prudent.	In	2007,	they
launched	a	SHA-3	Competition	to	find	that	alternative;	a	list	of	submissions	can	be	found	at	The	SHA-3
Zoo.	In	2012,	NIST	announced	that	after	reviewing	64	submissions,	the	winner	was	KECCAK	(pronounced
"catch-ack"),	a	family	of	hash	algorithms	based	upon	sponge	functions.	The	NIST	version	can	support
hash	output	sizes	of	256	and	512	bits.

RIPEMD:	A	series	of	message	digests	that	initially	came	from	the	RIPE	(RACE	Integrity	Primitives	Evaluation)
project.	RIPEMD-160	was	designed	by	Hans	Dobbertin,	Antoon	Bosselaers,	and	Bart	Preneel,	and	optimized
for	32-bit	processors	to	replace	the	then-current	128-bit	hash	functions.	Other	versions	include	RIPEMD-256,
RIPEMD-320,	and	RIPEMD-128.

HAVAL	(HAsh	of	VAriable	Length):	Designed	by	Y.	Zheng,	J.	Pieprzyk	and	J.	Seberry,	a	hash	algorithm	with
many	levels	of	security.	HAVAL	can	create	hash	values	that	are	128,	160,	192,	224,	or	256	bits	in	length.	More
details	can	be	found	in	a	AUSCRYPT	'92	paper.

Whirlpool:	Designed	by	V.	Rijmen	(co-inventor	of	Rijndael)	and	P.S.L.M.	Barreto,	Whirlpool	is	one	of	two	hash
functions	endorsed	by	the	New	European	Schemes	for	Signatures,	Integrity,	and	Encryption	(NESSIE)
competition	(the	other	being	SHA).	Whirlpool	operates	on	messages	less	than	2256	bits	in	length	and	produces
a	message	digest	of	512	bits.	The	design	of	this	hash	function	is	very	different	than	that	of	MD5	and	SHA-1,
making	it	immune	to	the	same	attacks	as	on	those	hashes.

Tiger:	Designed	by	Ross	Anderson	and	Eli	Biham,	Tiger	is	designed	to	be	secure,	run	efficiently	on	64-bit
processors,	and	easily	replace	MD4,	MD5,	SHA	and	SHA-1	in	other	applications.	Tiger/192	produces	a	192-bit
output	and	is	compatible	with	64-bit	architectures;	Tiger/128	and	Tiger/160	produce	a	hash	of	length	128	and
160	bits,	respectively,	to	provide	compatibility	with	the	other	hash	functions	mentioned	above.

eD2k:	Named	for	the	EDonkey2000	Network	(eD2K),	the	eD2k	hash	is	a	root	hash	of	an	MD4	hash	list	of	a
given	file.	A	root	hash	is	used	on	peer-to-peer	file	transfer	networks,	where	a	file	is	broken	into	chunks;	each
chunk	has	its	own	MD4	hash	associated	with	it	and	the	server	maintains	a	file	that	contains	the	hash	list	of	all
of	the	chunks.	The	root	hash	is	the	hash	of	the	hash	list	file.

(Readers	might	be	interested	in	HashCalc,	a	Windows-based	program	that	calculates	hash	values	using	a	dozen
algorithms,	including	MD5,	SHA-1	and	several	variants,	RIPEMD-160,	and	Tiger.	Command	line	utilities	that
calculate	hash	values	include	sha_verify	by	Dan	Mares	[Windows;	supports	MD5,	SHA-1,	SHA-2]	and	md5deep
[cross-platform;	supports	MD5,	SHA-1,	SHA-256,	Tiger,	and	Whirlpool].)

Hash	functions	are	sometimes	misunderstood	and	some	sources	claim	that	no	two	files	can	have	the	same	hash
value.	This	is,	in	fact,	not	correct.	Consider	a	hash	function	that	provides	a	128-bit	hash	value.	There	are,
obviously,	2128	possible	hash	values.	But	there	are	an	infinite	number	of	possible	files	and	∞	>>	2;128.	Therefore,
there	have	to	be	multiple	files	—	in	fact,	there	have	to	be	an	infinite	number	of	files!	—	that	have	the	same	128-bit
hash	value.

The	difficulty	is	not	necessarily	in	finding	two	files	with	the	same	hash,	but	in	finding	a	second	file	that	has	the
same	hash	value	as	a	given	first	file.	Consider	this	example.	A	human	head	has,	generally,	no	more	than	~150,000
hairs.	Since	there	are	more	than	7	billion	people	on	earth,	we	know	that	there	are	a	lot	of	people	with	the	same
number	of	hairs	on	their	heads.	Finding	two	people	with	the	same	number	of	hairs,	then,	would	be	relatively
simple.	The	harder	problem	is	choosing	one	person	(say,	you,	the	reader)	and	then	finding	another	person	who	has
the	same	number	of	hairs	on	their	head.

This	is	somewhat	similar	to	the	Birthday	Problem.	We	know	from	probability	that	if	you	choose	a	random	group	of
~23	people,	the	probability	is	about	50%	that	two	will	share	a	birthday	(the	probability	goes	up	to	99.9%	with	a
group	of	70	people).	However,	if	you	select	one	person	in	the	group	of	23	and	try	to	find	a	match	to	that	person,
the	probability	is	only	about	6%	of	finding	a	match;	you'd	need	a	group	of	253	for	a	50%	probability	of	a	shared
birthday	(and	a	group	of	more	than	4,000	to	obtain	a	99.9%	probability).

What	is	hard	to	do	is	to	try	to	create	a	file	that	has	a	given	hash	value	so	as	to	force	a	hash	value	collision	—	which
is	the	reason	that	hash	functions	are	used	extensively	for	information	security	and	computer	forensics	applications.
Alas,	researchers	in	2004	found	that	practical	collision	attacks	could	be	launched	on	MD5,	SHA-1,	and	other	hash
algorithms.	Readers	interested	in	this	problem	should	read	the	following:

AccessData.	(2006,	April).	MD5	Collisions:	The	Effect	on	Computer	Forensics.	AccessData	White	Paper.
Burr,	W.	(2006,	March/April).	Cryptographic	hash	standards:	Where	do	we	go	from	here?	IEEE	Security	&
Privacy,	4(2),	88-91.
Dwyer,	D.	(2009,	June	3).	SHA-1	Collision	Attacks	Now	252.	SecureWorks	Research	blog.
Gutman,	P.,	Naccache,	D.,	&	Palmer,	C.C.	(2005,	May/June).	When	hashes	collide.	IEEE	Security	&	Privacy,
3(3),	68-71.
Klima,	V.	(March	2005).	Finding	MD5	Collisions	-	a	Toy	For	a	Notebook.
Lee,	R.	(2009,	January	7).	Law	Is	Not	A	Science:	Admissibility	of	Computer	Evidence	and	MD5	Hashes.	SANS
Computer	Forensics	blog.
Stevens,	M.,	Karpman,	P.,	&	Peyrin,	T.	(2015,	October	8).	Freestart	collision	on	full	SHA-1.	Cryptology	ePrint
Archive,	Report	2015/967.
Thompson,	E.	(2005,	February).	MD5	collisions	and	the	impact	on	computer	forensics.	Digital	Investigation,
2(1),	36-40.
Wang,	X.,	Feng,	D.,	Lai,	X.,	&	Yu,	H.	(2004,	August).	Collisions	for	Hash	Functions	MD4,	MD5,	HAVAL-128	and
RIPEMD.
Wang,	X.,	Yin,	Y.L.,	&	Yu,	H.	(2005,	February	13).	Collision	Search	Attacks	on	SHA1.

Readers	are	also	referred	to	the	Eindhoven	University	of	Technology	HashClash	Project	Web	site.	An	excellent
overview	of	the	situation	with	hash	collisions	(circa	2005)	can	be	found	in	RFC	4270	(by	P.	Hoffman	and	B.
Schneier,	November	2005).	And	for	additional	information	on	hash	functions,	see	David	Hopwood's	MessageDigest
Algorithms	page	and	Peter	Selinger's	MD5	Collision	Demo	page.	Finally,	for	an	interesting	twist	on	this	discussion,
read	about	the	Nostradamus	attack	reported	at	Predicting	the	winner	of	the	2008	US	Presidential	Elections	using
a	Sony	PlayStation	3	(by	M.	Stevens,	A.K.	Lenstra,	and	B.	de	Weger,	November	2007).

Certain	extensions	of	hash	functions	are	used	for	a	variety	of	information	security	and	digital	forensics
applications,	such	as:

Hash	libraries	are	sets	of	hash	values	corresponding	to	known	files.	A	hash	library	of	known	good	files,	for
example,	might	be	a	set	of	files	known	to	be	a	part	of	an	operating	system,	while	a	hash	library	of	known	bad
files	might	be	of	a	set	of	known	child	pornographic	images.
Rolling	hashes	refer	to	a	set	of	hash	values	that	are	computed	based	upon	a	fixed-length	"sliding	window"
through	the	input.	As	an	example,	a	hash	value	might	be	computed	on	bytes	1-10	of	a	file,	then	on	bytes	2-11,
3-12,	4-13,	etc.
Fuzzy	hashes	are	an	area	of	intense	research	and	represent	hash	values	that	represent	two	inputs	that	are
similar.	Fuzzy	hashes	are	used	to	detect	documents,	images,	or	other	files	that	are	close	to	each	other	with
respect	to	content.	See	"Fuzzy	Hashing"	(PDF)	by	Jesse	Kornblum	for	a	good	treatment	of	this	topic.

3.4.	Why	Three	Encryption	Techniques?

So,	why	are	there	so	many	different	types	of	cryptographic	schemes?	Why	can't	we	do	everything	we	need	with
just	one?

The	answer	is	that	each	scheme	is	optimized	for	some	specific	application(s).	Hash	functions,	for	example,	are
well-suited	for	ensuring	data	integrity	because	any	change	made	to	the	contents	of	a	message	will	result	in	the
receiver	calculating	a	different	hash	value	than	the	one	placed	in	the	transmission	by	the	sender.	Since	it	is	highly
unlikely	that	two	different	messages	will	yield	the	same	hash	value,	data	integrity	is	ensured	to	a	high	degree	of
confidence.

Secret	key	cryptography,	on	the	other	hand,	is	ideally	suited	to	encrypting	messages,	thus	providing	privacy	and
confidentiality.	The	sender	can	generate	a	session	key	on	a	per-message	basis	to	encrypt	the	message;	the	receiver,
of	course,	needs	the	same	session	key	to	decrypt	the	message.

Key	exchange,	of	course,	is	a	key	application	of	public-key	cryptography	(no	pun	intended).	Asymmetric	schemes
can	also	be	used	for	non-repudiation	and	user	authentication;	if	the	receiver	can	obtain	the	session	key	encrypted
with	the	sender's	private	key,	then	only	this	sender	could	have	sent	the	message.	Public-key	cryptography	could,
theoretically,	also	be	used	to	encrypt	messages	although	this	is	rarely	done	because	secret-key	cryptography
operates	about	1000	times	faster	than	public-key	cryptography.

	

FIGURE	2:	Use	of	the	three	cryptographic	techniques	for	secure	communication.

Figure	2	puts	all	of	this	together	and	shows	how	a	hybrid	cryptographic	scheme	combines	all	of	these	functions	to
form	a	secure	transmission	comprising	digital	signature	and	digital	envelope.	In	this	example,	the	sender	of	the
message	is	Alice	and	the	receiver	is	Bob.

A	digital	envelope	comprises	an	encrypted	message	and	an	encrypted	session	key.	Alice	uses	secret	key
cryptography	to	encrypt	her	message	using	the	session	key,	which	she	generates	at	random	with	each	session.
Alice	then	encrypts	the	session	key	using	Bob's	public	key.	The	encrypted	message	and	encrypted	session	key
together	form	the	digital	envelope.	Upon	receipt,	Bob	recovers	the	session	secret	key	using	his	private	key	and
then	decrypts	the	encrypted	message.

The	digital	signature	is	formed	in	two	steps.	First,	Alice	computes	the	hash	value	of	her	message;	next,	she
encrypts	the	hash	value	with	her	private	key.	Upon	receipt	of	the	digital	signature,	Bob	recovers	the	hash	value
calculated	by	Alice	by	decrypting	the	digital	signature	with	Alice's	public	key.	Bob	can	then	apply	the	hash	function
to	Alice's	original	message,	which	he	has	already	decrypted	(see	previous	paragraph).	If	the	resultant	hash	value	is
not	the	same	as	the	value	supplied	by	Alice,	then	Bob	knows	that	the	message	has	been	altered;	if	the	hash	values
are	the	same,	Bob	should	believe	that	the	message	he	received	is	identical	to	the	one	that	Alice	sent.

This	scheme	also	provides	nonrepudiation	since	it	proves	that	Alice	sent	the	message;	if	the	hash	value	recovered
by	Bob	using	Alice's	public	key	proves	that	the	message	has	not	been	altered,	then	only	Alice	could	have	created
the	digital	signature.	Bob	also	has	proof	that	he	is	the	intended	receiver;	if	he	can	correctly	decrypt	the	message,
then	he	must	have	correctly	decrypted	the	session	key	meaning	that	his	is	the	correct	private	key.

This	diagram	purposely	suggests	a	cryptosystem	where	the	session	key	is	used	for	just	a	single	session.	Even	if	this
session	key	is	somehow	broken,	only	this	session	will	be	compromised;	the	session	key	for	the	next	session	is	in	no
way	based	upon	the	key	for	this	session,	just	as	this	session's	key	is	not	dependent	on	the	key	from	the	previous
session.	This	is	known	as	Perfect	Forward	Secrecy;	you	might	lose	one	session	key	due	to	a	compromise	but	you
won't	lose	all	of	them.	(This	was	an	issue	in	the	2014	OpenSSL	vulnerability	known	as	Heartbleed.)

3.5.	The	Significance	of	Key	Length

In	a	1998	article	in	the	industry	literature,	a	writer	made	the	claim	that	56-bit	keys	did	not	provide	as	adequate
protection	for	DES	at	that	time	as	they	did	in	1975	because	computers	were	1000	times	faster	in	1998	than	in
1975.	Therefore,	the	writer	went	on,	we	needed	56,000-bit	keys	in	1998	instead	of	56-bit	keys	to	provide	adequate
protection.	The	conclusion	was	then	drawn	that	because	56,000-bit	keys	are	infeasible	(true),	we	should	accept	the
fact	that	we	have	to	live	with	weak	cryptography	(false!).	The	major	error	here	is	that	the	writer	did	not	take	into
account	that	the	number	of	possible	key	values	double	whenever	a	single	bit	is	added	to	the	key	length;	thus,	a	57-
bit	key	has	twice	as	many	values	as	a	56-bit	key	(because	257	is	two	times	256).	In	fact,	a	66-bit	key	would	have
1024	times	more	values	than	a	56-bit	key.

But	this	does	bring	up	the	issue,	what	is	the	precise	significance	of	key	length	as	it	affects	the	level	of	protection?

In	cryptography,	size	does	matter.	The	larger	the	key,	the	harder	it	is	to	crack	a	block	of	encrypted	data.	The
reason	that	large	keys	offer	more	protection	is	almost	obvious;	computers	have	made	it	easier	to	attack	ciphertext
by	using	brute	force	methods	rather	than	by	attacking	the	mathematics	(which	are	generally	well-known	anyway).
With	a	brute	force	attack,	the	attacker	merely	generates	every	possible	key	and	applies	it	to	the	ciphertext.	Any
resulting	plaintext	that	makes	sense	offers	a	candidate	for	a	legitimate	key.	This	was	the	basis,	of	course,	of	the
EFF's	attack	on	DES.

Until	the	mid-1990s	or	so,	brute	force	attacks	were	beyond	the	capabilities	of	computers	that	were	within	the
budget	of	the	attacker	community.	By	that	time,	however,	significant	compute	power	was	typically	available	and
accessible.	General-purpose	computers	such	as	PCs	were	already	being	used	for	brute	force	attacks.	For	serious
attackers	with	money	to	spend,	such	as	some	large	companies	or	governments,	Field	Programmable	Gate	Array
(FPGA)	or	Application-Specific	Integrated	Circuits	(ASIC)	technology	offered	the	ability	to	build	specialized	chips

that	could	provide	even	faster	and	cheaper	solutions	than	a	PC.	(As	an	example,	the	AT&T;	Optimized
Reconfigurable	Cell	Array	(ORCA)	FPGA	chip	cost	about	$200	and	could	test	30	million	DES	keys	per	second,
while	a	$10	ASIC	chip	could	test	200	million	DES	keys	per	second;	compare	that	to	a	PC	which	might	be	able	to
test	40,000	keys	per	second.)	Distributed	attacks,	harnessing	the	power	of	between	tens	and	tens	of	thousands	of
powerful	CPUs,	are	now	commonly	employed	to	try	to	brute-force	crypto	keys.

The	table	below	—	from	a	1995	article	discussing	both	why	exporting	40-bit	keys	was,	in	essence,	no	crypto	at	all
and	why	DES'	days	were	numbered	—	shows	what	DES	key	sizes	were	needed	to	protect	data	from	attackers	with
different	time	and	financial	resources.	This	information	was	not	merely	academic;	one	of	the	basic	tenets	of	any
security	system	is	to	have	an	idea	of	what	you	are	protecting	and	from	who	are	you	protecting	it!	The	table	clearly
shows	that	a	40-bit	key	was	essentially	worthless	against	even	the	most	unsophisticated	attacker.	On	the	other
hand,	56-bit	keys	were	fairly	strong	unless	you	might	be	subject	to	some	pretty	serious	corporate	or	government
espionage.	But	note	that	even	56-bit	keys	were	clearly	on	the	decline	in	their	value	and	that	the	times	in	the	table
were	worst	cases.

TABLE	1.	Minimum	Key	Lengths	for	Symmetric	Ciphers	(1995).

Type	of	Attacker Budget Tool
Time	and	Cost

Per	Key	Recovered
Key	Length	Needed
For	Protection
In	Late-199540	bits 56	bits

Pedestrian	Hacker
Tiny

Scavenged
computer

time
1	week Infeasible 45

$400 FPGA 5	hours
($0.08)

38	years
($5,000) 50

Small	Business $10,000 FPGA 12	minutes
($0.08)

18	months
($5,000) 55

Corporate	Department $300K
FPGA 24	seconds

($0.08)
19	days
($5,000)

60
ASIC 0.18	seconds

($0.001)
3	hours
($38)

Big	Company $10M
FPGA 7	seconds

($0.08)
13	hours
($5,000)

70
ASIC 0.005	seconds

($0.001)
6	minutes
($38)

Intelligence	Agency $300M ASIC 0.0002	seconds
($0.001)

12	seconds
($38) 75

So,	how	big	is	big	enough?	DES,	invented	in	1975,	was	still	in	use	at	the	turn	of	the	century,	nearly	25	years	later.
If	we	take	that	to	be	a	design	criteria	(i.e.,	a	20-plus	year	lifetime)	and	we	believe	Moore's	Law	("computing	power
doubles	every	18	months"),	then	a	key	size	extension	of	14	bits	(i.e.,	a	factor	of	more	than	16,000)	should	be
adequate.	The	1975	DES	proposal	suggested	56-bit	keys;	by	1995,	a	70-bit	key	would	have	been	required	to	offer
equal	protection	and	an	85-bit	key	necessary	by	2015.

A	256-	or	512-bit	SKC	key	will	probably	suffice	for	some	time	because	that	length	keeps	us	ahead	of	the	brute
force	capabilities	of	the	attackers.	Note	that	while	a	large	key	is	good,	a	huge	key	may	not	always	be	better;	for
example,	expanding	PKC	keys	beyond	the	current	2048-	or	4096-bit	lengths	doesn't	add	any	necessary	protection
at	this	time.	Weaknesses	in	cryptosystems	are	largely	based	upon	key	management	rather	than	weak	keys.

Much	of	the	discussion	above,	including	the	table,	is	based	on	the	paper	"Minimal	Key	Lengths	for	Symmetric
Ciphers	to	Provide	Adequate	Commercial	Security"	by	M.	Blaze,	W.	Diffie,	R.L.	Rivest,	B.	Schneier,	T.	Shimomura,
E.	Thompson,	and	M.	Wiener.

The	most	effective	large-number	factoring	methods	today	use	a	mathematical	Number	Field	Sieve	to	find	a	certain
number	of	relationships	and	then	uses	a	matrix	operation	to	solve	a	linear	equation	to	produce	the	two	prime
factors.	The	sieve	step	actually	involves	a	large	number	of	operations	that	can	be	performed	in	parallel;	solving	the
linear	equation,	however,	requires	a	supercomputer.	Indeed,	finding	the	solution	to	the	RSA-140	challenge	in
February	1999	—	factoring	a	140-digit	(465-bit)	prime	number	—	required	200	computers	across	the	Internet
about	4	weeks	for	the	first	step	and	a	Cray	computer	100	hours	and	810	MB	of	memory	to	do	the	second	step.

In	early	1999,	Shamir	(of	RSA	fame)	described	a	new	machine	that	could	increase	factorization	speed	by	2-3
orders	of	magnitude.	Although	no	detailed	plans	were	provided	nor	is	one	known	to	have	been	built,	the	concepts
of	TWINKLE	(The	Weizmann	Institute	Key	Locating	Engine)	could	result	in	a	specialized	piece	of	hardware	that
would	cost	about	$5000	and	have	the	processing	power	of	100-1000	PCs.	There	still	appear	to	be	many
engineering	details	that	have	to	be	worked	out	before	such	a	machine	could	be	built.	Furthermore,	the	hardware
improves	the	sieve	step	only;	the	matrix	operation	is	not	optimized	at	all	by	this	design	and	the	complexity	of	this
step	grows	rapidly	with	key	length,	both	in	terms	of	processing	time	and	memory	requirements.	Nevertheless,	this
plan	conceptually	puts	512-bit	keys	within	reach	of	being	factored.	Although	most	PKC	schemes	allow	keys	that
are	1024	bits	and	longer,	Shamir	claims	that	512-bit	RSA	keys	"protect	95%	of	today's	E-commerce	on	the
Internet."	(See	Bruce	Schneier's	Crypto-Gram	(May	15,	1999)	for	more	information,	as	well	as	the	comments	from
RSA	Labs.)

It	is	also	interesting	to	note	that	while	cryptography	is	good	and	strong	cryptography	is	better,	long	keys	may
disrupt	the	nature	of	the	randomness	of	data	files.	Shamir	and	van	Someren	("Playing	hide	and	seek	with	stored
keys")	have	noted	that	a	new	generation	of	viruses	can	be	written	that	will	find	files	encrypted	with	long	keys,
making	them	easier	to	find	by	intruders	and,	therefore,	more	prone	to	attack.

Finally,	U.S.	government	policy	has	tightly	controlled	the	export	of	crypto	products	since	World	War	II.	Until	the
mid-1990s,	export	outside	of	North	America	of	cryptographic	products	using	keys	greater	than	40	bits	in	length
was	prohibited,	which	made	those	products	essentially	worthless	in	the	marketplace,	particularly	for	electronic
commerce;	today,	crypto	products	are	widely	available	on	the	Internet	without	restriction.	The	U.S.	Department	of
Commerce	Bureau	of	Industry	and	Security	maintains	an	Encryption	FAQ	web	page	with	more	information	about
the	current	state	of	encryption	registration.

On	a	related	topic,	public	key	crypto	schemes	can	be	used	for	several	purposes,	including	key	exchange,	digital
signatures,	authentication,	and	more.	In	those	PKC	systems	used	for	SKC	key	exchange,	the	PKC	key	lengths	are
chosen	so	to	be	resistant	to	some	selected	level	of	attack.	The	length	of	the	secret	keys	exchanged	via	that	system
have	to	have	at	least	the	same	level	of	attack	resistance.	Thus,	the	three	parameters	of	such	a	system	—	system
strength,	secret	key	strength,	and	public	key	strength	—	must	be	matched.	This	topic	is	explored	in	more	detail	in
Determining	Strengths	For	Public	Keys	Used	For	Exchanging	Symmetric	Keys	(RFC	3766).

4.	TRUST	MODELS

Secure	use	of	cryptography	requires	trust.	While	secret	key	cryptography	can	ensure	message	confidentiality	and
hash	codes	can	ensure	integrity,	none	of	this	works	without	trust.	In	SKC,	Alice	and	Bob	had	to	share	a	secret	key.
PKC	solved	the	secret	distribution	problem,	but	how	does	Alice	really	know	that	Bob	is	who	he	says	he	is?	Just
because	Bob	has	a	public	and	private	key,	and	purports	to	be	"Bob,"	how	does	Alice	know	that	a	malicious	person
(Mallory)	is	not	pretending	to	be	Bob?

There	are	a	number	of	trust	models	employed	by	various	cryptographic	schemes.	This	section	will	explore	three	of
them:

The	web	of	trust	employed	by	Pretty	Good	Privacy	(PGP)	users,	who	hold	their	own	set	of	trusted	public	keys.
Kerberos,	a	secret	key	distribution	scheme	using	a	trusted	third	party.
Certificates,	which	allow	a	set	of	trusted	third	parties	to	authenticate	each	other	and,	by	implication,	each
other's	users.

Each	of	these	trust	models	differs	in	complexity,	general	applicability,	scope,	and	scalability.

4.1.	PGP	Web	of	Trust

Pretty	Good	Privacy	(described	more	below	in	Section	5.5)	is	a	widely	used	private	e-mail	scheme	based	on	public
key	methods.	A	PGP	user	maintains	a	local	keyring	of	all	their	known	and	trusted	public	keys.	The	user	makes	their
own	determination	about	the	trustworthiness	of	a	key	using	what	is	called	a	"web	of	trust."

If	Alice	needs	Bob's	public	key,	Alice	can	ask	Bob	for	it	in	another	e-mail	or,	in	many	cases,	download	the	public
key	from	an	advertised	server;	this	server	might	a	well-known	PGP	key	repository	or	a	site	that	Bob	maintains
himself.	In	fact,	Bob's	public	key	might	be	stored	or	listed	in	many	places.	(The	author's	public	key,	for	example,
can	be	found	at	http://www.garykessler.net/pubkey.html.)	Alice	is	prepared	to	believe	that	Bob's	public	key,	as
stored	at	these	locations,	is	valid.

Suppose	Carol	claims	to	hold	Bob's	public	key	and	offers	to	give	the	key	to	Alice.	How	does	Alice	know	that	Carol's
version	of	Bob's	key	is	valid	or	if	Carol	is	actually	giving	Alice	a	key	that	will	allow	Mallory	access	to	messages?
The	answer	is,	"It	depends."	If	Alice	trusts	Carol	and	Carol	says	that	she	thinks	that	her	version	of	Bob's	key	is
valid,	then	Alice	may	—	at	her	option	—	trust	that	key.	And	trust	is	not	necessarily	transitive;	if	Dave	has	a	copy	of
Bob's	key	and	Carol	trusts	Dave,	it	does	not	necessarily	follow	that	Alice	trusts	Dave	even	if	she	does	trust	Carol.

The	point	here	is	that	who	Alice	trusts	and	how	she	makes	that	determination	is	strictly	up	to	Alice.	PGP	makes	no
statement	and	has	no	protocol	about	how	one	user	determines	whether	they	trust	another	user	or	not.	In	any	case,
encryption	and	signatures	based	on	public	keys	can	only	be	used	when	the	appropriate	public	key	is	on	the	user's
keyring.

4.2.	Kerberos

Kerberos	is	a	commonly	used	authentication	scheme	on	the	Internet.	Developed	by	MIT's	Project	Athena,	Kerberos
is	named	for	the	three-headed	dog	who,	according	to	Greek	mythology,	guards	the	entrance	of	Hades	(rather	than
the	exit,	for	some	reason!).

Kerberos	employs	a	client/server	architecture	and	provides	user-to-server	authentication	rather	than	host-to-host
authentication.	In	this	model,	security	and	authentication	will	be	based	on	secret	key	technology	where	every	host
on	the	network	has	its	own	secret	key.	It	would	clearly	be	unmanageable	if	every	host	had	to	know	the	keys	of	all
other	hosts	so	a	secure,	trusted	host	somewhere	on	the	network,	known	as	a	Key	Distribution	Center	(KDC),	knows
the	keys	for	all	of	the	hosts	(or	at	least	some	of	the	hosts	within	a	portion	of	the	network,	called	a	realm).	In	this
way,	when	a	new	node	is	brought	online,	only	the	KDC	and	the	new	node	need	to	be	configured	with	the	node's
key;	keys	can	be	distributed	physically	or	by	some	other	secure	means.	

	

FIGURE	3:	Kerberos	architecture.

The	Kerberos	Server/KDC	has	two	main	functions	(Figure	3),	known	as	the	Authentication	Server	(AS)	and	Ticket-
Granting	Server	(TGS).	The	steps	in	establishing	an	authenticated	session	between	an	application	client	and	the
application	server	are:

1.	 The	Kerberos	client	software	establishes	a	connection	with	the	Kerberos	server's	AS	function.	The	AS	first
authenticates	that	the	client	is	who	it	purports	to	be.	The	AS	then	provides	the	client	with	a	secret	key	for	this
login	session	(the	TGS	session	key)	and	a	ticket-granting	ticket	(TGT),	which	gives	the	client	permission	to
talk	to	the	TGS.	The	ticket	has	a	finite	lifetime	so	that	the	authentication	process	is	repeated	periodically.

2.	 The	client	now	communicates	with	the	TGS	to	obtain	the	Application	Server's	key	so	that	it	(the	client)	can
establish	a	connection	to	the	service	it	wants.	The	client	supplies	the	TGS	with	the	TGS	session	key	and	TGT;
the	TGS	responds	with	an	application	session	key	(ASK)	and	an	encrypted	form	of	the	Application	Server's
secret	key;	this	secret	key	is	never	sent	on	the	network	in	any	other	form.

3.	 The	client	has	now	authenticated	itself	and	can	prove	its	identity	to	the	Application	Server	by	supplying	the
Kerberos	ticket,	application	session	key,	and	encrypted	Application	Server	secret	key.	The	Application	Server
responds	with	similarly	encrypted	information	to	authenticate	itself	to	the	client.	At	this	point,	the	client	can
initiate	the	intended	service	requests	(e.g.,	Telnet,	FTP,	HTTP,	or	e-commerce	transaction	session
establishment).

The	current	version	of	this	protocol	is	Kerberos	V5	(described	in	RFC	1510).	While	the	details	of	their	operation,
functional	capabilities,	and	message	formats	are	different,	the	conceptual	overview	above	pretty	much	holds	for
both.	One	primary	difference	is	that	Kerberos	V4	uses	only	DES	to	generate	keys	and	encrypt	messages,	while	V5
allows	other	schemes	to	be	employed	(although	DES	is	still	the	most	widely	algorithm	used).

4.3.	Public	Key	Certificates	and	Certificate	Authorities

Certificates	and	Certificate	Authorities	(CA)	are	necessary	for	widespread	use	of	cryptography	for	e-commerce
applications.	While	a	combination	of	secret	and	public	key	cryptography	can	solve	the	business	issues	discussed
above,	crypto	cannot	alone	address	the	trust	issues	that	must	exist	between	a	customer	and	vendor	in	the	very
fluid,	very	dynamic	e-commerce	relationship.	How,	for	example,	does	one	site	obtain	another	party's	public	key?
How	does	a	recipient	determine	if	a	public	key	really	belongs	to	the	sender?	How	does	the	recipient	know	that	the
sender	is	using	their	public	key	for	a	legitimate	purpose	for	which	they	are	authorized?	When	does	a	public	key
expire?	How	can	a	key	be	revoked	in	case	of	compromise	or	loss?

The	basic	concept	of	a	certificate	is	one	that	is	familiar	to	all	of	us.	A	driver's	license,	credit	card,	or	SCUBA
certification,	for	example,	identify	us	to	others,	indicate	something	that	we	are	authorized	to	do,	have	an
expiration	date,	and	identify	the	authority	that	granted	the	certificate.

As	complicated	as	this	may	sound,	it	really	isn't!	Consider	driver's	licenses.	I	have	one	issued	by	the	State	of
Florida.	The	license	establishes	my	identity,	indicates	the	type	of	vehicles	that	I	can	operate	and	the	fact	that	I
must	wear	corrective	lenses	while	doing	so,	identifies	the	issuing	authority,	and	notes	that	I	am	an	organ	donor.
When	I	drive	in	other	states,	the	other	jurisdictions	throughout	the	U.S.	recognize	the	authority	of	Florida	to	issue
this	"certificate"	and	they	trust	the	information	it	contains.	When	I	leave	the	U.S.,	everything	changes.	When	I	am
in	Aruba,	Australia,	Canada,	Israel,	and	many	other	countries,	they	will	accept	not	the	Florida	license,	per	se,	but
any	license	issued	in	the	U.S.	This	analogy	represents	the	certificate	trust	chain,	where	even	certificates	carry
certificates.

For	purposes	of	electronic	transactions,	certificates	are	digital	documents.	The	specific	functions	of	the	certificate
include:

Establish	identity:	Associate,	or	bind,	a	public	key	to	an	individual,	organization,	corporate	position,	or	other
entity.
Assign	authority:	Establish	what	actions	the	holder	may	or	may	not	take	based	upon	this	certificate.
Secure	confidential	information	(e.g.,	encrypting	the	session's	symmetric	key	for	data	confidentiality).

Typically,	a	certificate	contains	a	public	key,	a	name,	an	expiration	date,	the	name	of	the	authority	that	issued	the
certificate	(and,	therefore,	is	vouching	for	the	identity	of	the	user),	a	serial	number,	any	pertinent	policies
describing	how	the	certificate	was	issued	and/or	how	the	certificate	may	be	used,	the	digital	signature	of	the
certificate	issuer,	and	perhaps	other	information.	

	

FIGURE	4:	VeriSign	Class	3	certificate.

A	sample	abbreviated	certificate	is	shown	in	Figure	4.	This	is	a	typical	certificate	found	in	a	browser,	in	this	case,
Mozilla	Firefox	(Mac	OS	X).	While	this	is	a	certificate	issued	by	VeriSign,	many	root-level	certificates	can	be	found
shipped	with	browsers.	When	the	browser	makes	a	connection	to	a	secure	Web	site,	the	Web	server	sends	its
public	key	certificate	to	the	browser.	The	browser	then	checks	the	certificate's	signature	against	the	public	key
that	it	has	stored;	if	there	is	a	match,	the	certificate	is	taken	as	valid	and	the	Web	site	verified	by	this	certificate	is
considered	to	be	"trusted."

TABLE	2.	Contents	of	an	X.509	V3
Certificate.

version	number
certificate	serial	number
signature	algorithm	identifier
issuer's	name	and	unique	identifier
validity	(or	operational)	period
subject's	name	and	unique	identifier
subject	public	key	information
standard	extensions

certificate	appropriate	use	definition
key	usage	limitation	definition
certificate	policy	information

other	extensions
Application-specific
CA-specific

The	most	widely	accepted	certificate	format	is	the	one	defined	in	International	Telecommunication	Union
Telecommunication	Standardization	Sector	(ITU-T)	Recommendation	X.509.	Rec.	X.509	is	a	specification	used
around	the	world	and	any	applications	complying	with	X.509	can	share	certificates.	Most	certificates	today	comply
with	X.509	Version	3	and	contain	the	information	listed	in	Table	2.

Certificate	authorities	are	the	repositories	for	public-keys	and	can	be	any	agency	that	issues	certificates.	A
company,	for	example,	may	issue	certificates	to	its	employees,	a	college/university	to	its	students,	a	store	to	its
customers,	an	Internet	service	provider	to	its	users,	or	a	government	to	its	constituents.

When	a	sender	needs	an	intended	receiver's	public	key,	the	sender	must	get	that	key	from	the	receiver's	CA.	That
scheme	is	straight-forward	if	the	sender	and	receiver	have	certificates	issued	by	the	same	CA.	If	not,	how	does	the
sender	know	to	trust	the	foreign	CA?	One	industry	wag	has	noted,	about	trust:	"You	are	either	born	with	it	or	have
it	granted	upon	you."	Thus,	some	CAs	will	be	trusted	because	they	are	known	to	be	reputable,	such	as	the	CAs
operated	by	AT&T;	Services,	Comodo,	DigiNet	(formerly	GTE	Cybertrust),	EnTrust,	Symantec	(formerly	VeriSign),
and	Thawte.	CAs,	in	turn,	form	trust	relationships	with	other	CAs.	Thus,	if	a	user	queries	a	foreign	CA	for
information,	the	user	may	ask	to	see	a	list	of	CAs	that	establish	a	"chain	of	trust"	back	to	the	user.

One	major	feature	to	look	for	in	a	CA	is	their	identification	policies	and	procedures.	When	a	user	generates	a	key
pair	and	forwards	the	public	key	to	a	CA,	the	CA	has	to	check	the	sender's	identification	and	takes	any	steps
necessary	to	assure	itself	that	the	request	is	really	coming	from	the	advertised	sender.	Different	CAs	have	different
identification	policies	and	will,	therefore,	be	trusted	differently	by	other	CAs.	Verification	of	identity	is	just	one	of
many	issues	that	are	part	of	a	CA's	Certification	Practice	Statement	(CPS)	and	policies;	other	issues	include	how
the	CA	protects	the	public	keys	in	its	care,	how	lost	or	compromised	keys	are	revoked,	and	how	the	CA	protects	its
own	private	keys.

4.4.	Summary

The	paragraphs	above	describe	three	very	different	trust	models.	It	is	hard	to	say	that	any	one	is	better	than	the
others;	it	depend	upon	your	application.	One	of	the	biggest	and	fastest	growing	applications	of	cryptography	today,
though,	is	electronic	commerce	(e-commerce),	a	term	that	itself	begs	for	a	formal	definition.

PGP's	web	of	trust	is	easy	to	maintain	and	very	much	based	on	the	reality	of	users	as	people.	The	model,	however,
is	limited;	just	how	many	public	keys	can	a	single	user	reliably	store	and	maintain?	And	what	if	you	are	using	the
"wrong"	computer	when	you	want	to	send	a	message	and	can't	access	your	keyring?	How	easy	it	is	to	revoke	a	key
if	it	is	compromised?	PGP	may	also	not	scale	well	to	an	e-commerce	scenario	of	secure	communication	between
total	strangers	on	short-notice.

Kerberos	overcomes	many	of	the	problems	of	PGP's	web	of	trust,	in	that	it	is	scalable	and	its	scope	can	be	very
large.	However,	it	also	requires	that	the	Kerberos	server	have	a	priori	knowledge	of	all	client	systems	prior	to	any
transactions,	which	makes	it	unfeasible	for	"hit-and-run"	client/server	relationships	as	seen	in	e-commerce.

Certificates	and	the	collection	of	CAs	will	form	a	Public	Key	Infrastructure	(PKI).	In	the	early	days	of	the	Internet,
every	host	had	to	maintain	a	list	of	every	other	host;	the	Domain	Name	System	(DNS)	introduced	the	idea	of	a
distributed	database	for	this	purpose	and	the	DNS	is	one	of	the	key	reasons	that	the	Internet	has	grown	as	it	has.
A	PKI	will	fill	a	similar	void	in	the	e-commerce	and	PKC	realm.

While	certificates	and	the	benefits	of	a	PKI	are	most	often	associated	with	electronic	commerce,	the	applications
for	PKI	are	much	broader	and	include	secure	electronic	mail,	payments	and	electronic	checks,	Electronic	Data
Interchange	(EDI),	secure	transfer	of	Domain	Name	System	(DNS)	and	routing	information,	electronic	forms,	and
digitally	signed	documents.	A	single	"global	PKI"	is	still	many	years	away,	that	is	the	ultimate	goal	of	today's	work
as	international	electronic	commerce	changes	the	way	in	which	we	do	business	in	a	similar	way	in	which	the
Internet	has	changed	the	way	in	which	we	communicate.

5.	CRYPTOGRAPHIC	ALGORITHMS	IN	ACTION

The	paragraphs	above	have	provided	an	overview	of	the	different	types	of	cryptographic	algorithms,	as	well	as
some	examples	of	some	available	protocols	and	schemes.	Table	3	provides	a	list	of	some	other	noteworthy	schemes
employed	—	or	proposed	—	for	a	variety	of	functions,	most	notably	electronic	commerce	and	secure
communication.	The	paragraphs	below	will	show	several	real	cryptographic	applications	that	many	of	us	employ
(knowingly	or	not)	everyday	for	password	protection	and	private	communication.	Some	of	the	schemes	described
below	never	were	widely	deployed	but	are	still	historically	interesting,	thus	remain	included	here.

TABLE	3.	Other	Crypto	Algorithms	and	Systems	of	Note.

Capstone A	now-defunct	U.S.	National	Institute	of	Standards	and
Technology	(NIST)	and	National	Security	Agency	(NSA)	project
under	the	Bush	Sr.	and	Clinton	administrations	for	publicly
available	strong	cryptography	with	keys	escrowed	by	the
government	(NIST	and	the	Treasury	Dept.).	Capstone	included	in
one	or	more	tamper-proof	computer	chips	for	implementation
(Clipper),	a	secret	key	encryption	algorithm	(Skipjack),	digital
signature	algorithm	(DSA),	key	exchange	algorithm	(KEA),	and
hash	algorithm	(SHA).

Challenge-Handshake
Authentication
Protocol	(CHAP)

An	authentication	scheme	that	allows	one	party	to	prove	who
they	are	to	a	second	party	by	demonstrating	knowledge	of	a
shared	secret	without	actually	divulging	that	shared	secret	to	a
third	party	who	might	be	listening.	Described	in	RFC	1994.

Clipper The	computer	chip	that	would	implement	the	Skipjack

encryption	scheme.	The	Clipper	chip	was	to	have	had	a
deliberate	backdoor	so	that	material	encrypted	with	this	device
would	not	be	beyond	the	government's	reach.	Described	in	1993,
Clipper	was	dead	by	1996.	See	also	EPIC's	The	Clipper	Chip	Web
page.

Derived	Unique	Key
Per	Transaction
(DUKPT)

A	key	management	scheme	used	for	debit	and	credit	card
verification	with	point-of-sale	(POS)	transaction	systems,
automated	teller	machines	(ATMs),	and	other	financial
applications.	In	DUKPT,	a	unique	key	is	derived	for	each
transaction	based	upon	a	fixed,	shared	key	in	such	a	way	that
knowledge	of	one	derived	key	does	not	easily	yield	knowledge	of
other	keys	(including	the	fixed	key).	Therefore,	if	one	of	the
derived	keys	is	compromised,	neither	past	nor	subsequent
transactions	are	endangered.	DUKPT	is	specified	in	American
National	Standard	(ANS)	ANSI	X9.24-1:2009	Retail	Financial
Services	Symmetric	Key	Management	Part	1:	Using	Symmetric
Techniques)	and	can	be	purchased	at	the	ANSI	X9.24	Web	page.

Escrowed	Encryption
Standard	(EES)

Largely	unused,	a	controversial	crypto	scheme	employing	the
SKIPJACK	secret	key	crypto	algorithm	and	a	Law	Enforcement
Access	Field	(LEAF)	creation	method.	LEAF	was	one	part	of	the
key	escrow	system	and	allowed	for	decryption	of	ciphertext
messages	that	had	been	intercepted	by	law	enforcement
agencies.	Described	more	in	FIPS	185	(archived;	no	longer	in
force).

Federal	Information
Processing	Standards
(FIPS)

These	computer	security-	and	crypto-related	FIPS	are	produced
by	the	U.S.	National	Institute	of	Standards	and	Technology
(NIST)	as	standards	for	the	U.S.	Government.

Fortezza A	PCMCIA	card	developed	by	NSA	that	implements	the	Capstone
algorithms,	intended	for	use	with	the	Defense	Messaging	Service
(DMS).	Originally	called	Tessera.

GOST GOST	is	a	family	of	algorithms	that	is	defined	in	the	Russian
cryptographic	standards.	Although	most	of	the	specifications	are
written	in	Russian,	a	series	of	RFCs	describe	some	of	the	aspects
so	that	the	algorithms	can	be	used	effectively	in	Internet
applications:

RFC	4357:	Additional	Cryptographic	Algorithms	for	Use
with	GOST	28147-89,	GOST	R	34.10-94,	GOST	R	34.10-
2001,	and	GOST	R	34.11-94	Algorithms
RFC	5830:	GOST	28147-89:	Encryption,	Decryption,	and
Message	Authentication	Code	(MAC)	Algorithms
RFC	6986:	GOST	R	34.11-2012:	Hash	Function	Algorithm
RFC	7091:	GOST	R	34.10-2012:	Digital	Signature	Algorithm
(Updates	RFC	5832:	GOST	R	34.10-2001)
RFC	7801:	GOST	R	34.12-2015:	Block	Cipher	"Kuznyechik"
RFC	7836:	Guidelines	on	the	Cryptographic	Algorithms	to
Accompany	the	Usage	of	Standards	GOST	R	34.10-2012	and
GOST	R	34.11-2012

Identity-Based
Encryption	(IBE)

Identity-Based	Encryption	was	first	proposed	by	Adi	Shamir	in
1984	and	is	a	key	authentication	system	where	the	public	key
can	be	derived	from	some	unique	information	based	upon	the
user's	identity.	In	2001,	Dan	Boneh	(Stanford)	and	Matt	Franklin
(U.C.,	Davis)	developed	a	practical	implementation	of	IBE	based
on	elliptic	curves	and	a	mathematical	construct	called	the	Weil
Pairing.	In	that	year,	Clifford	Cocks	(GCHQ)	also	described
another	IBE	solution	based	on	quadratic	residues	in	composite
groups.

RFC	5091:	Identity-Based	Cryptography	Standard	(IBCS)	#1:
Describes	an	implementation	of	IBE	using	Boneh-Franklin	(BF)
and	Boneh-Boyen	(BB1)	Identity-based	Encryption.

IP	Security	Protocol
(IPsec)

The	IPsec	protocol	suite	is	used	to	provide	privacy	and
authentication	services	at	the	IP	layer.	An	overview	of	the
protocol	suite	and	of	the	documents	comprising	IPsec	can	be
found	in	RFC	2411.	Other	documents	include:

RFC	4301:	IP	security	architecture.
RFC	4302:	IP	Authentication	Header	(AH),	one	of	the	two
primary	IPsec	functions;	AH	provides	connectionless
integrity	and	data	origin	authentication	for	IP	datagrams
and	protects	against	replay	attacks.
RFC	4303:	IP	Encapsulating	Security	Payload	(ESP),	the

other	primary	IPsec	function;	ESP	provides	a	variety	of
security	services	within	IPsec.
RFC	4304:	Extended	Sequence	Number	(ESN)	Addendum,
allows	for	negotiation	of	a	32-	or	64-	bit	sequence	number,
used	to	detect	replay	attacks.
RFC	4305:	Cryptographic	algorithm	implementation
requirements	for	ESP	and	AH.
RFC	5996:	The	Internet	Key	Exchange	(IKE)	protocol,
version	2,	providing	for	mutual	authentication	and
establishing	and	maintaining	security	associations.

IKE	v1	was	described	in	three	separate	documents,
RFC	2407	(application	of	ISAKMP	to	IPsec),	RFC	2408
(ISAKMP,	a	framework	for	key	management	and
security	associations),	and	RFC	2409	(IKE,	using	part
of	Oakley	and	part	of	SKEME	in	conjunction	with
ISAKMP	to	obtain	authenticated	keying	material	for
use	with	ISAKMP,	and	for	other	security	associations
such	as	AH	and	ESP).	IKE	v1	is	obsoleted	with	the
introdcution	of	IKEv2.

RFC	4307:	Cryptographic	algoritms	used	with	IKEv2.
RFC	4308:	Crypto	suites	for	IPsec,	IKE,	and	IKEv2.
RFC	4309:	The	use	of	AES	in	CBC-MAC	mode	with	IPsec
ESP.
RFC	4312:	The	use	of	the	Camellia	cipher	algorithm	in
IPsec.
RFC	4359:	The	Use	of	RSA/SHA-1	Signatures	within
Encapsulating	Security	Payload	(ESP)	and	Authentication
Header	(AH).
RFC	4434:	Describes	AES-XCBC-PRF-128,	a	pseudo-random
function	derived	from	the	AES	for	use	with	IKE.
RFC	2403:	Describes	use	of	the	HMAC	with	MD5	algorithm
for	data	origin	authentication	and	integrity	protection	in
both	AH	and	ESP.
RFC	2405:	Describes	use	of	DES-CBC	(DES	in	Cipher	Block
Chaining	Mode)	for	confidentiality	in	ESP.
RFC	2410:	Defines	use	of	the	NULL	encryption	algorithm
(i.e.,	provides	authentication	and	integrity	without
confidentiality)	in	ESP.
RFC	2412:	Describes	OAKLEY,	a	key	determination	and
distribution	protocol.
RFC	2451:	Describes	use	of	Cipher	Block	Chaining	(CBC)
mode	cipher	algorithms	with	ESP.
RFCs	2522	and	2523:	Description	of	Photuris,	a	session-key
management	protocol	for	IPsec.

In	addition,	RFC	6379	describes	Suite	B	Cryptographic	Suites
for	IPsec	and	RFC	6380	describes	the	Suite	B	profile	for	IPsec.

IPsec	was	first	proposed	for	use	with	IP	version	6	(IPv6),	but	can
also	be	employed	with	the	current	IP	version,	IPv4.

(See	more	detail	about	IPsec	below	in	Section	5.6.)

Internet	Security
Association	and	Key
Management	Protocol
(ISAKMP/OAKLEY)

ISAKMP/OAKLEY	provide	an	infrastructure	for	Internet	secure
communications.	ISAKMP,	designed	by	the	National	Security
Agency	(NSA)	and	described	in	RFC	2408,	is	a	framework	for
key	management	and	security	associations,	independent	of	the
key	generation	and	cryptographic	algorithms	actually	employed.
The	OAKLEY	Key	Determination	Protocol,	described	in	RFC
2412,	is	a	key	determination	and	distribution	protocol	using	a
variation	of	Diffie-Hellman.

Kerberos A	secret-key	encryption	and	authentication	system,	designed	to
authenticate	requests	for	network	resources	within	a	user
domain	rather	than	to	authenticate	messages.	Kerberos	also
uses	a	trusted	third-party	approach;	a	client	communications
with	the	Kerberos	server	to	obtain	"credentials"	so	that	it	may
access	services	at	the	application	server.	Kerberos	V4	used	DES
to	generate	keys	and	encrypt	messages;	Kerberos	V5	uses	DES
and	other	schemes	for	key	generation.	

Microsoft	added	support	for	Kerberos	V5	—	with	some
proprietary	extensions	—	in	Windows	2000	Active	Directory.
There	are	many	Kerberos	articles	posted	at	Microsoft's
Knowledge	Base,	notably	"Kerberos	Explained."

Keyed-Hash	Message
Authentication	Code

A	message	authentication	scheme	based	upon	secret	key
cryptography	and	the	secret	key	shared	between	two	parties

(HMAC) rather	than	public	key	methods.	Described	in	FIPS	198	and	RFC
2104.	(See	Section	5.6	below	for	details	on	HMAC	operation.)

Message	Digest
Cipher	(MDC)

Invented	by	Peter	Gutman,	MDC	turns	a	one-way	hash	function
into	a	block	cipher.

MIME	Object	Security
Services	(MOSS)

Designed	as	a	successor	to	PEM	to	provide	PEM-based	security
services	to	MIME	messages.	Described	in	RFC	1848.	Never
widely	implemented	and	now	defunct.

NSA	Suite	B
Cryptography

An	NSA	standard	for	securing	information	at	the	SECRET	level.
Defines	use	of:

Advanced	Encryption	Standard	(AES)	with	key	sizes	of	128
and	256	bits,	per	FIPS	PUB	197	for	encryption
The	Ephemeral	Unified	Model	and	the	One-Pass	Diffie
Hellman	(referred	to	as	ECDH)	using	the	curves	with	256
and	384-bit	prime	moduli,	per	NIST	Special	Publication
800-56A	for	key	exchange
Elliptic	Curve	Digital	Signature	Algorithm	(ECDSA)	using
the	curves	with	256	and	384-bit	prime	moduli,	per	FIPS
PUB	186-3	for	digital	signatures
Secure	Hash	Algorithm	(SHA)	using	256	and	384	bits,	per
FIPS	PUB	180-3	for	hashing

RFC	6239	describes	Suite	B	Cryptographic	Suites	for	Secure
Shell	(SSH)	and	RFC	6379	describes	Suite	B	Cryptographic
Suites	for	Secure	IP	(IPsec).

Pretty	Good	Privacy
(PGP)

A	family	of	cryptographic	routines	for	e-mail,	file,	and	disk
encryption	developed	by	Philip	Zimmermann.	PGP	2.6.x	uses
RSA	for	key	management	and	digital	signatures,	IDEA	for
message	encryption,	and	MD5	for	computing	the	message's	hash
value;	more	information	can	also	be	found	in	RFC	1991.	PGP	5.x
(formerly	known	as	"PGP	3")	uses	Diffie-Hellman/DSS	for	key
management	and	digital	signatures;	IDEA,	CAST,	or	3DES	for
message	encryption;	and	MD5	or	SHA	for	computing	the
message's	hash	value.	OpenPGP,	described	in	RFC	2440,	is	an
open	definition	of	security	software	based	on	PGP	5.x.

(See	more	detail	about	PGP	below	in	Section	5.5.)

Privacy	Enhanced	Mail
(PEM)

An	IETF	standard	for	secure	electronic	mail	over	the	Internet,
including	provisions	for	encryption	(DES),	authentication,	and
key	management	(DES,	RSA).	Developed	by	the	IETF	but	never
widely	used.	Described	in	the	following	RFCs:

RFC	1421:	Part	I,	Message	Encryption	and	Authentication
Procedures
RFC	1422:	Part	II,	Certificate-Based	Key	Management
RFC	1423:	Part	III,	Algorithms,	Modes,	and	Identifiers
RFC	1424:	Part	IV,	Key	Certification	and	Related	Services

Private
Communication
Technology	(PCT)

Developed	by	Microsoft	for	secure	communication	on	the
Internet.	PCT	supported	Diffie-Hellman,	Fortezza,	and	RSA	for
key	establishment;	DES,	RC2,	RC4,	and	triple-DES	for
encryption;	and	DSA	and	RSA	message	signatures.	Never	widely
used;	superceded	by	SSL	and	TLS.

Secure	Electronic
Transaction	(SET)

A	communications	protocol	for	securing	credit	card	transactions,
developed	by	MasterCard	and	VISA,	in	cooperation	with	IBM,
Microsoft,	RSA,	and	other	companies.	Merged	two	other
protocols:	Secure	Electronic	Payment	Protocol	(SEPP),	an	open
specification	for	secure	bank	card	transactions	over	the	Internet
developed	by	CyberCash,	GTE,	IBM,	MasterCard,	and	Netscape;
and	Secure	Transaction	Technology	(STT),	a	secure	payment
protocol	developed	by	Microsoft	and	Visa	International.	Supports
DES	and	RC4	for	encryption,	and	RSA	for	signatures,	key
exchange,	and	public-key	encryption	of	bank	card	numbers.	SET
V1.0	is	described	in	Book	1,	Book	2,	and	Book	3.	SET	has	been
superceded	by	SSL	and	TLS.

Secure	Hypertext
Transfer	Protocol	(S-
HTTP)

An	extension	to	HTTP	to	provide	secure	exchange	of	documents
over	the	World	Wide	Web.	Supported	algorithms	include	RSA
and	Kerberos	for	key	exchange,	DES,	IDEA,	RC2,	and	Triple-DES
for	encryption.	Described	in	RFC	2660.	S-HTTP	was	never	as
widely	used	as	HTTP	over	SSL	(https).

Secure	Multipurpose An	IETF	secure	e-mail	scheme	intended	to	supercede	PEM.

Internet	Mail
Extensions	(S/MIME)

S/MIME,	described	in	RFCs	2311	and	2312,	adds	digital
signature	and	encryption	capability	to	Internet	MIME	messages.

Secure	Sockets	Layer
(SSL)

Developed	by	Netscape	Communications	to	provide	application-
independent	security	and	privacy	over	the	Internet.	SSL	is
designed	so	that	protocols	such	as	HTTP,	FTP	(File	Transfer
Protocol),	and	Telnet	can	operate	over	it	transparently.	SSL
allows	both	server	authentication	(mandatory)	and	client
authentication	(optional).	RSA	is	used	during	negotiation	to
exchange	keys	and	identify	the	actual	cryptographic	algorithm
(DES,	IDEA,	RC2,	RC4,	or	3DES)	to	use	for	the	session.	SSL	also
uses	MD5	for	message	digests	and	X.509	public-key	certificates.
SSL	was	found	to	be	breakable	soon	after	the	IETF	announced
formation	of	group	to	work	on	TLS	and	RFC	6176	specifically
prohibits	the	use	of	SSL	v2.0	by	TLS	clients.	SSL	version	3.0	is
described	in	RFC	6101.	All	versions	of	SSL	are	now	deprecated
in	favor	of	TLS;	TLS	v1.0	is	sometimes	referred	to	as	"SSL	v3.1."	

(More	detail	about	SSL	can	be	found	below	in	Section	5.7.)

Server	Gated
Cryptography	(SGC)

Microsoft	extension	to	SSL	that	provides	strong	encryption	for
online	banking	and	other	financial	applications	using	RC2	(128-
bit	key),	RC4	(128-bit	key),	DES	(56-bit	key),	or	3DES
(equivalent	of	168-bit	key).	Use	of	SGC	requires	a	Windows	NT
Server	running	Internet	Information	Server	(IIS)	4.0	with	a	valid
SGC	certificate.	SGC	is	available	in	32-bit	Windows	versions	of
Internet	Explorer	(IE)	4.0,	and	support	for	Mac,	Unix,	and	16-bit
Windows	versions	of	IE	is	expected	in	the	future.

Simple	Authentication
and	Security	Layer
(SASL)

A	framework	for	providing	authentication	and	data	security
services	in	connection-oriented	protocols	(a	la	TCP),	described	in
RFC	4422.	It	provides	a	structured	interface	and	allows	new
protocols	to	reuse	existing	authentication	mechanisms	and
allows	old	protocols	to	make	use	of	new	mechanisms.	

It	has	been	common	practice	on	the	Internet	to	permit
anonymous	access	to	various	services,	employing	a	plain-text
password	using	a	user	name	of	"anonymous"	and	a	password	of
an	email	address	or	some	other	identifying	information.	New
IETF	protocols	disallow	plain-text	logins.	The	Anonymous	SASL
Mechanism	(RFC	4505)	provides	a	method	for	anonymous	logins
within	the	SASL	framework.

Simple	Key-
Management	for
Internet	Protocol
(SKIP)

Key	management	scheme	for	secure	IP	communication,
specifically	for	IPsec,	and	designed	by	Aziz	and	Diffie.	SKIP
essentially	defines	a	public	key	infrastructure	for	the	Internet
and	even	uses	X.509	certificates.	Most	public	key	cryptosystems
assign	keys	on	a	per-session	basis,	which	is	inconvenient	for	the
Internet	since	IP	is	connectionless.	Instead,	SKIP	provides	a
basis	for	secure	communication	between	any	pair	of	Internet
hosts.	SKIP	can	employ	DES,	3DES,	IDEA,	RC2,	RC5,	MD5,	and
SHA-1.	As	it	happened,	SKIP	was	not	adopted	for	IPsec;	IKE	was
selected	instead.

Transport	Layer
Security	(TLS)

TLS	v1.0	is	an	IETF	specification	(RFC	2246)	intended	to	replace
SSL	v3.0.	TLS	v1.0	employs	Triple-DES	(secret	key
cryptography),	SHA	(hash),	Diffie-Hellman	(key	exchange),	and
DSS	(digital	signatures).	TLS	v1.0	was	vulnerable	to	attack	and
updated	by	v1.1	(RFC	4346)	and	v1.2	(RFC	5246);	v1.3	is	the
most	current	working	draft	specification.	

TLS	is	designed	to	operate	over	TCP.	The	IETF	developed	the
Datagram	Transport	Layer	Security	(DTLS)	protocol	to	operate
over	UDP.	DTLS	v1.2	is	described	in	RFC	6347.	

(See	more	detail	about	TLS	below	in	Section	5.7.)

TrueCrypt Open	source,	multi-platform	cryptography	software	that	can	be
used	to	encrypt	a	file,	partition,	or	entire	disk.	One	of
TrueCrypt's	more	interesting	features	is	that	of	plausible
deniability	with	hidden	volumes	or	hidden	operating	systems.
The	original	Web	site,	truecrypt.org,	suddenly	went	dark	in	May
2014;	alternative	sites	have	popped	up,	including	CipherShed,
TCnext,	and	VeraCrypt.	

(See	more	detail	about	TrueCrypt	below	in	Section	5.11.)

X.509 ITU-T	recommendation	for	the	format	of	certificates	for	the

public	key	infrastructure.	Certificates	map	(bind)	a	user	identity
to	a	public	key.	The	IETF	application	of	X.509	certificates	is
documented	in	RFC	5280.	An	Internet	X.509	Public	Key
Infrastructure	is	further	defined	in	RFC	4210	(Certificate
Management	Protocols)	and	RFC	3647	(Certificate	Policy	and
Certification	Practices	Framework).

5.1.	Password	Protection

Nearly	all	modern	multiuser	computer	and	network	operating	systems	employ	passwords	at	the	very	least	to
protect	and	authenticate	users	accessing	computer	and/or	network	resources.	But	passwords	are	not	typically	kept
on	a	host	or	server	in	plaintext,	but	are	generally	encrypted	using	some	sort	of	hash	scheme.

A)	/etc/passwd	file

	root:Jbw6BwE4XoUHo:0:0:root:/root:/bin/bash
	carol:FM5ikbQt1K052:502:100:Carol	Monaghan:/home/carol:/bin/bash
	alex:LqAi7Mdyg/HcQ:503:100:Alex	Insley:/home/alex:/bin/bash
	gary:FkJXupRyFqY4s:501:100:Gary	Kessler:/home/gary:/bin/bash
	todd:edGqQUAaGv7g6:506:101:Todd	Pritsky:/home/todd:/bin/bash
	josh:FiH0ONcjPut1g:505:101:Joshua	Kessler:/home/webroot:/bin/bash

B.1)	/etc/passwd	file	(with	shadow	passwords)

	root:x:0:0:root:/root:/bin/bash
	carol:x:502:100:Carol	Monaghan:/home/carol:/bin/bash
	alex:x:503:100:Alex	Insley:/home/alex:/bin/bash
	gary:x:501:100:Gary	Kessler:/home/gary:/bin/bash
	todd:x:506:101:Todd	Pritsky:/home/todd:/bin/bash
	josh:x:505:101:Joshua	Kessler:/home/webroot:/bin/bash

B.2)	/etc/shadow	file

	root:AGFw1P4u/uhLK$l2.HP35rlu65WlfCzq:11449:0:99999:7:::
	carol:kjHaN%35a8xMM8a/0kMl1?fwtLAM.K&kw.;:11449:0:99999:7:::
	alex:1$1KKmfTy0a7#3.LL9a8H71lkwn/.hH22a:11449:0:99999:7:::
	gary:9ajlknknKJHjhnu7298ypnAIJKL$Jh.hnk:11449:0:99999:7:::
	todd:798POJ90uab6.k$klPqMt%alMlprWqu6$.:11492:0:99999:7:::
	josh:Awmqpsui*787pjnsnJJK%aappaMpQo07.8:11492:0:99999:7:::

FIGURE	5:	Sample	entries	in	Unix/Linux	password	files.

Unix/Linux,	for	example,	uses	a	well-known	hash	via	its	crypt()	function.	Passwords	are	stored	in	the	/etc/passwd
file	(Figure	5A);	each	record	in	the	file	contains	the	username,	hashed	password,	user's	individual	and	group
numbers,	user's	name,	home	directory,	and	shell	program;	these	fields	are	separated	by	colons	(:).	Note	that	each
password	is	stored	as	a	13-byte	string.	The	first	two	characters	are	actually	a	salt,	randomness	added	to	each
password	so	that	if	two	users	have	the	same	password,	they	will	still	be	encrypted	differently;	the	salt,	in	fact,
provides	a	means	so	that	a	single	password	might	have	4096	different	encryptions.	The	remaining	11	bytes	are	the
password	hash,	calculated	using	DES.

As	it	happens,	the	/etc/passwd	file	is	world-readable	on	Unix	systems.	This	fact,	coupled	with	the	weak	encryption
of	the	passwords,	resulted	in	the	development	of	the	shadow	password	system	where	passwords	are	kept	in	a
separate,	non-world-readable	file	used	in	conjunction	with	the	normal	password	file.	When	shadow	passwords	are
used,	the	password	entry	in	/etc/passwd	is	replaced	with	a	"*"	or	"x"	(Figure	5B.1)	and	the	MD5	hash	of	the
passwords	are	stored	in	/etc/shadow	along	with	some	other	account	information	(Figure	5B.2).

Windows	NT	uses	a	similar	scheme	to	store	passwords	in	the	Security	Access	Manager	(SAM)	file.	In	the	NT	case,
all	passwords	are	hashed	using	the	MD4	algorithm,	resulting	in	a	128-bit	(16-byte)	hash	value	(they	are	then
obscured	using	an	undocumented	mathematical	transformation	that	was	a	secret	until	distributed	on	the	Internet).
The	password	password,	for	example,	might	be	stored	as	the	hash	value	(in	hexadecimal)
60771b22d73c34bd4a290a79c8b09f18.

Passwords	are	not	saved	in	plaintext	on	computer	systems	precisely	so	they	cannot	be	easily	compromised.	For
similar	reasons,	we	don't	want	passwords	sent	in	plaintext	across	a	network.	But	for	remote	logon	applications,
how	does	a	client	system	identify	itself	or	a	user	to	the	server?	One	mechanism,	of	course,	is	to	send	the	password
as	a	hash	value	and	that,	indeed,	may	be	done.	A	weakness	of	that	approach,	however,	is	that	an	intruder	can	grab
the	password	off	of	the	network	and	use	an	off-line	attack	(such	as	a	dictionary	attack	where	an	attacker	takes
every	known	word	and	encrypts	it	with	the	network's	encryption	algorithm,	hoping	eventually	to	find	a	match	with
a	purloined	password	hash).	In	some	situations,	an	attacker	only	has	to	copy	the	hashed	password	value	and	use	it
later	on	to	gain	unauthorized	entry	without	ever	learning	the	actual	password.

An	even	stronger	authentication	method	uses	the	password	to	modify	a	shared	secret	between	the	client	and
server,	but	never	allows	the	password	in	any	form	to	go	across	the	network.	This	is	the	basis	for	the	Challenge
Handshake	Authentication	Protocol	(CHAP),	the	remote	logon	process	used	by	Windows	NT.

As	suggested	above,	Windows	NT	passwords	are	stored	in	a	security	file	on	a	server	as	a	16-byte	hash	value.	In
truth,	Windows	NT	stores	two	hashes;	a	weak	hash	based	upon	the	old	LAN	Manager	(LanMan)	scheme	and	the
newer	NT	hash.	When	a	user	logs	on	to	a	server	from	a	remote	workstation,	the	user	is	identified	by	the	username,

sent	across	the	network	in	plaintext	(no	worries	here;	it's	not	a	secret	anyway!).	The	server	then	generates	a	64-bit
random	number	and	sends	it	to	the	client	(also	in	plaintext).	This	number	is	the	challenge.

Using	the	LanMan	scheme,	the	client	system	then	encrypts	the	challenge	using	DES.	Recall	that	DES	employs	a
56-bit	key,	acts	on	a	64-bit	block	of	data,	and	produces	a	64-bit	output.	In	this	case,	the	64-bit	data	block	is	the
random	number.	The	client	actually	uses	three	different	DES	keys	to	encrypt	the	random	number,	producing	three
different	64-bit	outputs.	The	first	key	is	the	first	seven	bytes	(56	bits)	of	the	password's	hash	value,	the	second	key
is	the	next	seven	bytes	in	the	password's	hash,	and	the	third	key	is	the	remaining	two	bytes	of	the	password's	hash
concatenated	with	five	zero-filled	bytes.	(So,	for	the	example	above,	the	three	DES	keys	would	be
60771b22d73c34,	bd4a290a79c8b0,	and	9f180000000000.)	Each	key	is	applied	to	the	random	number	resulting	in
three	64-bit	outputs,	which	comprise	the	response.	Thus,	the	server's	8-byte	challenge	yields	a	24-byte	response
from	the	client	and	this	is	all	that	would	be	seen	on	the	network.	The	server,	for	its	part,	does	the	same	calculation
to	ensure	that	the	values	match.

There	is,	however,	a	significant	weakness	to	this	system.	Specifically,	the	response	is	generated	in	such	a	way	as	to
effectively	reduce	16-byte	hash	to	three	smaller	hashes,	of	length	seven,	seven,	and	two.	Thus,	a	password	cracker
has	to	break	at	most	a	7-byte	hash.	One	Windows	NT	vulnerability	test	program	that	I	have	used	in	the	past	will
report	passwords	that	are	"too	short,"	defined	as	"less	than	8	characters."	When	I	asked	how	the	program	knew
that	passwords	were	too	short,	the	software's	salespeople	suggested	to	me	that	the	program	broke	the	passwords
to	determine	their	length.	This	is	undoubtedly	not	true;	all	the	software	really	has	to	do	is	look	at	the	second	7-byte
block	and	some	known	value	indicates	that	it	is	empty,	which	would	indicate	a	password	of	seven	or	less
characters.

Consider	the	following	example,	showing	the	LanMan	hash	of	two	different	short	passwords	(take	a	close	look	at
the	last	8	bytes):

AA: 89D42A44E77140AAAAD3B435B51404EE
AAA: 1C3A2B6D939A1021AAD3B435B51404EE

Note	that	the	NT	hash	provides	no	such	clue:

AA: C5663434F963BE79C8FD99F535E7AAD8
AAA: 6B6E0FB2ED246885B98586C73B5BFB77

It	is	worth	noting	that	the	discussion	above	describes	the	Microsoft	version	of	CHAP,	or	MS-CHAP	(MS-CHAPv2	is
described	in	RFC	2759).	MS-CHAP	assumes	that	it	is	working	with	hashed	values	of	the	password	as	the	key	to
encrypting	the	challenge.	More	traditional	CHAP	(RFC	1994)	assumes	that	it	is	starting	with	passwords	in
plaintext.	The	relevance	of	this	observation	is	that	a	CHAP	client,	for	example,	cannot	be	authenticated	by	an	MS-
CHAP	server;	both	client	and	server	must	use	the	same	CHAP	version.

5.2.	Some	of	the	Finer	Details	of	Diffie-Hellman

Diffie	and	Hellman	introduced	the	concept	of	public-key	cryptography.	The	mathematical	"trick"	of	Diffie-Hellman
key	exchange	is	that	it	is	relatively	easy	to	compute	exponents	compared	to	computing	discrete	logarithms.	Diffie-
Hellman	allows	two	parties	—	the	ubiquitous	Alice	and	Bob	—	to	generate	a	secret	key;	they	need	to	exchange
some	information	over	an	unsecure	communications	channel	to	perform	the	calculation	but	an	eavesdropper
cannot	determine	the	shared	secret	key	based	upon	this	information.

Diffie-Hellman	works	like	this.	Alice	and	Bob	start	by	agreeing	on	a	large	prime	number,	N.	They	also	have	to
choose	some	number	G	so	that	G<N.

There	is	actually	another	constraint	on	G,	namely	that	it	must	be	primitive	with	respect	to	N.	Primitive	is	a
definition	that	is	a	little	beyond	the	scope	of	our	discussion	but	basically	G	is	primitive	to	N	if	the	set	of	N-1	values
of	Gi	mod	N	for	i	=	(1,N-1)	are	all	different.	As	an	example,	2	is	not	primitive	to	7	because	the	set	of	powers	of	2
from	1	to	6,	mod	7	(i.e.,	21	mod	7,	22	mod	7,	...,	26	mod	7)	=	{2,4,1,2,4,1}.	On	the	other	hand,	3	is	primitive	to	7
because	the	set	of	powers	of	3	from	1	to	6,	mod	7	=	{3,2,6,4,5,1}.

(The	definition	of	primitive	introduced	a	new	term	to	some	readers,	namely	mod.	The	phrase	x	mod	y	(and	read	as
written!)	means	"take	the	remainder	after	dividing	x	by	y."	Thus,	1	mod	7	=	1,	9	mod	6	=	3,	and	8	mod	8	=	0.	Read
more	about	the	modulo	function	in	the	appendix.)

Anyway,	either	Alice	or	Bob	selects	N	and	G;	they	then	tell	the	other	party	what	the	values	are.	Alice	and	Bob	then
work	independently:

Alice...

1.	 Choose	a	large	random	number,	XA	<	N.	This	is
Alice's	private	key.

2.	 Compute	YA	=	GXA	mod	N.	This	is	Alice's	public
key.

3.	 Exchange	public	key	with	Bob.

Bob...

1.	 Choose	a	large	random	number,	XB	<	N.	This	is
Bob's	private	key.

2.	 Compute	YB	=	GXB	mod	N.	This	is	Bob's	public
key.

3.	 Exchange	public	key	with	Alice.

4.	 Compute	KA	=	YBXA	mod	N 4.	 Compute	KB	=	YAXB	mod	N

Note	that	XA	and	XB	are	kept	secret	while	YA	and	YB	are	openly	shared;	these	are	the	private	and	public	keys,
respectively.	Based	on	their	own	private	key	and	the	public	key	learned	from	the	other	party,	Alice	and	Bob	have
computed	their	secret	keys,	KA	and	KB,	respectively,	which	are	equal	to	GXAXB	mod	N.

Perhaps	a	small	example	will	help	here.	Although	Alice	and	Bob	will	really	choose	large	values	for	N	and	G,	I	will
use	small	values	for	example	only;	let's	use	N=7	and	G=3.

Alice...

1.	 Choose	XA	=	2
2.	 Calculate	YA	=	32	mod	7	=	2
3.	 Exchange	public	keys	with	Bob
4.	 KA	=	62	mod	7	=	1

Bob...

1.	 Choose	XB	=	3
2.	 Calculate	YB	=	33	mod	7	=	6
3.	 Exchange	public	keys	with	Alice
4.	 KB	=	23	mod	7	=	1

In	this	example,	then,	Alice	and	Bob	will	both	find	the	secret	key	1	which	is,	indeed,	36	mod	7	(i.e.,	GXAXB	=	32x3).
If	an	eavesdropper	(Mallory)	was	listening	in	on	the	information	exchange	between	Alice	and	Bob,	he	would	learn
G,	N,	YA,	and	YB	which	is	a	lot	of	information	but	insufficient	to	compromise	the	key;	as	long	as	XA	and	XB	remain
unknown,	K	is	safe.	As	said	above,	calculating	Y	=	GX	is	a	lot	easier	than	finding	X	=	logG	Y.

A	short	digression	on	modulo	arithmetic.	In	the	paragraph	above,	we	noted	that	36	mod	7	=	1.	This
can	be	confirmed,	of	course,	by	noting	that:

36	=	729	=	104*7	+	1

There	is	a	nice	property	of	modulo	arithmetic,	however,	that	makes	this	determination	a	little	easier,
namely:	(a	mod	x)(b	mod	x)	=	(ab	mod	x).	Therefore,	one	possible	shortcut	is	to	note	that	36	=	(33)(33).
Therefore,	36	mod	7	=	(33	mod	7)(33	mod	7)	=	(27	mod	7)(27	mod	7)	=	6*6	mod	7	=	36	mod	7	=	1.

Diffie-Hellman	can	also	be	used	to	allow	key	sharing	amongst	multiple	users.	Note	again	that	the	Diffie-Hellman
algorithm	is	used	to	generate	secret	keys,	not	to	encrypt	and	decrypt	messages.

5.3.	Some	of	the	Finer	Details	of	RSA	Public-Key	Cryptography

Unlike	Diffie-Hellman,	RSA	can	be	used	for	key	exchange	as	well	as	digital	signatures	and	the	encryption	of	small
blocks	of	data.	Today,	RSA	is	primarily	used	to	encrypt	the	session	key	used	for	secret	key	encryption	(message
integrity)	or	the	message's	hash	value	(digital	signature).	RSA's	mathematical	hardness	comes	from	the	ease	in
calculating	large	numbers	and	the	difficulty	in	finding	the	prime	factors	of	those	large	numbers.	Although
employed	with	numbers	using	hundreds	of	digits,	the	math	behind	RSA	is	relatively	straight-forward.

To	create	an	RSA	public/private	key	pair,	here	are	the	basic	steps:

1.	 Choose	two	prime	numbers,	p	and	q.	From	these	numbers	you	can	calculate	the	modulus,	n	=	pq.
2.	 Select	a	third	number,	e,	that	is	relatively	prime	to	(i.e.,	it	does	not	divide	evenly	into)	the	product	(p-1)(q-1).

The	number	e	is	the	public	exponent.
3.	 Calculate	an	integer	d	from	the	quotient	(ed-1)/[(p-1)(q-1)].	The	number	d	is	the	private	exponent.

The	public	key	is	the	number	pair	(n,e).	Although	these	values	are	publicly	known,	it	is	computationally	infeasible
to	determine	d	from	n	and	e	if	p	and	q	are	large	enough.

To	encrypt	a	message,	M,	with	the	public	key,	create	the	ciphertext,	C,	using	the	equation:

C	=	Me	mod	n

The	receiver	then	decrypts	the	ciphertext	with	the	private	key	using	the	equation:

M	=	Cd	mod	n

Now,	this	might	look	a	bit	complex	and,	indeed,	the	mathematics	does	take	a	lot	of	computer	power	given	the	large
size	of	the	numbers;	since	p	and	q	may	be	100	digits	(decimal)	or	more,	d	and	e	will	be	about	the	same	size	and	n
may	be	over	200	digits.	Nevertheless,	a	simple	example	may	help.	In	this	example,	the	values	for	p,	q,	e,	and	d	are
purposely	chosen	to	be	very	small	and	the	reader	will	see	exactly	how	badly	these	values	perform,	but	hopefully
the	algorithm	will	be	adequately	demonstrated:

1.	 Select	p=3	and	q=5.
2.	 The	modulus	n	=	pq	=	15.

3.	 The	value	e	must	be	relatively	prime	to	(p-1)(q-1)	=	(2)(4)	=	8.	Select	e=11
4.	 The	value	d	must	be	chosen	so	that	(ed-1)/[(p-1)(q-1)]	is	an	integer.	Thus,	the	value	(11d-1)/[(2)(4)]	=	(11d-1)/8

must	be	an	integer.	Calculate	one	possible	value,	d=3.
5.	 Let's	say	we	wish	to	send	the	string	SECRET.	For	this	example,	we	will	convert	the	string	to	the	decimal

representation	of	the	ASCII	values	of	the	characters,	which	would	be	83	69	67	82	69	84.
6.	 The	sender	encrypts	each	digit	one	at	a	time	(we	have	to	because	the	modulus	is	so	small)	using	the	public

key	value	(e,n)=(11,15).	Thus,	each	ciphertext	character	Ci	=	Mi
11	mod	15.	The	input	digit	string

0x836967826984	will	be	transmitted	as	0x2c696d286924.
7.	 The	receiver	decrypts	each	digit	using	the	private	key	value	(d,n)=(3,15).	Thus,	each	plaintext	character

Mi	=	Ci3	mod	15.	The	input	digit	string	0x2c696d286924	will	be	converted	to	0x836967826984	and,
presumably,	reassembled	as	the	plaintext	string	SECRET.

Again,	the	example	above	uses	small	values	for	simplicity	and,	in	fact,	shows	the	weakness	of	small	values;	note
that	4,	6,	and	9	do	not	change	when	encrypted,	and	that	the	values	2	and	8	encrypt	to	8	and	2,	respectively.
Nevertheless,	this	simple	example	demonstrates	how	RSA	can	be	used	to	exchange	information.

RSA	keylengths	of	512	and	768	bits	are	considered	to	be	pretty	weak.	The	minimum	suggested	RSA	key	is	1024
bits;	2048	and	3072	bits	are	even	better.

As	an	aside,	Adam	Back	(http://www.cypherspace.org/~adam/)	wrote	a	two-line	Perl	script	to	implement	RSA.	It
employs	dc,	an	arbitrary	precision	arithmetic	package	that	ships	with	most	UNIX	systems:

print	pack"C*",split/\D+/,`echo	"16iII*o\U@{$/=$z;[(pop,pop,unpack"H*",<>
)]}\EsMsKsN0[lN*1lK[d2%Sa2/d0<X+d*lMLa^*lN%0]dsXx++lMlN/dsM0<J]dsJxp"|dc`

5.4.	Some	of	the	Finer	Details	of	DES,	Breaking	DES,	and	DES	Variants

The	Data	Encryption	Standard	(DES)	started	life	in	the	mid-1970s,	adopted	by	the	National	Bureau	of	Standards
(NBS)	[now	the	National	Institute	for	Standards	and	Technology	(NIST)]	as	Federal	Information	Processing
Standard	46	(FIPS	46-3)	and	by	the	American	National	Standards	Institute	(ANSI)	as	X3.92.

As	mentioned	earlier,	DES	uses	the	Data	Encryption	Algorithm	(DEA),	a	secret	key	block-cipher	employing	a	56-bit
key	operating	on	64-bit	blocks.	FIPS	81	describes	four	modes	of	DES	operation:	Electronic	Codebook	(ECB),
Cipher	Block	Chaining	(CBC),	Cipher	Feedback	(CFB),	and	Output	Feedback	(OFB).	Despite	all	of	these	options,
ECB	is	the	most	commonly	deployed	mode	of	operation.

NIST	finally	declared	DES	obsolete	in	2004,	and	withdrew	FIPS	46-3,	74,	and	81	(Federal	Register,	July	26,	2004,
69(142),	44509-44510).	Although	other	block	ciphers	have	replaced	DES,	it	is	still	interesting	to	see	how	DES
encryption	is	performed;	not	only	is	it	sort	of	neat,	but	DES	was	the	first	crypto	scheme	commonly	seen	in	non-
govermental	applications	and	was	the	catalyst	for	modern	"public"	cryptography	and	the	first	public	Feistel	cipher.
DES	still	remains	in	many	products	—	and	cryptography	students	and	cryptographers	will	continue	to	study	DES
for	years	to	come.

DES	Operational	Overview

DES	uses	a	56-bit	key.	In	fact,	the	56-bit	key	is	divided	into	eight	7-bit	blocks	and	an	8th	odd	parity	bit	is	added	to
each	block	(i.e.,	a	"0"	or	"1"	is	added	to	the	block	so	that	there	are	an	odd	number	of	1	bits	in	each	8-bit	block).	By
using	the	8	parity	bits	for	rudimentary	error	detection,	a	DES	key	is	actually	64	bits	in	length	for	computational
purposes	although	it	only	has	56	bits	worth	of	randomness,	or	entropy	(See	Section	A.3	for	a	brief	discussion	of
entropy	and	information	theory).

	

FIGURE	6:	DES	enciphering	algorithm.

DES	then	acts	on	64-bit	blocks	of	the	plaintext,	invoking	16	rounds	of	permutations,	swaps,	and	substitutes,	as
shown	in	Figure	6.	The	standard	includes	tables	describing	all	of	the	selection,	permutation,	and	expansion
operations	mentioned	below;	these	aspects	of	the	algorithm	are	not	secrets.	The	basic	DES	steps	are:

1.	 The	64-bit	block	to	be	encrypted	undergoes	an	initial	permutation	(IP),	where	each	bit	is	moved	to	a	new	bit
position;	e.g.,	the	1st,	2nd,	and	3rd	bits	are	moved	to	the	58th,	50th,	and	42nd	position,	respectively.

2.	 The	64-bit	permuted	input	is	divided	into	two	32-bit	blocks,	called	left	and	right,	respectively.	The	initial
values	of	the	left	and	right	blocks	are	denoted	L0	and	R0.

3.	 There	are	then	16	rounds	of	operation	on	the	L	and	R	blocks.	During	each	iteration	(where	n	ranges	from	1	to
16),	the	following	formulae	apply:	

Ln	=	Rn-1
Rn	=	Ln-1	XOR	f(Rn-1,Kn)

At	any	given	step	in	the	process,	then,	the	new	L	block	value	is	merely	taken	from	the	prior	R	block	value.	The
new	R	block	is	calculated	by	taking	the	bit-by-bit	exclusive-OR	(XOR)	of	the	prior	L	block	with	the	results	of
applying	the	DES	cipher	function,	f,	to	the	prior	R	block	and	Kn.	(Kn	is	a	48-bit	value	derived	from	the	64-bit
DES	key.	Each	round	uses	a	different	48	bits	according	to	the	standard's	Key	Schedule	algorithm.)

The	cipher	function,	f,	combines	the	32-bit	R	block	value	and	the	48-bit	subkey	in	the	following	way.	First,	the
32	bits	in	the	R	block	are	expanded	to	48	bits	by	an	expansion	function	(E);	the	extra	16	bits	are	found	by
repeating	the	bits	in	16	predefined	positions.	The	48-bit	expanded	R-block	is	then	ORed	with	the	48-bit
subkey.	The	result	is	a	48-bit	value	that	is	then	divided	into	eight	6-bit	blocks.	These	are	fed	as	input	into	8
selection	(S)	boxes,	denoted	S1,...,S8.	Each	6-bit	input	yields	a	4-bit	output	using	a	table	lookup	based	on	the
64	possible	inputs;	this	results	in	a	32-bit	output	from	the	S-box.	The	32	bits	are	then	rearranged	by	a
permutation	function	(P),	producing	the	results	from	the	cipher	function.

4.	 The	results	from	the	final	DES	round	—	i.e.,	L16	and	R16	—	are	recombined	into	a	64-bit	value	and	fed	into	an
inverse	initial	permutation	(IP-1).	At	this	step,	the	bits	are	rearranged	into	their	original	positions,	so	that	the
58th,	50th,	and	42nd	bits,	for	example,	are	moved	back	into	the	1st,	2nd,	and	3rd	positions,	respectively.	The
output	from	IP-1	is	the	64-bit	ciphertext	block.

Consider	this	example	with	the	given	56-bit	key	and	input:

Key:	1100101	0100100	1001001	0011101	0110101	0101011	1101100	0011010

Input	character	string:		GoAggies

Input	bit	string:		11100010	11110110	10000010	11100110	11100110	10010110	10100110	11001110

Output	bit	string:	10011111	11110010	10000000	10000001	01011011	00101001	00000011	00101111
Output	character	string:	ùO​​Ú”Àô

Breaking	DES

The	mainstream	cryptographic	community	has	long	held	that	DES's	56-bit	key	was	too	short	to	withstand	a	brute-
force	attack	from	modern	computers.	Remember	Moore's	Law:	computer	power	doubles	every	18	months.	Given
that	increase	in	power,	a	key	that	could	withstand	a	brute-force	guessing	attack	in	1975	could	hardly	be	expected
to	withstand	the	same	attack	a	quarter	century	later.

DES	is	even	more	vulnerable	to	a	brute-force	attack	because	it	is	often	used	to	encrypt	words,	meaning	that	the
entropy	of	the	64-bit	block	is,	effectively,	greatly	reduced.	That	is,	if	we	are	encrypting	random	bit	streams,	then	a
given	byte	might	contain	any	one	of	28	(256)	possible	values	and	the	entire	64-bit	block	has	264,	or	about	18.5
quintillion,	possible	values.	If	we	are	encrypting	words,	however,	we	are	most	likely	to	find	a	limited	set	of	bit
patterns;	perhaps	70	or	so	if	we	account	for	upper	and	lower	case	letters,	the	numbers,	space,	and	some
punctuation.	This	means	that	only	about	¼	of	the	bit	combinations	of	a	given	byte	are	likely	to	occur.

Despite	this	criticism,	the	U.S.	government	insisted	throughout	the	mid-1990s	that	56-bit	DES	was	secure	and
virtually	unbreakable	if	appropriate	precautions	were	taken.	In	response,	RSA	Laboratories	sponsored	a	series	of
cryptographic	challenges	to	prove	that	DES	was	no	longer	appropriate	for	use.

DES	Challenge	I	was	launched	in	March	1997.	It	was	completed	in	84	days	by	R.	Verser	in	a	collaborative	effort
using	thousands	of	computers	on	the	Internet.

The	first	DES	II	challenge	lasted	40	days	in	early	1998.	This	problem	was	solved	by	distributed.net,	a	worldwide
distributed	computing	network	using	the	spare	CPU	cycles	of	computers	around	the	Internet	(participants	in
distributed.net's	activities	load	a	client	program	that	runs	in	the	background,	conceptually	similar	to	the	SETI
@Home	"Search	for	Extraterrestrial	Intelligence"	project).	The	distributed.net	systems	were	checking	28	billion
keys	per	second	by	the	end	of	the	project.

The	second	DES	II	challenge	lasted	less	than	3	days.	On	July	17,	1998,	the	Electronic	Frontier	Foundation	(EFF)
announced	the	construction	of	hardware	that	could	brute-force	a	DES	key	in	an	average	of	4.5	days.	Called	Deep
Crack,	the	device	could	check	90	billion	keys	per	second	and	cost	only	about	$220,000	including	design	(it	was
erroneously	and	widely	reported	that	subsequent	devices	could	be	built	for	as	little	as	$50,000).	Since	the	design
is	scalable,	this	suggests	that	an	organization	could	build	a	DES	cracker	that	could	break	56-bit	keys	in	an	average
of	a	day	for	as	little	as	$1,000,000.	Information	about	the	hardware	design	and	all	software	can	be	obtained	from
the	EFF.

The	DES	III	challenge,	launched	in	January	1999,	was	broken	is	less	than	a	day	by	the	combined	efforts	of	Deep
Crack	and	distributed.net.	This	is	widely	considered	to	have	been	the	final	nail	in	DES's	coffin.

The	Deep	Crack	algorithm	is	actually	quite	interesting.	The	general	approach	that	the	DES	Cracker	Project	took
was	not	to	break	the	algorithm	mathematically	but	instead	to	launch	a	brute-force	attack	by	guessing	every
possible	key.	A	56-bit	key	yields	256,	or	about	72	quadrillion,	possible	values.	So	the	DES	cracker	team	looked	for
any	shortcuts	they	could	find!	First,	they	assumed	that	some	recognizable	plaintext	would	appear	in	the	decrypted
string	even	though	they	didn't	have	a	specific	known	plaintext	block.	They	then	applied	all	256	possible	key	values
to	the	64-bit	block	(I	don't	mean	to	make	this	sound	simple!).	The	system	checked	to	see	if	the	decrypted	value	of
the	block	was	"interesting,"	which	they	defined	as	bytes	containing	one	of	the	alphanumeric	characters,	space,	or
some	punctuation.	Since	the	likelihood	of	a	single	byte	being	"interesting"	is	about	¼,	then	the	likelihood	of	the
entire	8-byte	stream	being	"interesting"	is	about	¼8,	or	1/65536	(½16).	This	dropped	the	number	of	possible	keys
that	might	yield	positive	results	to	about	240,	or	about	a	trillion.

They	then	made	the	assumption	that	an	"interesting"	8-byte	block	would	be	followed	by	another	"interesting"
block.	So,	if	the	first	block	of	ciphertext	decrypted	to	something	interesting,	they	decrypted	the	next	block;
otherwise,	they	abandoned	this	key.	Only	if	the	second	block	was	also	"interesting"	did	they	examine	the	key
closer.	Looking	for	16	consecutive	bytes	that	were	"interesting"	meant	that	only	224,	or	16	million,	keys	needed	to
be	examined	further.	This	further	examination	was	primarily	to	see	if	the	text	made	any	sense.	Note	that	possible
"interesting"	blocks	might	be	1hJ5&aB7;	or	DEPOSITS;	the	latter	is	more	likely	to	produce	a	better	result.	And
even	a	slow	laptop	today	can	search	through	lists	of	only	a	few	million	items	in	a	relatively	short	period	of	time.
(Interested	readers	are	urged	to	read	Cracking	DES	and	EFF's	Cracking	DES	page.)

It	is	well	beyond	the	scope	of	this	paper	to	discuss	other	forms	of	breaking	DES	and	other	codes.	Nevertheless,	it
is	worth	mentioning	a	couple	of	forms	of	cryptanalysis	that	have	been	shown	to	be	effective	against	DES.
Differential	cryptanalysis,	invented	in	1990	by	E.	Biham	and	A.	Shamir	(of	RSA	fame),	is	a	chosen-plaintext	attack.
By	selecting	pairs	of	plaintext	with	particular	differences,	the	cryptanalyst	examines	the	differences	in	the
resultant	ciphertext	pairs.	Linear	plaintext,	invented	by	M.	Matsui,	uses	a	linear	approximation	to	analyze	the
actions	of	a	block	cipher	(including	DES).	Both	of	these	attacks	can	be	more	efficient	than	brute	force.

DES	Variants

Once	DES	was	"officially"	broken,	several	variants	appeared.	But	none	of	them	came	overnight;	work	at	hardening
DES	had	already	been	underway.	In	the	early	1990s,	there	was	a	proposal	to	increase	the	security	of	DES	by
effectively	increasing	the	key	length	by	using	multiple	keys	with	multiple	passes.	But	for	this	scheme	to	work,	it
had	to	first	be	shown	that	the	DES	function	is	not	a	group,	as	defined	in	mathematics.	If	DES	was	a	group,	then	we
could	show	that	for	two	DES	keys,	X1	and	X2,	applied	to	some	plaintext	(P),	we	can	find	a	single	equivalent	key,
X3,	that	would	provide	the	same	result;	i.e.,

EX2(EX1(P))	=	EX3(P)

where	EX(P)	represents	DES	encryption	of	some	plaintext	P	using	DES	key	X.	If	DES	were	a	group,	it	wouldn't
matter	how	many	keys	and	passes	we	applied	to	some	plaintext;	we	could	always	find	a	single	56-bit	key	that
would	provide	the	same	result.

As	it	happens,	DES	was	proven	to	not	be	a	group	so	that	as	we	apply	additional	keys	and	passes,	the	effective	key
length	increases.	One	obvious	choice,	then,	might	be	to	use	two	keys	and	two	passes,	yielding	an	effective	key
length	of	112	bits.	Let's	call	this	Double-DES.	The	two	keys,	Y1	and	Y2,	might	be	applied	as	follows:

C	=	EY2(EY1(P))
P	=	DY1(DY2(C))

where	EY(P)	and	DY(C)	represent	DES	encryption	and	decryption,	respectively,	of	some	plaintext	P	and	ciphertext
C,	respectively,	using	DES	key	Y.

So	far,	so	good.	But	there's	an	interesting	attack	that	can	be	launched	against	this	"Double-DES"	scheme.	First,
notice	that	the	applications	of	the	formula	above	can	be	thought	of	with	the	following	individual	steps	(where	C'
and	P'	are	intermediate	results):

C'	=	EY1(P)	and	C	=	EY2(C')
P'	=	DY2(C)	and	P	=	DY1(P')

Unfortunately,	C'=P'.	That	leaves	us	vulnerable	to	a	simple	known	plaintext	attack	(sometimes	called	"Meet-in-the-
middle")	where	the	attacker	knows	some	plaintext	(P)	and	its	matching	ciphertext	(C).	To	obtain	C',	the	attacker
needs	to	try	all	256	possible	values	of	Y1	applied	to	P;	to	obtain	P',	the	attacker	needs	to	try	all	256	possible	values
of	Y2	applied	to	C.	Since	C'=P',	the	attacker	knows	when	a	match	has	been	achieved	—	after	only	256	+	256	=	257
key	searches,	only	twice	the	work	of	brute-forcing	DES.	So	"Double-DES"	is	not	a	good	solution.

Triple-DES	(3DES),	based	upon	the	Triple	Data	Encryption	Algorithm	(TDEA),	is	described	in	FIPS	46-3.	3DES,
which	is	not	susceptible	to	a	meet-in-the-middle	attack,	employs	three	DES	passes	and	one,	two,	or	three	keys
called	K1,	K2,	and	K3.	Generation	of	the	ciphertext	(C)	from	a	block	of	plaintext	(P)	is	accomplished	by:

C	=	EK3(DK2(EK1(P)))

where	EK(P)	and	DK(P)	represent	DES	encryption	and	decryption,	respectively,	of	some	plaintext	P	using	DES	key
K.	(For	obvious	reasons,	this	is	sometimes	referred	to	as	an	encrypt-decrypt-encrypt	mode	operation.)

Decryption	of	the	ciphertext	into	plaintext	is	accomplished	by:

P	=	DK1(EK2(DK3(C)))

The	use	of	three,	independent	56-bit	keys	provides	3DES	with	an	effective	key	length	of	168	bits.	The	specification
also	defines	use	of	two	keys	where,	in	the	operations	above,	K3	=	K1;	this	provides	an	effective	key	length	of	112
bits.	Finally,	a	third	keying	option	is	to	use	a	single	key,	so	that	K3	=	K2	=	K1	(in	this	case,	the	effective	key	length
is	56	bits	and	3DES	applied	to	some	plaintext,	P,	will	yield	the	same	ciphertext,	C,	as	normal	DES	would	with	that
same	key).	Given	the	relatively	low	cost	of	key	storage	and	the	modest	increase	in	processing	due	to	the	use	of
longer	keys,	the	best	recommended	practices	are	that	3DES	be	employed	with	three	keys.

Another	variant	of	DES,	called	DESX,	is	due	to	Ron	Rivest.	Developed	in	1996,	DESX	is	a	very	simple	algorithm
that	greatly	increases	DES's	resistance	to	brute-force	attacks	without	increasing	its	computational	complexity.	In
DESX,	the	plaintext	input	is	XORed	with	64	additional	key	bits	prior	to	encryption	and	the	output	is	likewise
XORed	with	the	64	key	bits.	By	adding	just	two	XOR	operations,	DESX	has	an	effective	keylength	of	120	bits
against	an	exhaustive	key-search	attack.	As	it	happens,	DESX	is	no	more	immune	to	other	types	of	more
sophisticated	attacks,	such	as	differential	or	linear	cryptanalysis,	but	brute-force	is	the	primary	attack	vector	on
DES.

Closing	Comments

Although	DES	has	been	deprecated	and	replaced	by	the	Advanced	Encryption	Standard	(AES)	because	of	its
vulnerability	to	a	modestly-priced	brute-force	attack,	many	applications	continue	to	rely	on	DES	for	security,	and
many	software	designers	and	implementers	continue	to	include	DES	in	new	applications.	In	some	cases,	use	of
DES	is	wholly	appropriate	but,	in	general,	DES	should	not	continue	to	be	promulgated	in	production	software	and
hardware.	RFC	4772	discusses	the	security	implications	of	employing	DES.

On	a	final	note,	readers	may	be	interested	in	seeing	an	Excel	implementation	of	DES	or	J.O.	Grabbe's	The	DES
Algorithm	Illustrated.

5.5.	Pretty	Good	Privacy	(PGP)

Pretty	Good	Privacy	(PGP)	is	one	of	today's	most	widely	used	public	key	cryptography	programs.	Developed	by
Philip	Zimmermann	in	the	early	1990s	and	long	the	subject	of	controversy,	PGP	is	available	as	a	plug-in	for	many	e-
mail	clients,	such	as	Claris	Emailer,	Microsoft	Outlook/Outlook	Express,	and	Qualcomm	Eudora.

PGP	can	be	used	to	sign	or	encrypt	e-mail	messages	with	the	mere	click	of	the	mouse.	Depending	upon	the	version
of	PGP,	the	software	uses	SHA	or	MD5	for	calculating	the	message	hash;	CAST,	Triple-DES,	or	IDEA	for	encryption;
and	RSA	or	DSS/Diffie-Hellman	for	key	exchange	and	digital	signatures.

When	PGP	is	first	installed,	the	user	has	to	create	a	key-pair.	One	key,	the	public	key,	can	be	advertised	and	widely
circulated.	The	private	key	is	protected	by	use	of	a	passphrase.	The	passphrase	has	to	be	entered	every	time	the
user	accesses	their	private	key.

	-----BEGIN	PGP	SIGNED	MESSAGE-----
	Hash:	SHA1

	Hi	Carol.

	What	was	that	pithy	Groucho	Marx	quote?

	/kess

	-----BEGIN	PGP	SIGNATURE-----
	Version:	PGP	for	Personal	Privacy	5.0
	Charset:	noconv

	iQA/AwUBNFUdO5WOcz5SFtuEEQJx/ACaAgR97+vvDU6XWELV/GANjAAgBtUAnjG3
	Sdfw2JgmZIOLNjFe7jP0Y8/M
	=jUAU
	-----END	PGP	SIGNATURE-----

FIGURE	7:	A	PGP	signed	message.	The	sender	uses	their	private
key;	at	the	destination,	the	sender's	e-mail	address	yields	the
public	key	from	the	receiver's	keyring.

Figure	7	shows	a	PGP	signed	message.	This	message	will	not	be	kept	secret	from	an	eavesdropper,	but	a	recipient
can	be	assured	that	the	message	has	not	been	altered	from	what	the	sender	transmitted.	In	this	instance,	the
sender	signs	the	message	using	their	own	private	key.	The	receiver	uses	the	sender's	public	key	to	verify	the
signature;	the	public	key	is	taken	from	the	receiver's	keyring	based	on	the	sender's	e-mail	address.	Note	that	the
signature	process	does	not	work	unless	the	sender's	public	key	is	on	the	receiver's	keyring.

-----BEGIN	PGP	MESSAGE-----
Version:	PGP	for	Personal	Privacy	5.0
MessageID:	DAdVB3wzpBr3YRunZwYvhK5gBKBXOb/m

qANQR1DBwU4D/TlT68XXuiUQCADfj2o4b4aFYBcWumA7hR1Wvz9rbv2BR6WbEUsy
ZBIEFtjyqCd96qF38sp9IQiJIKlNaZfx2GLRWikPZwchUXxB+AA5+lqsG/ELBvRa
c9XefaYpbbAZ6z6LkOQ+eE0XASe7aEEPfdxvZZT37dVyiyxuBBRYNLN8Bphdr2zv
z/9Ak4/OLnLiJRk05/2UNE5Z0a+3lcvITMmfGajvRhkXqocavPOKiin3hv7+Vx88
uLLem2/fQHZhGcQvkqZVqXx8SmNw5gzuvwjV1WHj9muDGBY0MkjiZIRI7azWnoU9
3KCnmpR60VO4rDRAS5uGl9fioSvze+q8XqxubaNsgdKkoD+tB/4u4c4tznLfw1L2
YBS+dzFDw5desMFSo7JkecAS4NB9jAu9K+f7PTAsesCBNETDd49BTOFFTWWavAfE
gLYcPrcn4s3EriUgvL3OzPR4P1chNu6sa3ZJkTBbriDoA3VpnqG3hxqfNyOlqAka

mJJuQ53Ob9ThaFH8YcE/VqUFdw+bQtrAJ6NpjIxi/x0FfOInhC/bBw7pDLXBFNaX
HdlLQRPQdrmnWskKznOSarxq4GjpRTQo4hpCRJJ5aU7tZO9HPTZXFG6iRIT0wa47

AR5nvkEKoIAjW5HaDKiJriuWLdtN4OXecWvxFsjR32ebz76U8aLpAK87GZEyTzBx
dV+lH0hwyT/y1cZQ/E5USePP4oKWF4uqquPee1OPeFMBo4CvuGyhZXD/18Ft/53Y
WIebvdiCqsOoabK3jEfdGExce63zDI0=
=MpRf
-----END	PGP	MESSAGE-----

FIGURE	8:	A	PGP	encrypted	message.	The	receiver's	e-mail
address	is	the	pointer	to	the	public	key	in	the	sender's	keyring.	At
the	destination	side,	the	receiver	uses	their	own	private	key.

Figure	8	shows	a	PGP	encrypted	message	(PGP	compresses	the	file,	where	practical,	prior	to	encryption	because
encrypted	files	have	a	high	degree	of	randomness	and,	therefore,	cannot	be	efficiently	compressed).	In	this
example,	public	key	methods	are	used	to	exchange	the	session	key	for	the	actual	message	encryption	that	employs
secret-key	cryptography.	In	this	case,	the	receiver's	e-mail	address	is	the	pointer	to	the	public	key	in	the	sender's
keyring;	in	fact,	the	same	message	can	be	sent	to	multiple	recipients	and	the	message	will	not	be	significantly
longer	since	all	that	needs	to	be	added	is	the	session	key	encrypted	by	each	receiver's	public	key.	When	the
message	is	received,	the	recipient	will	use	their	private	key	to	extract	the	session	secret	key	to	successfully
decrypt	the	message	(Figure	9).

	Hi	Gary,

	"Outside	of	a	dog,	a	book	is	man's	best	friend.
	Inside	of	a	dog,	it's	too	dark	to	read."

	Carol

FIGURE	9:	The	decrypted	message.

It	is	worth	noting	that	PGP	was	one	of	the	first	so-called	"hybrid	cryptosystems"	that	combined	aspects	of	SKC	and
PKC.	When	Zimmermann	was	first	designing	PGP	in	the	late-1980s,	he	wanted	to	use	RSA	to	encrypt	the	entire
message.	The	PCs	of	the	days,	however,	suffered	significant	performance	degradation	when	executing	RSA	so	he
hit	upon	the	idea	of	using	SKC	to	encrypt	the	message	and	PKC	to	encrypt	the	SKC	key.

PGP	went	into	a	state	of	flux	in	2002.	Zimmermann	sold	PGP	to	Network	Associates,	Inc.	(NAI)	in	1997	and	himself
resigned	from	NAI	in	early	2001.	In	March	2002,	NAI	announced	that	they	were	dropping	support	for	the
commercial	version	of	PGP	having	failed	to	find	a	buyer	for	the	product	willing	to	pay	what	NAI	wanted.	In	August
2002,	PGP	was	purchased	from	NAI	by	PGP	Corp.	which,	in	turn,	was	purchased	by	Symantec.	Meanwhile,	there
are	many	freeware	versions	of	PGP	available	through	the	International	PGP	Page	and	the	OpenPGP	Alliance.	Also
check	out	the	GNU	Privacy	Guard	(GnuPG),	a	GNU	project	implementation	of	OpenPGP	(defined	in	RFC	2440).

5.6.	IP	Security	(IPsec)	Protocol

NOTE:	The	information	in	this	section	assumes	that	the	reader	is	familiar	with	the	Internet	Protocol	(IP),
at	least	to	the	extent	of	the	packet	format	and	header	contents.	More	information	about	IP	can	be	found
in	An	Overview	of	TCP/IP	Protocols	and	the	Internet.	More	information	about	IPv6	can	be	found	in	IPv6:
The	Next	Generation	Internet	Protocol.

The	Internet	and	the	TCP/IP	protocol	suite	were	not	built	with	security	in	mind.	This	statement	is	not	meant	as	a
criticism;	the	baseline	UDP,	TCP,	IP,	and	ICMP	protocols	were	written	in	1980	and	built	for	the	relatively	closed
ARPANET	community.	TCP/IP	wasn't	designed	for	the	commercial-grade	financial	transactions	that	they	now	see
nor	for	virtual	private	networks	(VPNs)	on	the	Internet.	To	bring	TCP/IP	up	to	today's	security	necessities,	the
Internet	Engineering	Task	Force	(IETF)	formed	the	IP	Security	Protocol	Working	Group	which,	in	turn,	developed
the	IP	Security	(IPsec)	protocol.	IPsec	is	not	a	single	protocol,	in	fact,	but	a	suite	of	protocols	providing	a
mechanism	to	provide	data	integrity,	authentication,	privacy,	and	nonrepudiation	for	the	classic	Internet	Protocol
(IP).	Although	intended	primarily	for	IP	version	6	(IPv6),	IPsec	can	also	be	employed	by	the	current	version	of	IP,
namely	IP	version	4	(IPv4).

As	shown	in	Table	3,	IPsec	is	described	in	nearly	a	dozen	RFCs.	RFC	4301,	in	particular,	describes	the	overall	IP
security	architecture	and	RFC	2411	provides	an	overview	of	the	IPsec	protocol	suite	and	the	documents	describing
it.

IPsec	can	provide	either	message	authentication	and/or	encryption.	The	latter	requires	more	processing	than	the
former,	but	will	probably	end	up	being	the	preferred	usage	for	applications	such	as	VPNs	and	secure	electronic
commerce.

Central	to	IPsec	is	the	concept	of	a	security	association	(SA).	Authentication	and	confidentiality	using	AH	or	ESP
use	SAs	and	a	primary	role	of	IPsec	key	exchange	it	to	establish	and	maintain	SAs.	An	SA	is	a	simplex	(one-way	or
unidirectional)	logical	connection	between	two	communicating	IP	endpoints	that	provides	security	services	to	the
traffic	carried	by	it	using	either	AH	or	ESP	procedures.	The	endpoint	of	an	SA	can	be	an	IP	host	or	IP	security
gateway	(e.g.,	a	proxy	server,	VPN	server,	etc.).	Providing	security	to	the	more	typical	scenario	of	two-way	(bi-
directional)	communication	between	two	endpoints	requires	the	establishment	of	two	SAs	(one	in	each	direction).

An	SA	is	uniquely	identified	by	a	3-tuple	composed	of:

Security	Parameter	Index	(SPI),	a	32-bit	identifier	of	the	connection
IP	Destination	Address
security	protocol	(AH	or	ESP)	identifier

The	IP	Authentication	Header	(AH),	described	in	RFC	4302,	provides	a	mechanism	for	data	integrity	and	data
origin	authentication	for	IP	packets	using	HMAC	with	MD5	(RFC	2403),	HMAC	with	SHA-1	(RFC	2404),	or	HMAC
with	RIPEMD	(RFC	2857).	See	also	RFC	4305.

				0																			1																			2																			3
				0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
			+-+
			|	Next	Header			|		Payload	Len		|										RESERVED													|
			+-+
			|																	Security	Parameters	Index	(SPI)															|
			+-+
			|																				Sequence	Number	Field																						|
			+-+
			|																																																															|
			+																Integrity	Check	Value-ICV	(variable)											|
			|																																																															|
			+-+

FIGURE	10:	IPsec	Authentication	Header	format.	(From	RFC
4302)

Figure	10	shows	the	format	of	the	IPsec	AH.	The	AH	is	merely	an	additional	header	in	a	packet,	more	or	less
representing	another	protocol	layer	above	IP	(this	is	shown	in	Figure	12	below).	Use	of	the	IP	AH	is	indicated	by
placing	the	value	51	(0x33)	in	the	IPv4	Protocol	or	IPv6	Next	Header	field	in	the	IP	packet	header.	The	AH	follows
mandatory	IPv4/IPv6	header	fields	and	precedes	higher	layer	protocol	(e.g.,	TCP,	UDP)	information.	The	contents
of	the	AH	are:

Next	Header:	An	8-bit	field	that	identifies	the	type	of	the	next	payload	after	the	Authentication	Header.
Payload	Length:	An	8-bit	field	that	indicates	the	length	of	AH	in	32-bit	words	(4-byte	blocks),	minus	"2".	[The
rationale	for	this	is	somewhat	counter	intuitive	but	technically	important.	All	IPv6	extension	headers	encode
the	header	extension	length	(Hdr	Ext	Len)	field	by	first	subtracting	1	from	the	header	length,	which	is
measured	in	64-bit	words.	Since	AH	was	originally	developed	for	IPv6,	it	is	an	IPv6	extension	header.	Since	its
length	is	measured	in	32-bit	words,	however,	the	Payload	Length	is	calculated	by	subtracting	2	(32	bit	words)
to	maintain	consistency	with	IPv6	coding	rules.]	In	the	default	case,	the	three	32-bit	word	fixed	portion	of	the
AH	is	followed	by	a	96-bit	authentication	value,	so	the	Payload	Length	field	value	would	be	4.
Reserved:	This	16-bit	field	is	reserved	for	future	use	and	always	filled	with	zeros.
Security	Parameters	Index	(SPI):	An	arbitrary	32-bit	value	that,	in	combination	with	the	destination	IP
address	and	security	protocol,	uniquely	identifies	the	Security	Association	for	this	datagram.	The	value	0	is
reserved	for	local,	implementation-specific	uses	and	values	between	1-255	are	reserved	by	the	Internet
Assigned	Numbers	Authority	(IANA)	for	future	use.
Sequence	Number:	A	32-bit	field	containing	a	sequence	number	for	each	datagram;	initially	set	to	0	at	the
establishment	of	an	SA.	AH	uses	sequence	numbers	as	an	anti-replay	mechanism,	to	prevent	a	"person-in-the-
middle"	attack.	If	anti-replay	is	enabled	(the	default),	the	transmitted	Sequence	Number	is	never	allowed	to
cycle	back	to	0;	therefore,	the	sequence	number	must	be	reset	to	0	by	establishing	a	new	SA	prior	to	the
transmission	of	the	232nd	packet.
Authentication	Data:	A	variable-length,	32-bit	aligned	field	containing	the	Integrity	Check	Value	(ICV)	for	this
packet	(default	length	=	96	bits).	The	ICV	is	computed	using	the	authentication	algorithm	specified	by	the	SA,
such	as	DES,	MD5,	or	SHA-1.	Other	algorithms	may	also	be	supported.

The	IP	Encapsulating	Security	Payload	(ESP),	described	in	RFC	4303,	provides	message	integrity	and	privacy
mechanisms	in	addition	to	authentication.	As	in	AH,	ESP	uses	HMAC	with	MD5,	SHA-1,	or	RIPEMD	authentication
(RFC	2403/RFC	2404/RFC	2857);	privacy	is	provided	using	DES-CBC	encryption	(RFC	2405),	NULL	encryption
(RFC	2410),	other	CBC-mode	algorithms	(RFC	2451),	or	AES	(RFC	3686).	See	also	RFC	4305	and	RFC	4308.

				0																			1																			2																			3
				0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
			+-+	----
			|															Security	Parameters	Index	(SPI)																	|	^Int.
			+-+	|Cov-
			|																						Sequence	Number																										|	|ered
			+-+	|	----		
			|																				Payload	Data*	(variable)																			|	|			^
			~																																																															~	|			|
			|																																																															|	|Conf.
			+															+-+	|Cov-
			|															|					Padding	(0-255	bytes)																					|	|ered*
			+-+-+-+-+-+-+-+-+															+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	|			|
			|																															|		Pad	Length			|	Next	Header			|	v			v

			+-+	------
			|									Integrity	Check	Value-ICV			(variable)																|
			~																																																															~
			|																																																															|
			+-+

							*	If	included	in	the	Payload	field,	cryptographic	synchronization
									data,	e.g.,	an	Initialization	Vector	(IV),	usually	is	not
									encrypted	per	se,	although	it	often	is	referred	to	as	being
									being	part	of	the	ciphertext.

FIGURE	11:	IPsec	Encapsulating	Security	Payload	format.	(From	RFC
4303)

Figure	11	shows	the	format	of	the	IPsec	ESP	information.	Use	of	the	IP	ESP	format	is	indicated	by	placing	the
value	50	(0x32)	in	the	IPv4	Protocol	or	IPv6	Next	Header	field	in	the	IP	packet	header.	The	ESP	header	(i.e.,	SPI
and	sequence	number)	follows	mandatory	IPv4/IPv6	header	fields	and	precedes	higher	layer	protocol	(e.g.,	TCP,
UDP)	information.	The	contents	of	the	ESP	packet	are:

Security	Parameters	Index:	(see	description	for	this	field	in	the	AH,	above.)
Sequence	Number:	(see	description	for	this	field	in	the	AH,	above.)
Payload	Data:	A	variable-length	field	containing	data	as	described	by	the	Next	Header	field.	The	contents	of
this	field	could	be	encrypted	higher	layer	data	or	an	encrypted	IP	packet.
Padding:	Between	0	and	255	octets	of	padding	may	be	added	to	the	ESP	packet.	There	are	several
applications	that	might	use	the	padding	field.	First,	the	encryption	algorithm	that	is	used	may	require	that	the
plaintext	be	a	multiple	of	some	number	of	bytes,	such	as	the	block	size	of	a	block	cipher;	in	this	case,	the
Padding	field	is	used	to	fill	the	plaintext	to	the	size	required	by	the	algorithm.	Second,	padding	may	be

required	to	ensure	that	the	ESP	packet	and	resulting	ciphertext	terminate	on	a	4-byte	boundary.	Third,
padding	may	be	used	to	conceal	the	actual	length	of	the	payload.	Unless	another	value	is	specified	by	the
encryption	algorithm,	the	Padding	octets	take	on	the	value	1,	2,	3,	...	starting	with	the	first	Padding	octet.	This
scheme	is	used	because,	in	addition	to	being	simple	to	implement,	it	provides	some	protection	against	certain
forms	of	"cut	and	paste"	attacks.
Pad	Length:	An	8-bit	field	indicating	the	number	of	bytes	in	the	Padding	field;	contains	a	value	between	0-255.
Next	Header:	An	8-bit	field	that	identifies	the	type	of	data	in	the	Payload	Data	field,	such	as	an	IPv6	extension
header	or	a	higher	layer	protocol	identifier.
Authentication	Data:	(see	description	for	this	field	in	the	AH,	above.)

Two	types	of	SAs	are	defined	in	IPsec,	regardless	of	whether	AH	or	ESP	is	employed.	A	transport	mode	SA	is	a
security	association	between	two	hosts.	Transport	mode	provides	the	authentication	and/or	encryption	service	to
the	higher	layer	protocol.	This	mode	of	operation	is	only	supported	by	IPsec	hosts.	A	tunnel	mode	SA	is	a	security
association	applied	to	an	IP	tunnel.	In	this	mode,	there	is	an	"outer"	IP	header	that	specifies	the	IPsec	destination
and	an	"inner"	IP	header	that	specifies	the	destination	for	the	IP	packet.	This	mode	of	operation	is	supported	by
both	hosts	and	security	gateways.

		ORIGINAL	PACKET	BEFORE	APPLYING	AH

			IPv4		|orig	IP	hdr		|					|						|
									|(any	options)|	TCP	|	Data	|

			IPv6		|													|	ext	hdrs	|					|						|
									|	orig	IP	hdr	|if	present|	TCP	|	Data	|

		AFTER	APPLYING	AH	(TRANSPORT	MODE)

				IPv4		|original	IP	hdr	(any	options)	|	AH	|	TCP	|				Data			|

										|<-	mutable	field	processing	->|<-	immutable	fields	->|
										|<-----	authenticated	except	for	mutable	fields	----->|

									--

			IPv6		|													|hop-by-hop,	dest*,	|				|	dest	|					|						|
									|orig	IP	hdr		|routing,	fragment.	|	AH	|	opt*	|	TCP	|	Data	|
									--
									|<---	mutable	field	processing	-->|<--	immutable	fields	-->|
									|<----	authenticated	except	for	mutable	fields	----------->|

															*	=	if	present,	could	be	before	AH,	after	AH,	or	both

		AFTER	APPLYING	AH	(TUNNEL	MODE)

								--
			IPv4	|																														|				|	orig	IP	hdr*		|			|						|
								|new	IP	header	*	(any	options)	|	AH	|	(any	options)	|TCP|	Data	|
								--
								|<-	mutable	field	processing	->|<------	immutable	fields	----->|
								|<-	authenticated	except	for	mutable	fields	in	the	new	IP	hdr->|

								--
			IPv6	|											|	ext	hdrs*|				|												|	ext	hdrs*|			|				|
								|new	IP	hdr*|if	present|	AH	|orig	IP	hdr*|if	present|TCP|Data|
								--
								|<---	mutable	field	-->|<---------	immutable	fields	-------->|
								|							processing					|
								|<--	authenticated	except	for	mutable	fields	in	new	IP	hdr	->|

										*	=	if	present,	construction	of	outer	IP	hdr/extensions	and
														modification	of	inner	IP	hdr/extensions	is	discussed	in
														the	Security	Architecture	document.

FIGURE	12:	IPsec	tunnel	and	transport	modes	for	AH.	(Adapted	from	RFC
4302)

Figure	12	show	the	IPv4	and	IPv6	packet	formats	when	using	AH	in	both	transport	and	tunnel	modes.	Initially,	an
IPv4	packet	contains	a	normal	IPv4	header	(which	may	contain	IP	options),	followed	by	the	higher	layer	protocol
header	(e.g.,	TCP	or	UDP),	followed	by	the	higher	layer	data	itself.	An	IPv6	packet	is	similar	except	that	the	packet
starts	with	the	mandatory	IPv6	header	followed	by	any	IPv6	extension	headers,	and	then	followed	by	the	higher
layer	data.

Note	that	in	both	transport	and	tunnel	modes,	the	entire	IP	packet	is	covered	by	the	authentication	except	for	the
mutable	fields.	A	field	is	mutable	if	its	value	might	change	during	transit	in	the	network;	IPv4	mutable	fields
include	the	fragment	offset,	time	to	live,	and	checksum	fields.	Note,	in	particular,	that	the	address	fields	are	not
mutable.

				ORIGINAL	PACKET	BEFORE	APPLYING	ESP

						IPv4		|orig	IP	hdr		|					|						|
												|(any	options)|	TCP	|	Data	|

						IPv6		|													|	ext	hdrs	|					|						|
												|	orig	IP	hdr	|if	present|	TCP	|	Data	|

				AFTER	APPLYING	ESP	(TRANSPORT	MODE)

						IPv4		|orig	IP	hdr		|	ESP	|					|						|			ESP			|	ESP|
												|(any	options)|	Hdr	|	TCP	|	Data	|	Trailer	|	ICV|

																																|<----	encryption	---->|
																										|<--------	integrity	------->|

						IPv6		|	orig	|hop-by-hop,dest*,|			|dest|			|				|	ESP			|	ESP|

												|IP	hdr|routing,fragment.|ESP|opt*|TCP|Data|Trailer|	ICV|

																																									|<---	encryption	---->|
																																					|<------	integrity	------>|

																*	=	if	present,	could	be	before	ESP,	after	ESP,	or	both

				AFTER	APPLYING	ESP	(TUNNEL	MODE)

						IPv4		|	new	IP	hdr+	|					|	orig	IP	hdr+		|			|				|	ESP			|	ESP|
												|(any	options)|	ESP	|	(any	options)	|TCP|Data|Trailer|	ICV|

																																|<---------	encryption	--------->|
																										|<-------------	integrity	------------>|

												--
						IPv6		|	new+	|new	ext	|			|	orig+|orig	ext	|			|				|	ESP			|	ESP|
												|IP	hdr|	hdrs+		|ESP|IP	hdr|	hdrs+			|TCP|Data|Trailer|	ICV|
												--
																																|<---------	encryption	---------->|
																												|<------------	integrity	------------>|

												+	=	if	present,	construction	of	outer	IP	hdr/extensions	and
																modification	of	inner	IP	hdr/extensions	is	discussed	in
																the	Security	Architecture	document.

FIGURE	13:	IPsec	tunnel	and	transport	modes	for	ESP.	(Adapted	from	RFC
4303)

Figure	13	shows	the	IPv4	and	IPv6	packet	formats	when	using	ESP	in	both	transport	and	tunnel	modes.

As	with	AH,	we	start	with	a	standard	IPv4	or	IPv6	packet.
In	transport	mode,	the	higher	layer	header	and	data,	as	well	as	ESP	trailer	information,	is	encrypted	and	the
entire	ESP	packet	is	authenticated.	In	the	case	of	IPv6,	some	of	the	IPv6	extension	options	can	precede	or
follow	the	ESP	header.
In	tunnel	mode,	the	original	IP	packet	is	encrypted	and	placed	inside	of	an	"outer"	IP	packet,	while	the	entire
ESP	packet	is	authenticated.

Note	a	significant	difference	in	the	scope	of	ESP	and	AH.	AH	authenticates	the	entire	packet	transmitted	on	the
network	whereas	ESP	only	covers	a	portion	of	the	packet	transmitted	on	the	network	(the	higher	layer	data	in
transport	mode	and	the	entire	original	packet	in	tunnel	mode).	The	reason	for	this	is	straight-forward;	in	AH,	the
authentication	data	for	the	transmission	fits	neatly	into	an	additional	header	whereas	ESP	creates	an	entirely	new
packet	which	is	the	one	encrypted	and/or	authenticated.	But	the	ramifications	are	significant.	ESP	transport	mode
as	well	as	AH	in	both	modes	protect	the	IP	address	fields	of	the	original	transmissions.	Thus,	using	IPsec	in
conjunction	with	network	address	translation	(NAT)	might	be	problematic	because	NAT	changes	the	values	of
these	fields	after	IPsec	processing.

The	third	component	of	IPsec	is	the	establishment	of	security	associations	and	key	management.	These	tasks	can
be	accomplished	in	one	of	two	ways.

The	simplest	form	of	SA	and	key	management	is	manual	management.	In	this	method,	a	security	administer	or
other	individual	manually	configures	each	system	with	the	key	and	SA	management	data	necessary	for	secure

communication	with	other	systems.	Manual	techniques	are	practical	for	small,	reasonably	static	environments	but
they	do	not	scale	well.

For	successful	deployment	of	IPsec,	however,	a	scalable,	automated	SA/key	management	scheme	is	necessary.
Several	protocols	have	defined	for	these	functions:

The	Internet	Security	Association	and	Key	Management	Protocol	(ISAKMP)	defines	procedures	and	packet
formats	to	establish,	negotiate,	modify	and	delete	security	associations,	and	provides	the	framework	for
exchanging	information	about	authentication	and	key	management	(RFC	2407/RFC	2408).	ISAKMP's	security
association	and	key	management	is	totally	separate	from	key	exchange.
The	OAKLEY	Key	Determination	Protocol	(RFC	2412)	describes	a	scheme	by	which	two	authenticated	parties
can	exchange	key	information.	OAKLEY	uses	the	Diffie-Hellman	key	exchange	algorithm.
The	Internet	Key	Exchange	(IKE)	algorithm	(RFC	2409)	is	the	default	automated	key	management	protocol	for
IPsec.
An	alternative	to	IKE	is	Photuris	(RFC	2522/RFC	2523),	a	scheme	for	establishing	short-lived	session-keys
between	two	authenticated	parties	without	passing	the	session-keys	across	the	Internet.	IKE	typically	creates
keys	that	may	have	very	long	lifetimes.

On	a	final	note,	IPsec	authentication	for	both	AH	and	ESP	uses	a	scheme	called	HMAC,	a	keyed-hashing	message
authentication	code	described	in	FIPS	198	and	RFC	2104.	HMAC	uses	a	shared	secret	key	between	two	parties
rather	than	public	key	methods	for	message	authentication.	The	generic	HMAC	procedure	can	be	used	with	just
about	any	hash	algorithm,	although	IPsec	specifies	support	for	at	least	MD5	and	SHA-1	because	of	their
widespread	use.

In	HMAC,	both	parties	share	a	secret	key.	The	secret	key	will	be	employed	with	the	hash	algorithm	in	a	way	that
provides	mutual	authentication	without	transmitting	the	key	on	the	line.	IPsec	key	management	procedures	will	be
used	to	manage	key	exchange	between	the	two	parties.

Recall	that	hash	functions	operate	on	a	fixed-size	block	of	input	at	one	time;	MD5	and	SHA-1,	for	example,	work	on
64	byte	blocks.	These	functions	then	generate	a	fixed-size	hash	value;	MD5	and	SHA-1,	in	particular,	produce	16
byte	(128	bit)	and	20	byte	(160	bit)	output	strings,	respectively.	For	use	with	HMAC,	the	secret	key	(K)	should	be
at	least	as	long	as	the	hash	output.

The	following	steps	provide	a	simplified,	although	reasonably	accurate,	description	of	how	the	HMAC	scheme
would	work	with	a	particular	plaintext	MESSAGE:

1.	 Alice	pads	K	so	that	it	is	as	long	as	an	input	block;	call	this	padded	key	Kp.	Alice	computes	the	hash	of	the
padded	key	followed	by	the	message,	i.e.,	HASH	(Kp:MESSAGE).

2.	 Alice	transmits	MESSAGE	and	the	hash	value.
3.	 Bob	has	also	padded	K	to	create	Kp.	He	computes	HASH	(Kp:MESSAGE)	on	the	incoming	message.
4.	 Bob	compares	the	computed	hash	value	with	the	received	hash	value.	If	they	match,	then	the	sender	—	Alice

—	must	know	the	secret	key	and	her	identity	is,	thus,	authenticated.

	

FIGURE	14:	Keyed-hash	MAC	operation.

5.7.	The	SSL	Family	of	Secure	Transaction	Protocols	for	the	World	Wide	Web

The	Secure	Sockets	Layer	(SSL)	protocol	was	developed	by	Netscape	Communications	to	provide	application-
independent	secure	communication	over	the	Internet	for	protocols	such	as	the	Hypertext	Transfer	Protocol
(HTTP).	SSL	employs	RSA	and	X.509	certificates	during	an	initial	handshake	used	to	authenticate	the	server
(client	authentication	is	optional).	The	client	and	server	then	agree	upon	an	encryption	scheme.	SSL	v2.0	(1995),
the	first	version	publicly	released,	supported	RC2	and	RC4	with	40-bit	keys.	SSL	v3.0	(1996)	added	support	for
DES,	RC4	with	a	128-bit	key,	and	3DES	with	a	168-bit	key,	all	along	with	either	MD5	or	SHA-1	message	hashes;
this	protocol	is	described	in	RFC	6101.

	

FIGURE	15:	Browser	encryption	configuration	screen	(Firefox).

In	1997,	SSL	v3	was	found	to	be	breakable.	By	this	time,	the	Internet	Engineering	Task	Force	(IETF)	had	already
started	work	on	a	new,	non-proprietary	protocol	called	Transport	Layer	Security	(TLS),	described	in	RFC	2246
(1999).	TLS	extends	SSL	and	supports	additional	crypto	schemes,	such	as	Diffie-Hellman	key	exchange	and	DSS
digital	signatures;	RFC	4279	describes	the	pre-shared	key	crypto	schemes	supported	by	TLS.	TLS	is	backward
compatible	with	SSL	(and,	in	fact,	is	recognized	as	SSL	v3.1).	SSL	v3.0	and	TLS	v1.0	are	the	commonly	supported
versions	on	servers	and	browsers	today	(Figure	15);	SSL	v2.0	is	rarely	found	today	and,	in	fact,	RFC	6176-
compliant	clients	and	servers	that	support	TLS	will	never	negotiate	the	use	of	SSL	v2.

In	2002,	a	cipher	block	chaining	(CBC)	vulnerability	was	described	for	TLS	v1.0.	In	2011,	the	theoretical	became
practical	when	a	CBC	proof-of-concept	exploit	was	released.	Meanwhile,	TLS	v1.1	was	defined	in	2006	(RFC	4346),
adding	protection	against	v1.0's	CBC	vulnerability.	In	2008,	TLS	v1.2	was	defined	(RFC	5246),	adding	several
additional	cryptographic	options.	Today,	users	are	urged	to	use	TLS	v1.2	or	v1.1	in	lieu	of	any	earlier	versions,	and
v1.3	is	available	in	draft	form.

																							CLIENT							SERVER
	(using	URL	of	form	https://)							(listening	on	port	443)	

																		ClientHello	---->

																																				ServerHello
																																				Certificate*
																																				ServerKeyExchange*
																																				CertificateRequest*
																														<----	ServerHelloDone

																	Certificate*
												ClientKeyExchange

												CertifcateVerify*
											[ChangeCipherSpec]
																					Finished	---->

																																				[ChangeCipherSpec]
																														<----	Finished

													Application	Data	<--->	Application	Data

*	Optional	or	situation-dependent	messages;
		not	always	sent

																																					Adapted	from	RFC	2246

FIGURE	16:	SSL/TLS	protocol	handshake.

Figure	16	shows	the	basic	TLS	(and	SSL)	message	exchanges:

1.	 URLs	specifying	the	protocol	https://	are	directed	to	HTTP	servers	secured	using	SSL/TLS.	The	client	will
automatically	try	to	make	a	TCP	connection	to	the	server	at	port	443.	The	client	initiates	the	secure

connection	by	sending	a	ClientHello	message	containing	a	Session	identifier,	highest	SSL	version	number
supported	by	the	client,	and	lists	of	supported	crypto	and	compression	schemes	(in	preference	order).

2.	 The	server	examines	the	Session	ID	and	if	it	is	still	in	the	server's	cache,	it	will	attempt	to	re-establish	a
previous	session	with	this	client.	If	the	Session	ID	is	not	recognized,	the	server	will	continue	with	the
handshake	to	establish	a	secure	session	by	responding	with	a	ServerHello	message.	The	ServerHello	repeats
the	Session	ID,	indicates	the	SSL	version	to	use	for	this	connection	(which	will	be	the	highest	SSL	version
supported	by	the	server	and	client),	and	specifies	which	encryption	method	and	compression	method	to	be
used	for	this	connection.

3.	 There	are	a	number	of	other	optional	messages	that	the	server	might	send,	including:
Certificate,	which	carries	the	server's	X.509	public	key	certificate	(and,	generally,	the	server's	public
key).	This	message	will	always	be	sent	unless	the	client	and	server	have	already	agreed	upon	some	form
of	anonymous	key	exchange.	(This	message	is	normally	sent.)
ServerKeyExchange,	which	will	carry	a	premaster	secret	when	the	server's	Certificate	message	does	not
contain	enough	data	for	this	purpose;	used	in	some	key	exchange	schemes.
CertificateRequest,	used	to	request	the	client's	certificate	in	those	scenarios	where	client	authentication
is	performed.
ServerHelloDone,	indicating	that	the	server	has	completed	its	portion	of	the	key	exchange	handshake.

4.	 The	client	now	responds	with	a	series	of	mandatory	and	optional	messages:
Certificate,	contains	the	client's	public	key	certificate	when	it	has	been	requested	by	the	server.
ClientKeyExchange,	which	usually	carries	the	secret	key	to	be	used	with	the	secret	key	crypto	scheme.
CertificateVerify,	used	to	provide	explicit	verification	of	a	client's	certificate	if	the	server	is
authenticating	the	client.

5.	 TLS	includes	the	change	cipher	spec	protocol	to	indicate	changes	in	the	encryption	method.	This	protocol
contains	a	single	message,	ChangeCipherSpec,	which	is	encrypted	and	compressed	using	the	current	(rather
than	the	new)	encryption	and	compression	schemes.	The	ChangeCipherSpec	message	is	sent	by	both	client
and	server	to	notify	the	other	station	that	all	following	information	will	employ	the	newly	negotiated	cipher
spec	and	keys.

6.	 The	Finished	message	is	sent	after	a	ChangeCipherSpec	message	to	confirm	that	the	key	exchange	and
authentication	processes	were	successful.

7.	 At	this	point,	both	client	and	server	can	exchange	application	data	using	the	session	encryption	and
compression	schemes.

Side	Note:	It	would	probably	be	helpful	to	make	some	mention	of	SSL	(or,	more	properly,	TLS)	as	it	is	used	today.
Most	of	us	have	used	SSL	to	engage	in	a	secure,	private	transaction	with	some	vendor.	The	steps	are	something
like	this.	During	the	SSL	exchange	with	the	vendor's	secure	server,	the	server	sends	its	certificate	to	our	client
software.	The	certificate	includes	the	vendor's	public	key	and	a	signature	from	the	CA	that	issued	the	vendor's
certificate.	Our	browser	software	is	shipped	with	the	major	CAs'	certificates	which	contains	their	public	key;	in
that	way	we	authenticate	the	server.	Note	that	the	server	does	not	use	a	certificate	to	authenticate	us!	Instead,	we
are	generally	authenticated	when	we	provide	our	credit	card	number;	the	server	checks	to	see	if	the	card	purchase
will	be	authorized	by	the	credit	card	company	and,	if	so,	considers	us	valid	and	authenticated!	While	bidirectional
authentication	is	certainly	supported	by	SSL,	this	form	of	asymmetric	authentication	is	more	commonly	employed
today	since	most	users	don't	have	certificates.

Microsoft's	Server	Gated	Cryptography	(SGC)	protocol	is	another,	albeit	now	defunct,	extension	to	SSL/TLS.	For
several	decades,	it	has	been	illegal	to	generally	export	products	from	the	U.S.	that	employed	secret-key
cryptography	with	keys	longer	than	40	bits.	For	that	reason,	SSL/TLS	has	an	exportable	version	with	weak	(40-bit)
keys	and	a	domestic	(North	American)	version	with	strong	(128-bit)	keys.	Within	the	last	several	years,	however,
use	of	strong	SKC	has	been	approved	for	the	worldwide	financial	community.	SGC	is	an	extension	to	SSL	that
allows	financial	institutions	using	Windows	NT	servers	to	employ	strong	cryptography.	Both	the	client	and	server
must	implement	SGC	and	the	bank	must	have	a	valid	SGC	certificate.	During	the	initial	handshake,	the	server	will
indicate	support	of	SGC	and	supply	its	SGC	certificate;	if	the	client	wishes	to	use	SGC	and	validates	the	server's
SGC	certificate,	the	session	can	employ	128-bit	RC2,	128-bit	RC4,	56-bit	DES,	or	168-bit	3DES.	Microsoft	supports
SGC	in	the	Windows	95/98/NT	versions	of	Internet	Explorer	4.0,	Internet	Information	Server	(IIS)	4.0,	and	Money
98.

As	mentioned	above,	SSL	was	designed	to	provide	application-independent	transaction	security	for	the	Internet.
Although	the	discussion	above	has	focused	on	HTTP	over	SSL	(https/TCP	port	443),	SSL	is	also	applicable	to:

Protocol 	 TCP	Port	Name/Number
File	Transfer	Protocol	(FTP) 	 ftps-data/989	&	ftps/990
Internet	Message	Access	Protocol	v4	(IMAP4) 	 imaps/993
Lightweight	Directory	Access	Protocol	(LDAP) 	 ldaps/636
Network	News	Transport	Protocol	(NNTP) 	 nntps/563
Post	Office	Protocol	v3	(POP3) 	 pop3s/995
Telnet 	 telnets/992

TLS	was	originally	designed	to	operate	over	TCP.	The	IETF	developed	the	Datagram	Transport	Layer	Security
(DTLS)	protocol,	based	upon	TLS,	to	operate	over	UDP.	DTLS	v1.2	is	described	in	RFC	6347.	(DTLS	v1.0	can	be
found	in	RFC	4347.)	RFC	6655	describes	a	suite	of	AES	in	Counter	with	Cipher	Block	Chaining	-	Message
Authentication	Code	(CBC-MAC)	Mode	(CCM)	ciphers	for	use	with	TLS	and	DTLS.	An	interesting	analysis	of	the
TLS	protocol	can	be	found	in	the	paper	"Analysis	and	Processing	of	Cryptographic	Protocols"	by	Cowie.

Vulnerabilities:	A	vulnerability	in	the	OpenSSL	Library	was	discovered	in	2014.	Known	as	Heartbleed,	this
vulnerability	had	apparently	been	introduced	into	OpenSSL	in	late	2011	with	the	introduction	of	a	feature	called
heartbeat.	Heartbleed	exploited	an	implementation	flaw	in	order	to	exfiltrate	keying	material	from	an	SSL	server
(or	some	SSL	clients,	in	what	is	known	at	reverse	Heartbleed);	the	flaw	allowed	an	attacker	to	grab	64	KB	blocks
from	RAM.	Heartbleed	is	known	to	only	affect	OpenSSL	v1.0.1	through	v1.0.1f;	the	exploit	was	patched	in	v1.0.1g.

In	addition,	the	OpenSSL	0.9.8	and	1.0.0	families	are	not	vulnerable.	Note	also	that	Heartbleed
affects	some	versions	of	the	Android	operating	system,	notably	v4.1.0	and	v4.1.1	(and	some,	possibly
custom,	implementations	of	v4.2.2).	Note	that	Heartbleed	did	not	exploit	a	flaw	in	the	SSL	protocol,
but	rather	a	flaw	in	the	OpenSSL	implementation.

But	that	wasn't	the	only	problem	with	SSL.	In	October	2014,	a	new	vulnerability	was	found	called
POODLE	(Padding	Oracle	On	Downgraded	Legacy	Encryption),	a	man-in-the-middle	attack	that
exploited	another	SSL	vulnerability	that	had	unknowingly	been	in	place	for	many	years.	Weeks	later,
an	SSL	vunerability	in	the	bash	Unix	command	shell	was	discovered,	aptly	named	Shellshock.	(Here's	a	nice
overview	of	the	2014	SSL	problems!)	In	March	2015,	the	Bar	Mitzvah	Attack	was	exposed,	exploiting	a	13-year	old
vulnerability	in	the	Rivest	Cipher	4	(RC4)	encryption	algorithm.	Then	there	was	the	FREAK	(Factoring	Attack	on
RSA-EXPORT	Keys	CVE-2015-0204)	SSL/TLS	Vulnerabilty	that	affected	some	SSL/TLS	implementations,	including
Android	OS	and	Chrome	browser	for	OS	X	later	that	month.

In	March	2016,	the	SSL	DROWN	(Decrypting	RSA	with	Obsolete	and	Weakened	eNcryption)	attack	was
announced.	DROWN	works	by	exploiting	the	presence	of	SSLv2	to	crack	encrypted	communications	and	steal
information	from	Web	servers,	email	servers,	or	VPN	sessions.	You	might	have	read	above	that	SSLv2	fell	out	of
use	by	the	early	2000s	and	was	formally	deprecated	in	2011.	This	is	true.	But	backward	compatibility	often	causes
old	software	to	remain	dormant	and	it	seems	that	up	to	one-third	of	all	HTTPS	sites	are	vulnerable	to	DROWN
because	SSLv2	has	not	been	removed	or	disabled.

5.8.	Elliptic	Curve	Cryptography	(ECC)

In	general,	public-key	cryptography	systems	use	hard-to-solve	problems	as	the	basis	of	the	algorithm.	The	most
predominant	algorithm	today	for	public-key	cryptography	is	RSA,	based	on	the	prime	factors	of	very	large
integers.	While	RSA	can	be	successfully	attacked,	the	mathematics	of	the	algorithm	have	not	been	comprised,	per
se;	instead,	computational	brute-force	has	broken	the	keys.	The	defense	is	"simple"	—	keep	the	size	of	the	integer
to	be	factored	ahead	of	the	computational	curve!

In	1985,	Elliptic	Curve	Cryptography	(ECC)	was	proposed	independently	by	cryptographers	Victor	Miller	(IBM)
and	Neal	Koblitz	(University	of	Washington).	ECC	is	based	on	the	difficulty	of	solving	the	Elliptic	Curve	Discrete
Logarithm	Problem	(ECDLP).	Like	the	prime	factorization	problem,	ECDLP	is	another	"hard"	problem	that	is
deceptively	simple	to	state:	Given	two	points,	P	and	Q,	on	an	elliptic	curve,	find	the	integer	n,	if	it	exists,	such	that
P	=	nQ.

Elliptic	curves	combine	number	theory	and	algebraic	geometry.	These	curves	can	be	defined	over	any	field	of
numbers	(i.e.,	real,	integer,	complex)	although	we	generally	see	them	used	over	finite	fields	for	applications	in
cryptography.	An	elliptic	curve	consists	of	the	set	of	real	numbers	(x,y)	that	satisfies	the	equation:

y2	=	x3	+	ax	+	b

The	set	of	all	of	the	solutions	to	the	equation	forms	the	elliptic	curve.	Changing	a	and	b	changes	the	shape	of	the
curve,	and	small	changes	in	these	parameters	can	result	in	major	changes	in	the	set	of	(x,y)	solutions.

	

FIGURE	17:	Elliptic	curve	addition.

Figure	17	shows	the	addition	of	two	points	on	an	elliptic	curve.	Elliptic	curves	have	the	interesting	property	that
adding	two	points	on	the	elliptic	curve	yields	a	third	point	on	the	curve.	Therefore,	adding	two	points,	P	and	Q,

gets	us	to	point	R,	also	on	the	curve.	Small	changes	in	P	or	Q	can	cause	a	large	change	in	the	position	of	R.

So	let's	go	back	to	the	original	problem	statement	from	above.	The	point	Q	is	calculated	as	a	multiple	of	the
starting	point,	P,	or,	Q	=	nP.	An	attacker	might	know	P	and	Q	but	finding	the	integer,	n,	is	a	difficult	problem	to
solve.	Q	(i.e.,	nP)	is	the	public	key	and	n	is	the	private	key.

ECC	may	be	employed	with	many	Internet	standards,	including	CCITT	X.509	certificates	and	certificate	revocation
lists	(CRLs),	Internet	Key	Exchange	(IKE),	Transport	Layer	Security	(TLS),	XML	signatures,	and	applications	or
protocols	based	on	the	cryptographic	message	syntax	(CMS).	RFC	5639	proposes	a	set	of	elliptic	curve	domain
parameters	over	finite	prime	fields	for	use	in	these	cryptographic	applications	and	RFC	6637	proposes	additional
elliptic	curves	for	use	with	OpenPGP.

RSA	had	been	the	mainstay	of	PKC	for	over	a	quarter-century.	ECC,	however,	is	emerging	as	a	replacement	in
some	environments	because	it	provides	similar	levels	of	security	compared	to	RSA	but	with	significantly	reduced
key	sizes.	NIST	use	the	following	table	to	demonstrate	the	key	size	relationship	between	ECC	and	RSA,	and	the
appropriate	choice	of	AES	key	size:

TABLE	4.	ECC	and	RSA	Key	Comparison.

ECC	Key	Size RSA	Key	Size Key-Size
Ratio AES	Key	Size

163 1,024 1:6 n/a

256 3,072 1:12 128

384 7,680 1:20 192

512 15,360 1:30 256

Key	sizes	in	bits. Source:	Certicom,	NIST

Since	the	ECC	key	sizes	are	so	much	shorter	than	comparable	RSA	keys,	the	length	of	the	public	key	and	private
key	is	much	shorter	in	elliptic	curve	cryptosystems.	This	results	into	faster	processing	times,	and	lower	demands
on	memory	and	bandwidth;	some	studies	have	found	that	ECC	is	faster	than	RSA	for	signing	and	decryption,	but
slower	for	signature	verification	and	encryption.

ECC	is	particularly	useful	in	applications	where	memory,	bandwidth,	and/or	computational	power	is	limited	(e.g.,	a
smartcard)	and	it	is	in	this	area	that	ECC	use	is	expected	to	grow.	A	major	champion	of	ECC	today	is	Certicom;
readers	are	urged	to	see	their	ECC	tutorial.

5.9.	The	Advanced	Encryption	Standard	(AES)	and	Rijndael

The	search	for	a	replacement	to	DES	started	in	January	1997	when	NIST	announced	that	it	was	looking	for	an
Advanced	Encryption	Standard.	In	September	of	that	year,	they	put	out	a	formal	Call	for	Algorithms	and	in	August
1998	announced	that	15	candidate	algorithms	were	being	considered	(Round	1).	In	April	1999,	NIST	announced
that	the	15	had	been	whittled	down	to	five	finalists	(Round	2):	MARS	(multiplication,	addition,	rotation	and
substitution)	from	IBM;	Ronald	Rivest's	RC6;	Rijndael	from	a	Belgian	team;	Serpent,	developed	jointly	by	a	team
from	England,	Israel,	and	Norway;	and	Twofish,	developed	by	Bruce	Schneier.	In	October	2000,	NIST	announced
their	selection:	Rijndael.

The	remarkable	thing	about	this	entire	process	has	been	the	openness	as	well	as	the	international	nature	of	the
"competition."	NIST	maintained	an	excellent	Web	site	devoted	to	keeping	the	public	fully	informed,	at
http://csrc.nist.gov/archive/aes/,	which	is	now	available	as	an	archive	site.	Their	Overview	of	the	AES	Development
Effort	has	full	details	of	the	process,	algorithms,	and	comments	so	I	will	not	repeat	everything	here.

In	October	2000,	NIST	released	the	Report	on	the	Development	of	the	Advanced	Encryption	Standard	(AES)	that
compared	the	five	Round	2	algorithms	in	a	number	of	categories.	The	table	below	summarizes	the	relative	scores
of	the	five	schemes	(1=low,	3=high):

Algorithm
Category MARS RC6 Rijndael Serpent Twofish

General	security 3 2 2 3 3
Implementation	of	security 1 1 3 3 2
Software	performance 2 2 3 1 1
Smart	card	performance 1 1 3 3 2
Hardware	performance 1 2 3 3 2

Design	features 2 1 2 1 3

With	the	report	came	the	recommendation	that	Rijndael	be	named	as	the	AES	standard.	In	February	2001,	NIST
released	the	Draft	Federal	Information	Processing	Standard	(FIPS)	AES	Specification	for	public	review	and
comment.	AES	contains	a	subset	of	Rijndael's	capabilities	(e.g.,	AES	only	supports	a	128-bit	block	size)	and	uses
some	slightly	different	nomenclature	and	terminology,	but	to	understand	one	is	to	understand	both.	The	90-day
comment	period	ended	on	May	29,	2001	and	the	U.S.	Department	of	Commerce	officially	adopted	AES	in
December	2001,	published	as	FIPS	PUB	197.

AES	(Rijndael)	Overview

Rijndael	(pronounced	as	in	"rain	doll"	or	"rhine	dahl")	is	a	block	cipher	designed	by	Joan	Daemen	and	Vincent
Rijmen,	both	cryptographers	in	Belgium.	Rijndael	can	operate	over	a	variable-length	block	using	variable-length
keys;	the	specification	submitted	to	NIST	describes	use	of	a	128-,	192-,	or	256-bit	key	to	encrypt	data	blocks	that
are	128,	192,	or	256	bits	long;	note	that	all	nine	combinations	of	key	length	and	block	length	are	possible.	The
algorithm	is	written	in	such	a	way	that	block	length	and/or	key	length	can	easily	be	extended	in	multiples	of	32	bits
and	it	is	specifically	designed	for	efficient	implementation	in	hardware	or	software	on	a	range	of	processors.	The
design	of	Rijndael	was	strongly	influenced	by	the	block	cipher	called	Square,	also	designed	by	Daemen	and
Rijmen.	See

The	Rijndael	page	for	a	lot	more	information.

Rijndael	is	an	iterated	block	cipher,	meaning	that	the	initial	input	block	and	cipher	key	undergoes	multiple	rounds
of	transformation	before	producing	the	output.	Each	intermediate	cipher	result	is	called	a	State.

For	ease	of	description,	the	block	and	cipher	key	are	often	represented	as	an	array	of	columns	where	each	array
has	4	rows	and	each	column	represents	a	single	byte	(8	bits).	The	number	of	columns	in	an	array	representing	the
state	or	cipher	key,	then,	can	be	calculated	as	the	block	or	key	length	divided	by	32	(32	bits	=	4	bytes).	An	array
representing	a	State	will	have	Nb	columns,	where	Nb	values	of	4,	6,	and	8	correspond	to	a	128-,	192-,	and	256-bit
block,	respectively.	Similarly,	an	array	representing	a	Cipher	Key	will	have	Nk	columns,	where	Nk	values	of	4,	6,
and	8	correspond	to	a	128-,	192-,	and	256-bit	key,	respectively.	An	example	of	a	128-bit	State	(Nb=4)	and	192-bit
Cipher	Key	(Nk=6)	is	shown	below:

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

	

k0,0 k0,1 k0,2 k0,3 k0,4 k0,5
k1,0 k1,1 k1,2 k1,3 k1,4 k1,5
k2,0 k2,1 k2,2 k2,3 k2,4 k2,5
k3,0 k3,1 k3,2 k3,3 k3,4 k3,5

The	number	of	transformation	rounds	(Nr)	in	Rijndael	is	a	function	of	the	block	length	and	key	length,	and	is	given
by	the	table	below:

No.	of	Rounds
Nr

Block	Size
128	bits
Nb	=	4

192	bits
Nb	=	6

256	bits
Nb	=	8

Key
Size

128	bits
Nk	=	4 10 12 14

192	bits
Nk	=	6 12 12 14

256	bits
Nk	=	8 14 14 14

Now,	having	said	all	of	this,	the	AES	version	of	Rijndael	does	not	support	all	nine	combinations	of	block	and	key
lengths,	but	only	the	subset	using	a	128-bit	block	size.	NIST	calls	these	supported	variants	AES-128,	AES-192,	and
AES-256	where	the	number	refers	to	the	key	size.	The	Nb,	Nk,	and	Nr	values	supported	in	AES	are:

Parameters
Variant Nb Nk Nr
AES-128 4 4 10
AES-192 4 6 12
AES-256 4 8 14

The	AES/Rijndael	cipher	itself	has	three	operational	stages:

AddRound	Key	transformation
Nr-1	Rounds	comprising:

SubBytes	transformation
ShiftRows	transformation
MixColumns	transformation
AddRoundKey	transformation

A	final	Round	comprising:
SubBytes	transformation
ShiftRows	transformation
AddRoundKey	transformation

The	paragraphs	below	will	describe	the	operations	mentioned	above.	The	nomenclature	used	below	is	taken	from
the	AES	specification	although	references	to	the	Rijndael	specification	are	made	for	completeness.	The	arrays	s
and	s'	refer	to	the	State	before	and	after	a	transformation,	respectively	(NOTE:	The	Rijndael	specification	uses	the
array	nomenclature	a	and	b	to	refer	to	the	before	and	after	States,	respectively).	The	subscripts	i	and	j	are	used	to
indicate	byte	locations	within	the	State	(or	Cipher	Key)	array.

The	SubBytes	transformation

The	substitute	bytes	(called	ByteSub	in	Rijndael)	transformation	operates	on	each	of	the	State	bytes	independently
and	changes	the	byte	value.	An	S-box,	or	substitution	table,	controls	the	transformation.	The	characteristics	of	the

S-box	transformation	as	well	as	a	compliant	S-box	table	are	provided	in	the	AES	specification;	as	an	example,	an
input	State	byte	value	of	107	(0x6b)	will	be	replaced	with	a	127	(0x7f)	in	the	output	State	and	an	input	value	of	8
(0x08)	would	be	replaced	with	a	48	(0x30).

One	way	to	think	of	the	SubBytes	transformation	is	that	a	given	byte	in	State	s	is	given	a	new	value	in	State	s'
according	to	the	S-box.	The	S-box,	then,	is	a	function	on	a	byte	in	State	s	so	that:

s'i,j	=	S-box	(si,j)

The	more	general	depiction	of	this	transformation	is	shown	by:

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

====> S-box ====>

s'0,0 s'0,1 s'0,2 s'0,3
s'1,0 s'1,1 s'1,2 s'1,3
s'2,0 s'2,1 s'2,2 s'2,3
s'3,0 s'3,1 s'3,2 s'3,3

The	ShiftRows	transformation

The	shift	rows	(called	ShiftRow	in	Rijndael)	transformation	cyclically	shifts	the	bytes	in	the	bottom	three	rows	of
the	State	array.	According	to	the	more	general	Rijndael	specification,	rows	2,	3,	and	4	are	cyclically	left-shifted	by
C1,	C2,	and	C3	bytes,	respectively,	per	the	table	below:

Nb C1 C2 C3
4 1 2 3
6 1 2 3
8 1 3 4

The	current	version	of	AES,	of	course,	only	allows	a	block	size	of	128	bits	(Nb	=	4)	so	that	C1=1,	C2=2,	and	C3=3.
The	diagram	below	shows	the	effect	of	the	ShiftRows	transformation	on	State	s:

State	s
s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

	
-----------	no	shift	----------->	
---->	left-shift	by	C1	(1)	---->	
---->	left-shift	by	C2	(2)	---->	
---->	left-shift	by	C3	(3)	---->	

State	s'
s0,0 s0,1 s0,2 s0,3
s1,1 s1,2 s1,3 s1,0
s2,2 s2,3 s2,0 s2,1
s3,3 s3,0 s3,1 s3,2

The	MixColumns	transformation

The	mix	columns	(called	MixColumn	in	Rijndael)	transformation	uses	a	mathematical	function	to	transform	the
values	of	a	given	column	within	a	State,	acting	on	the	four	values	at	one	time	as	if	they	represented	a	four-term
polynomial.	In	essence,	if	you	think	of	MixColumns	as	a	function,	this	could	be	written:

s'i,c	=	MixColumns	(si,c)

for	0	≤	i	≤	3	for	some	column,	c.	The	column	position	doesn't	change,	merely	the	values	within	the	column.

Round	Key	generation	and	the	AddRoundKey	transformation

The	AES	Cipher	Key	can	be	128,	192,	or	256	bits	in	length.	The	Cipher	Key	is	used	to	derive	a	different	key	to	be
applied	to	the	block	during	each	round	of	the	encryption	operation.	These	keys	are	called	the	Round	Keys	and	each
will	be	the	same	length	as	the	block,	i.e.,	Nb	32-bit	words	(words	will	be	denoted	W).

The	AES	specification	defines	a	key	schedule	by	which	the	original	Cipher	Key	(of	length	Nk	32-bit	words)	is	used
to	form	an	Expanded	Key.	The	Expanded	Key	size	is	equal	to	the	block	size	times	the	number	of	encryption	rounds
plus	1,	which	will	provide	Nr+1	different	keys.	(Note	that	there	are	Nr	encipherment	rounds	but	Nr+1
AddRoundKey	transformations.)

Consider	that	AES	uses	a	128-bit	block	and	either	10,	12,	or	14	iterative	rounds	depending	upon	key	length.	With	a
128-bit	key,	for	example,	we	would	need	1408	bits	of	key	material	(128x11=1408),	or	an	Expanded	Key	size	of	44
32-bit	words	(44x32=1408).	Similarly,	a	192-bit	key	would	require	1664	bits	of	key	material	(128x13),	or	52	32-bit
words,	while	a	256-bit	key	would	require	1920	bits	of	key	material	(128x15),	or	60	32-bit	words.	The	key	expansion
mechanism,	then,	starts	with	the	128-,	192-,	or	256-bit	Cipher	Key	and	produces	a	1408-,	1664-,	or	1920-bit
Expanded	Key,	respectively.	The	original	Cipher	Key	occupies	the	first	portion	of	the	Expanded	Key	and	is	used	to
produce	the	remaining	new	key	material.

The	result	is	an	Expanded	Key	that	can	be	thought	of	and	used	as	11,	13,	or	15	separate	keys,	each	used	for	one
AddRoundKey	operation.	These,	then,	are	the	Round	Keys.	The	diagram	below	shows	an	example	using	a	192-bit
Cipher	Key	(Nk=6),	shown	in	magenta	italics:

Expanded
Key: W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 ... W44 W45 W46 W47 W48 W49 W50 W51

Round
keys: Round	key	0 Round	key	1 Round	key	2 Round	key	3 ... Round	key	11 Round	key	12

The	AddRoundKey	(called	Round	Key	addition	in	Rijndael)	transformation	merely	applies	each	Round	Key,	in	turn,
to	the	State	by	a	simple	bit-wise	exclusive	OR	operation.	Recall	that	each	Round	Key	is	the	same	length	as	the
block.

Summary

Ok,	I	hope	that	you've	enjoyed	reading	this	as	much	as	I've	enjoyed	writing	it	—	and	now	let	me	guide	you	out	of
the	microdetail!	Recall	from	the	beginning	of	the	AES	overview	that	the	cipher	itself	comprises	a	number	of	rounds
of	just	a	few	functions:

SubBytes	takes	the	value	of	a	word	within	a	State	and	substitutes	it	with	another	value	by	a	predefined	S-box
ShiftRows	circularly	shifts	each	row	in	the	State	by	some	number	of	predefined	bytes
MixColumns	takes	the	value	of	a	4-word	column	within	the	State	and	changes	the	four	values	using	a
predefined	mathematical	function
AddRoundKey	XORs	a	key	that	is	the	same	length	as	the	block,	using	an	Expanded	Key	derived	from	the
original	Cipher	Key

Cipher	(byte	in[4*Nb],	byte	out[4*Nb],	word	w[Nb*(Nr+1)])

begin
		byte	state[4,Nb]

		state	=	in

		AddRoundKey(state,	w)

		for	round	=	1	step	1	to	Nr-1
				SubBytes(state)
				ShiftRows(state)
				MixColumns(state)
				AddRoundKey(state,	w+round*Nb)
		end	for

		SubBytes(state)
		ShiftRows(state)
		AddRoundKey(state,	w+Nr*Nb)

		out	=	state
end

FIGURE	18:	AES	pseudocode.

As	a	last	and	final	demonstration	of	the	operation	of	AES,	Figure	18	is	a	pseudocode	listing	for	the	operation	of	the
AES	cipher.	In	the	code:

in[]	and	out[]	are	16-byte	arrays	with	the	plaintext	and	cipher	text,	respectively.	(According	to	the
specification,	both	of	these	arrays	are	actually	4*Nb	bytes	in	length	but	Nb=4	in	AES.)
state[]	is	a	2-dimensional	array	containing	bytes	in	4	rows	and	4	columns.	(According	to	the	specification,	this
arrays	is	4	rows	by	Nb	columns.)
w[]	is	an	array	containing	the	key	material	and	is	4*(Nr+1)	words	in	length.	(Again,	according	to	the
specification,	the	multiplier	is	actually	Nb.)
AddRoundKey(),	SubBytes(),	ShiftRows(),	and	MixColumns()	are	functions	representing	the	individual
transformations.

5.10.	Cisco's	Stream	Cipher

Stream	ciphers	take	advantage	of	the	fact	that:

x	XOR	y	XOR	y	=	x

One	of	the	encryption	schemes	employed	by	Cisco	routers	to	encrypt	passwords	is	a	stream	cipher.	It	uses	the
following	fixed	keystream	(thanks	also	to	Jason	Fossen	for	independently	extending	and	confirming	this	string):

dsfd;kfoA,.iyewrkldJKDHSUBsgvca69834ncx

When	a	password	is	to	be	encrypted,	the	password	function	chooses	a	number	between	0	and	15,	and	that
becomes	the	offset	into	the	keystream.	Password	characters	are	then	XORed	byte-by-byte	with	the	keystream
according	to:

Ci	=	Pi	XOR	K(offset+i)

where	K	is	the	keystream,	P	is	the	plaintext	password,	and	C	is	the	ciphertext	password.

Consider	the	following	example.	Suppose	we	have	the	password	abcdefgh.	Converting	the	ASCII	characters	yields
the	hex	string	0x6162636465666768.

The	keystream	characters	and	hex	code	that	supports	an	offset	from	0	to	15	bytes	and	a	password	length	up	to	24
bytes	is:

		d	s	f	d	;	k	f	o	A	,	.	i	y	e	w	r	k	l	d	J	K	D	H	S	U	B	s	g	v	c	a	6	9	8	3	4	n	c	x
0x647366643b6b666f412c2e69796577726b6c644a4b4448535542736776636136393833346e6378

Let's	say	that	the	function	decides	upon	a	keystream	offset	of	6	bytes.	We	then	start	with	byte	6	of	the	keystream
(start	counting	the	offset	at	0)	and	XOR	with	the	password:

				0x666f412c2e697965
XOR	0x6162636465666768

				0x070D22484B0F1E0D

The	password	would	now	be	displayed	in	the	router	configuration	as:

password	7	06070D22484B0F1E0D

where	the	"7"	indicates	the	encryption	type,	the	leading	"06"	indicates	the	offset	into	the	keystream,	and	the
remaining	bytes	are	the	encrypted	password	characters.

(Decryption	is	pretty	trivial	so	that	exercise	is	left	to	the	reader.	If	you	need	some	help	with	byte-wise	XORing,	see
http://www.garykessler.net/library/byte_logic_table.html.	If	you'd	like	some	programs	that	do	this,	see
http://www.garykessler.net/software/index.html#cisco7.)

5.11.	TrueCrypt

TrueCrypt	is	an	open	source,	on-the-fly	crypto	system	that	can	be	used	on	devices	supports	by	Linux,	MacOS,	and
Windows.	First	released	in	2004,	TrueCrypt	can	be	employed	to	encrypt	a	partition	on	a	disk	or	an	entire	disk.

On	May	28,	2014,	the	TrueCrypt.org	Web	site	was	suddenly	taken	down	and	redirected	to	the
SourceForge	page.	Although	this	paper	is	intended	as	a	crypto	tutorial	and	not	a	news	source	about
crypto	controversy,	the	sudden	withdrawal	of	TrueCrypt	cannot	go	without	notice.	Readers	interested	in
using	TrueCrypt	should	know	that	the	last	stable	release	of	the	product	is	v7.1a	(February	2012);	v7.2,
released	on	May	28,	2014,	only	decrypts	TrueCrypt	volumes,	ostensibly	so	that	users	can	migrate	to
another	solution.	The	current	TrueCrypt	Web	page	—	TCnext	—	is	TrueCrypt.ch.	The	TrueCrypt
Wikipedia	page	and	accompanying	references	have	some	good	information	about	the	"end"	of	TrueCrypt
as	we	knew	it.

While	there	does	not	appear	to	be	any	rush	to	abandon	TrueCrypt	at	the	time	of	this	writing,	it	is	also	the
case	that	you	don't	want	to	use	old,	unsupported	software	for	too	long.	A	replacement	for	TrueCrypt
called	CipherShed	is	currently	under	development.	See	also	"TrueCrypt	may	live	on	after	all	as
CipherShed."	To	date,	CipherShed	has	not	produced	a	product;	another	—	working	—	fork	of	TrueCrypt
is	VeraCrypt.

One	final	editorial	comment.	TrueCrypt	was	not	broken	or	otherwise	compromised!	It	was	withdrawn	by
its	developers	for	reasons	that	have	not	yet	been	made	public	but	there	is	no	evidence	to	assume	that
TrueCrypt	has	been	damaged	in	any	way;	on	the	contrary,	two	audits,	completed	in	April	2014	and	April
2015,	found	no	evidence	of	backdoors	or	malicious	code.	See	Steve	Gibson's	TrueCrypt:	Final	Release
Repository	page	for	more	information!

TrueCrypt	uses	a	variety	of	encryption	schemes,	including	AES,	Serpent,	and	Twofish.	A	TrueCrypt	volume	is
stored	as	a	file	that	appears	to	be	filled	with	random	data,	thus	has	no	specific	file	signature.	(It	is	true	that	a
TrueCrypt	container	will	pass	a	chi-square	(Χ2)	randomness	test,	but	that	is	merely	a	general	indicator	of	possibly
encrypted	content.	An	additional	clue	is	that	a	TrueCrypt	container	will	also	appear	on	a	disk	as	a	file	that	is	some
increment	of	512	bytes	in	size.	While	these	indicators	might	raise	a	red	flag,	they	don't	rise	to	the	level	of	clearly
indentifying	a	TrueCrypt	volume.)

When	a	user	creates	a	TrueCrypt	volume,	a	number	of	parameters	need	to	be	defined,	such	as	the	size	of	the
volume	and	the	password.	To	access	the	volume,	the	TrueCrypt	program	is	employed	to	find	the	TrueCrypt
encrypted	file,	which	is	then	mounted	as	a	new	drive	on	the	host	system.

	

FIGURE	19:	TrueCrypt	screen	shot	(Windows).

	

FIGURE	20:	TrueCrypt	screen	shot	(MacOS).

Consider	this	example	where	an	encrypted	TrueCrypt	volume	is	stored	as	a	file	named	James	on	a	thumb	drive.	On
a	Windows	system,	this	thumb	drive	has	been	mounted	as	device	E:.	If	one	were	to	view	the	E:	device,	any	number
of	files	might	be	found.	The	TrueCrypt	application	is	used	to	mount	the	TrueCrypt	file;	in	this	case,	the	user	has
chosen	to	mount	the	TrueCrypt	volume	as	device	K:	(Figure	19).	Alternatively,	the	thumb	drive	could	be	used	with
a	Mac	system,	where	it	has	been	mounted	as	the	/Volumes/JIMMY	volume.	TrueCrypt	mounts	the	encrypted	file,
James,	and	it	is	now	accessible	to	the	system	(Figure	20).

	

FIGURE	21:	TrueCrypt	hidden	encrypted	volume	within	an	encrypted	volume
(from	http://www.truecrypt.org/images/docs/hidden-volume.gif).

One	of	the	most	interesting	—	certainly	one	of	the	most	controversial	—	features	of	TrueCrypt	is	called	plausible
deniability,	protection	in	case	a	user	is	"compelled"	to	turn	over	the	encrypted	volume's	password.	When	the	user
creates	a	TrueCrypt	volume,	he/she	chooses	whether	to	create	a	standard	or	hidden	volume.	A	standard	volume
has	a	single	password,	while	a	hidden	volume	is	created	within	a	standard	volume	and	uses	a	second	password.	As
shown	in	Figure	21,	the	unallocated	(free)	space	in	a	TrueCrypt	volume	is	always	filled	with	random	data,	thus	it	is
impossible	to	differentiate	a	hidden	encrypted	volume	from	a	standard	volume's	free	space.

To	access	the	hidden	volume,	the	file	is	mounted	as	shown	above	and	the	user	enters	the	hidden	volume's
password.	When	under	duress,	the	user	would	merely	enter	the	password	of	the	standard	(i.e.,	non-hidden)
TrueCrypt	volume.

More	information	about	TrueCrypt	can	be	found	at	the	TCnext	Web	Site	or	in	the	TrueCrypt	User's	Guide	(v7.1a).

An	active	area	of	research	in	the	digital	forensics	community	is	to	find	methods	with	which	to	detect
hidden	TrueCrypt	volumes.	Most	of	the	methods	do	not	detect	the	presence	of	a	hidden	volume,	per	se,
but	infer	the	presence	by	forensic	remnants	left	over.	As	an	example,	both	Mac	and	Windows	system
usually	have	a	file	or	registry	entry	somewhere	containing	a	cached	list	of	the	names	of	mounted
volumes.	This	list	would,	naturally,	include	the	name	of	TrueCrypt	volumes,	both	standard	and	hidden.	If
the	user	gives	a	name	to	the	hidden	volume,	it	would	appear	in	such	a	list.	If	an	investigator	were
somehow	able	to	determine	that	there	were	two	TrueCrypt	volume	names	but	only	one	TrueCrypt	device,
the	inference	would	be	that	there	was	a	hidden	volume.	A	good	summary	paper	that	also	describes	ways
to	infer	the	presence	of	hidden	volumes	—	at	least	on	some	Windows	systems	—	can	be	found	in	"
Detecting	Hidden	Encrypted	Volumes"	(Hargreaves	&	Chivers).

Having	nothing	to	do	with	TrueCrypt,	but	having	something	to	do	related	to	plausible	deniability	and
devious	crypto	schemes,	is	a	new	approach	to	holding	password	cracking	at	bay	dubbed	Honey
Encryption.	With	most	of	today's	crypto	systems,	decrypting	with	a	wrong	key	produces	digital	gibberish
while	a	correct	key	produces	something	recognizable,	making	it	easy	to	know	when	a	correct	key	has
been	found.	Honey	Encryption	produces	fake	data	that	resembles	real	data	for	every	key	that	is
attempted,	making	it	significantly	harder	for	an	attacker	to	determine	whether	they	have	the	correct	key
or	not;	thus,	if	an	attacker	has	a	credit	card	file	and	tries	thousands	of	keys	to	crack	it,	they	will	obtain
thousands	of	possibly	legitimate	credit	card	numbers.	See	"'Honey	Encryption'	Will	Bamboozle	Attackers
with	Fake	Secrets"	(Simonite)	for	some	general	information	or	"Honey	Encryption:	Security	Beyond	the
Brute-Force	Bound"	(Juels	&	Ristenpart)	for	a	detailed	paper.

5.12.	Encrypting	File	System	(EFS)

Microsoft	introduced	the	Encrypting	File	System	(EFS)	into	the	NTFS	v3.0	file	system	and	has	supported	EFS
since	Windows	2000	and	XP	(although	EFS	is	not	supported	in	all	variations	of	all	Windows	OSes).	EFS	can	be
used	to	encrypt	individual	files,	directories,	or	entire	volumes.	While	off	by	default,	EFS	encryption	can	be	easily
enabled	via	File	Explorer	(aka	Windows	Explorer)	by	right-clicking	on	the	file,	directory,	or	volume	to	be
encrypted,	selecting	Properties,	Advanced,	and	Encrypt	contents	to	secure	data	(Figure	22).	Note	that	encrypted
files	and	directories	are	displayed	in	green	in	Windows	Explorer.

	

FIGURE	22:	EFS	and	Windows	(File)	Explorer.

The	Windows	command	prompt	provides	an	easy	tool	with	which	to	detect	EFS-encrypted	files	on	a	disk.	The
cipher	command	has	a	number	of	options,	but	the	/u/n	switches	can	be	used	to	list	all	encrypted	files	on	a	drive
(Figure	23).

	

FIGURE	23:	The	cipher	command.

EFS	supports	a	variety	of	secret	key	encryption	schemes,	including	DES,	DESX,	and	AES,	as	well	as	RSA	public-
key	encryption.	The	operation	of	EFS	—	at	least	at	the	theoretical	level	—	is	clever	and	simple.

When	a	file	is	saved	to	disk:

A	random	File	Encryption	Key	(FEK)	is	generated	by	the	operating	system.
The	file	contents	are	encrypted	using	one	of	the	SKC	schemes	and	the	FEK.
The	FEK	is	stored	with	the	file,	encrypted	with	the	user's	RSA	public	key.	In	addition,	the	FEK	is	encrypted
with	the	RSA	public	key	of	any	other	authorized	users	and,	optionally,	a	recovery	agent's	RSA	public	key.

When	the	file	is	opened:

The	FEK	is	recovered	using	the	RSA	private	key	of	the	user,	other	authorized	user,	or	the	recovery	agent.

The	FEK	is	used	to	decrypt	the	file's	contents.

There	are	weaknesses	with	the	system,	most	of	which	are	related	to	key	management.	As	an	example,	the	RSA
private	key	can	be	stored	on	an	external	device	such	as	a	floppy	disk	(yes,	really!),	thumb	drive,	or	smart	card.	In
practice,	however,	this	is	rarely	done;	the	user's	private	RSA	key	is	often	stored	on	the	hard	drive.	In	addition,
early	EFS	implementations	(prior	to	Windows	XP	SP2)	tied	the	key	to	the	username;	later	implementations	employ
the	user's	password.

A	more	serious	implementation	issue	is	that	a	backup	file	named	esf0.tmp	is	created	prior	to	a	file	being
encrypted.	After	the	encryption	operation,	the	backup	file	is	deleted	—	not	wiped	—	leaving	an	unencrypted
version	of	the	file	available	to	be	undeleted.	For	this	reason,	it	is	best	to	use	encrypted	directories	because	the
temporary	backup	file	is	protected	by	being	in	an	encrypted	directory.

	

FIGURE	24:	EFS	key	storage.	(Source:	NTFS.com)

The	EFS	information	is	stored	as	a	named	stream	in	the	$LOGGED_UTILITY_STREAM	Attribute	(attribute	type	256
[0x100]).	This	information	includes	(Figure	24):

A	Data	Decryption	Field	(DDF)	for	every	user	authorized	to	decrypt	the	file,	containing	the	user's	Security
Identifier	(SID),	the	FEK	encrypted	with	the	user's	RSA	public	key,	and	other	information.
A	Data	Recovery	Field	(DRF)	with	the	encrypted	FEK	for	every	method	of	data	recovery

Files	in	an	NTFS	file	system	maintain	a	number	of	attributes	that	contain	the	system	metadata	(e.g.,	the
$STANDARD_INFORMATION	attribute	maintains	the	file	timestamps	and	the	$FILE_NAME	attribute	contains	the
file	name).	Files	encrypted	with	EFS	store	the	keys,	as	stated	above,	in	a	data	stream	named	$EFS	within	the
$LOGGED_UTILITY_STREAM	attribute.	Figure	25	shows	the	partial	contents	of	the	Master	File	Table	(MFT)
attributes	for	an	EFS	encrypted	file.

Master	File	Table	(MFT)	Parser	V1.4	-	Gary	C.	Kessler	(7	June	2012)
			:
			:
0056-0059		Attribute	type:	0x10-00-00-00	[$STANDARD_INFORMATION]
0060-0063		Attribute	length:	0x60-00-00-00	[96	bytes]
0064							Non-resident	flag:	0x00	[Attribute	is	resident]
			:
			:
0152-0155		Attribute	type:	0x30-00-00-00	[$FILE_NAME]
0156-0159		Attribute	length:	0x78-00-00-00	[120	bytes]
0160							Non-resident	flag:	0x00	[Attribute	is	resident]
			:
			:
0392-0395		Attribute	type:	0x40-00-00-00	[$VOLUME_VERSION/$OBJECT_ID]
0396-0399		Attribute	length:	0x28-00-00-00	[40	bytes]
0400							Non-resident	flag:	0x00	[Attribute	is	resident]
			:
			:
0432-0435		Attribute	type:	0x80-00-00-00	[$DATA]
0436-0439		Attribute	length:	0x48-00-00-00	[72	bytes]
0440							Non-resident	flag:	0x01	[Attribute	is	non-resident]
			:
			:
0504-0507		Attribute	type:	0x00-01-00-00	[$LOGGED_UTILITY_STREAM]
0508-0511		Attribute	length:	0x50-00-2E-00	[80	bytes	(ignore	two	high-order	bytes)]
0512							Non-resident	flag:	0x01	[Attribute	is	non-resident]
			:
0568-0575		Name:	0x24-00-45-00-46-00-53-00	[$EFS]

FIGURE	25:	The	$LOGGED_UTILITY_STREAM	Attribute.

5.13.	Some	of	the	Finer	Details	of	RC4

RC4	is	a	variable	key-sized	stream	cipher	developed	by	Ron	Rivest	in	1987.	RC4	works	in	output-feedback	(OFB)
mode,	so	that	the	key	stream	is	independent	of	the	plaintext.	The	algorithm	is	described	in	detail	in	Schneier's
"Applied	Cryptography,"	2/e,	pg.	397-398	or	the	Wikipedia	RC4	article.

RC4	employs	an	8x8	substitution	box	(S-box).	The	S-box	is	initialized	so	that	S[i]	=	i,	for	i=(0,255).

A	permutation	of	the	S-box	is	then	performed	as	a	function	of	the	key.	The	K	array	is	a	256-byte	structure	that
holds	the	key,	repeating	itself	as	necessary	so	as	to	be	256	bytes	in	length	(obviously,	a	longer	key	results	in	less
repetition).	[[NOTE:	All	arithmetic	below	is	assumed	to	be	on	a	byte	basis	and	so	is	implied	to	be	modulo
256.]]

			j	=	0
			for	i	=	0	to	255
					j	=	j	+	S[i]	+	K[i]
					swap	(S[i],	S[j])

Encryption	and	decryption	are	performed	by	XORing	a	byte	of	plaintext/ciphertext	with	a	random	byte	from	the	S-
box	in	order	to	produce	the	ciphertext/plaintext,	as	follows:

			Initialize	i	and	j	to	zero

For	each	byte	of	plaintext	(or	ciphertext):

			i	=	i	+	1
			j	=	j	+	S[i]
			swap	(S[i],	S[j])
			z	=	S[i]	+	S[j]

			Decryption:	plaintext	[i]	=	S[z]	XOR	ciphertext	[i]
			Encryption:	ciphertext	[i]	=	S[z]	XOR	plaintext	[i]

A	Perl	implementation	of	RC4	(fine	for	academic,	but	not	production,	purposes)	can	be	found	at
http://www.garykessler.net/software/index.html#RC4.

In	2014,	Rivest	and	Schuldt	developed	a	redesign	of	RC4	called	Spritz.	The	main	operation	of	Spritz	is	similar	to
the	main	operation	of	RC4,	except	that	a	new	variable,	w,	is	added:

			i	=	i	+	w
			j	=	k	+	S	[j	+	S[i]]
			k	=	i	+	k	+	S[j]
			swap	(S[i],	S[j])
			z	=	(S[j	+	S[i	+	S[z+k]]]

			Decryption:	plaintext	[i]	=	S[z]	XOR	ciphertext	[i]
			Encryption:	ciphertext	[i]	=	S[z]	XOR	plaintext	[i]

As	seen	above,	RC4	has	two	pointers	into	the	S-box,	namely,	i	and	j;	Spritz	adds	a	third	pointer,	k.

Pointer	i	move	slowly	through	the	S-box;	note	that	it	is	incremented	by	1	in	RC4	and	by	a	constant,	w,	in	Spritz.
Spritz	allows	w	to	take	on	any	odd	value,	ensuring	that	it	is	always	relatively	prime	to	256.	(In	essence,	RC4	sets	w
to	a	value	of	1.)

In	both	ciphers,	the	other	pointer(s)	—	j	in	RC4	or	j	and	k	in	Spritz	—	move	pseudorandomly	through	the	S-box.
Both	ciphers	have	a	single	swap	of	entries	in	the	S-box.	Both	also	produce	an	output	byte,	z,	as	a	function	of	the
other	parameters.	Spritz,	additionally,	includes	the	previous	value	of	z	as	part	of	the	calculation	of	the	new	value	of
z.

5.14.	Challenge-Handshake	Authentication	Protocol	(CHAP)

CHAP,	originally	described	in	RFC	1994,	and	its	variants	(e.g.,	Microsoft's	MS-CHAP)	are	authentication	schemes
that	allow	two	parties	to	demonstrate	knowledge	of	a	shared	secret	without	actually	divulging	that	shared	secret
to	a	third	party	who	might	be	eavesdropping.

	

FIGURE	26:	CHAP	Handshake.

The	operation	of	CHAP	is	relatively	straight-forward.	Assume	that	the	Client	(Alice)	is	logging	on	to	a	remote
Server	(Bob)	across	the	Internet.	The	Client	needs	to	prove	to	the	Server	that	it	knows	the	password	but	doesn't
want	to	reveal	the	password	in	any	form	that	an	eavesdropper	(Eve)	can	decrypt.	In	CHAP:

1.	 The	User	sends	the	password	(in	plaintext)	to	the	Server.
2.	 The	Server	sends	some	random	challenge	string	(i.e.,	some	number	of	octets)	to	the	User.

Based	upon	the	password	and	some	algorithm,	the	User	generates	an	encrypted	response	string	(the	same
length	as	the	challenge)	and	sends	it	to	the	Server.

3.	 The	Server	looks	up	the	User's	password	in	it's	database	and,	using	the	same	algorithm,	generates	an
expected	response	string.

4.	 The	Server	compares	its	expected	response	to	the	actual	response	sent	by	the	User.	If	the	two	match,	the
User	is	authenticated.

Since	the	password	is	never	revealed	to	a	third-party,	why	can't	we	then	just	keep	the	same	password	forever?
Note	that	CHAP	is	potentially	vulnerable	to	a	known	plaintext	attack;	the	challenge	is	plaintext	and	the	response	is
encrypted	using	the	password	and	a	known	CHAP	algorithm.	If	Eve	has	enough	challenge/response	pairs,	she
might	well	be	able	to	determine	the	password.

6.	CONCLUSION...	OF	SORTS

This	paper	has	briefly	described	how	cryptography	works.	The	reader	must	beware,	however,	that	there	are	a
number	of	ways	to	attack	every	one	of	these	systems;	cryptanalysis	and	attacks	on	cryptosystems,	however,	are
well	beyond	the	scope	of	this	paper.	In	the	words	of	Sherlock	Holmes	(ok,	Arthur	Conan	Doyle,	really),	"What	one
man	can	invent,	another	can	discover"	("The	Adventure	of	the	Dancing	Men").

Cryptography	is	a	particularly	interesting	field	because	of	the	amount	of	work	that	is,	by	necessity,	done	in	secret.
The	irony	is	that	secrecy	is	not	the	key	to	the	goodness	of	a	cryptographic	algorithm.	Regardless	of	the
mathematical	theory	behind	an	algorithm,	the	best	algorithms	are	those	that	are	well-known	and	well-documented
because	they	are	also	well-tested	and	well-studied!	In	fact,	time	is	the	only	true	test	of	good	cryptography;	any
cryptographic	scheme	that	stays	in	use	year	after	year	is	most	likely	a	good	one.	The	strength	of	cryptography	lies
in	the	choice	(and	management)	of	the	keys;	longer	keys	will	resist	attack	better	than	shorter	keys.

The	corollary	to	this	is	that	consumers	should	run,	not	walk,	away	from	any	product	that	uses	a	proprietary
cryptography	scheme,	ostensibly	because	the	algorithm's	secrecy	is	an	advantage.	The	observation	that	a
cryptosystem	should	be	secure	even	if	everything	about	the	system	—	except	the	key	—	is	known	by	your
adversary	has	been	a	fundamental	tenet	of	cryptography	for	over	125	years.	It	was	first	stated	by	Dutch	linguist
Auguste	Kerckhoffs	von	Nieuwenhoff	in	his	1883	(yes,	1883)	papers	titled	La	Cryptographie	militaire,	and	has
therefore	become	known	as	"Kerckhoffs'	Principle."

Getting	a	new	crypto	scheme	accepted,	marketed,	and,	commercially	viable	is	always	an	interesting
challenge.	Back	in	~2011,	for	example,	a	$10,000	challenge	page	for	a	new	cipher	called	DioCipher	was
posted	and	scheduled	to	expire	on	1	January	2013	—	which	it	did.	And	that	was	the	last	that	I	heard	of
DioCipher.	I	leave	it	to	the	reader	to	consider	the	validity	and	usefulness	of	the	public	challenge	process.

7.	REFERENCES	AND	FURTHER	READING

Bamford,	J.	(1983).	The	Puzzle	Palace:	Inside	the	National	Security	Agency,	America's	most	secret	intelligence
organization.	New	York:	Penguin	Books.
Bamford,	J.	(2001).	Body	of	Secrets	:	Anatomy	of	the	Ultra-Secret	National	Security	Agency	from	the	Cold	War
Through	the	Dawn	of	a	New	Century.	New	York:	Doubleday.
Barr,	T.H.	(2002).	Invitation	to	Cryptology.	Upper	Saddle	River,	NJ:	Prentice	Hall.
Basin,	D.,	Cremers,	C.,	Miyazaki,	K.,	Radomirovic,	S.,	&	Watanabe,	D.	(2015,	May/June).	Improving	the
Security	of	Cryptographic	Protocol	Standards.	IEEE	Security	&	Privacy,	13(3),	24:31.
Bauer,	F.L.	(2002).	Decrypted	Secrets:	Methods	and	Maxims	of	Cryptology,	2nd	ed.	New	York:	Springer
Verlag.

Belfield,	R.	(2007).	The	Six	Unsolved	Ciphers:	Inside	the	Mysterious	Codes	That	Have	Confounded	the	World's
Greatest	Cryptographers.	Berkeley,	CA:	Ulysses	Press.
Denning,	D.E.	(1982).	Cryptography	and	Data	Security.	Reading,	MA:	Addison-Wesley.
Diffie,	W.,	&	Landau,	S.	(1998).	Privacy	on	the	Line.	Boston:	MIT	Press.
Electronic	Frontier	Foundation.	(1998).	Cracking	DES:	Secrets	of	Encryption	Research,	Wiretap	Politics	&
Chip	Design.	Sebastopol,	CA:	O'Reilly	&	Associates.
Federal	Information	Processing	Standards	(FIPS)	140-2.	(2001,	May	25).	Security	Requirements	for
Cryptographic	Modules.	Gaithersburg,	MD:	National	Intitute	of	Standards	and	Technology	(NIST).	Retrieved
from	http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
Ferguson,	N.,	&	Schneier,	B.	(2003).	Practical	Cryptography.	New	York:	John	Wiley	&	Sons.
Ferguson,	N.,	Schneier,	B.,	&	Kohno,	T.	(2010).	Cryptography	Engineering:	Design	Principles	and	Practical
Applications.	New	York:	John	Wiley	&	Sons.
Flannery,	S.	with	Flannery,	D.	(2001).	In	Code:	A	Mathematical	Journey.	New	York:	Workman	Publishing
Company.
Ford,	W.,	&	Baum,	M.S.	(2001).	Secure	Electronic	Commerce:	Building	the	Infrastructure	for	Digital
Signatures	and	Encryption,	2nd	ed.	Englewood	Cliffs,	NJ:	Prentice	Hall.
Garfinkel,	S.	(1995).	PGP:	Pretty	Good	Privacy.	Sebastopol,	CA:	O'Reilly	&	Associates.
Grant,	G.L.	(1997).	Understanding	Digital	Signatures:	Establishing	Trust	over	the	Internet	and	Other
Networks.	New	York:	Computing	McGraw-Hill.
Grabbe,	J.O.	(1997,	October	10).	Cryptography	and	Number	Theory	for	Digital	Cash.	Retrieved	from
http://www-swiss.ai.mit.edu/6.805/articles/money/cryptnum.htm
Kahn,	D.	(1983).	Kahn	on	Codes:	Secrets	of	the	New	Cryptology.	New	York:	Macmillan.
Kahn,	D.	(1996).	The	Codebreakers:	The	Story	of	Secret	Writing,	revised	ed.	New	York:	Scribner.
Kaufman,	C.,	Perlman,	R.,	&	Speciner,	M.	(1995).	Network	Security:	Private	Communication	in	a	Public	World.
Englewood	Cliffs,	NJ):	Prentice	Hall.
Koblitz,	N.	(1994).	A	Course	in	Number	Theory	and	Cryptography,	2nd	ed.	New	York:	Springer-Verlag.
Levy,	S.	(1999,	April).	The	Open	Secret.	WIRED	Magazine,	7(4).	Retrieved	from
http://www.wired.com/wired/archive/7.04/crypto.html
Levy,	S.	(2001).	Crypto:	When	the	Code	Rebels	Beat	the	Government	—	Saving	Privacy	in	the	Digital	Age.	New
York:	Viking	Press.
Mao,	W.	(2004).	Modern	Cryptography:	Theory	&	Practice.	Upper	Saddle	River,	NJ:	Prentice	Hall	Professional
Technical	Reference.
Marks,	L.	(1998).	Between	Silk	and	Cyanide:	A	Codemaker's	War,	1941-1945.	New	York:	The	Free	Press
(Simon	&	Schuster).
Schneier,	B.	(1996).	Applied	Cryptography,	2nd	ed.	New	York:	John	Wiley	&	Sons.
Schneier,	B.	(2000).	Secrets	&	Lies:	Digital	Security	in	a	Networked	World.	New	York:	John	Wiley	&	Sons.
Simion,	E.	(2015,	January/February).	The	Relevance	of	Statistical	Tests	in	Cryptography.	IEEE	Security	&
Privacy,	13(1),	66:70.
Singh,	S.	(1999).	The	Code	Book:	The	Evolution	of	Secrecy	from	Mary	Queen	of	Scots	to	Quantum
Cryptography.	New	York:	Doubleday.
Smart,	N.	(2014).	Cryptography:	An	Introduction,	3rd	ed.	Retrieved	from	https://www.cs.umd.edu/~waa/414-
F11/IntroToCrypto.pdf
Smith,	L.D.	(1943).	Cryptography:	The	Science	of	Secret	Writing.	New	York:	Dover	Publications.
Spillman,	R.J.	(2005).	Classical	and	Contemporary	Cryptology.	Upper	Saddle	River,	NJ:	Pearson	Prentice-Hall.
Stallings,	W.	(2006).	Cryptography	and	Network	Security:	Principles	and	Practice,	4th	ed.	Englewood	Cliffs,
NJ:	Prentice	Hall.
Trappe,	W.,	&	Washington,	L.C.	(2006).	Introduction	to	Cryptography	with	Coding	Theory,	2nd	ed.	Upper
Saddle	River,	NJ:	Pearson	Prentice	Hall.
Young,	A.,	&	Yung,	M.	(2004).	Malicious	Cryptography:	Exposing	Cryptovirology.	New	York:	John	Wiley	&
Sons.

On	the	Web:
Bob	Lord's	Online	Crypto	Museum
Crypto	Museum
Crypto-Gram	Newsletter
Cypherpunk	--	A	history
Internet	Engineering	Task	Force	(IETF)	Security	Area

An	Open	Specification	for	Pretty	Good	Privacy	(openpgp)
Common	Authentication	Technology	(cat)
IP	Security	Protocol	(ipsec)
One	Time	Password	Authentication	(otp)
Public-Key	Infrastructure	(X.509)	(pkix)
S/MIME	Mail	Security	(smime)
Simple	Public	Key	Infrastructure	(spki)
Transport	Layer	Security	(tls)
Web	Transaction	Security	(wts)
Web	Security	(websec)
XML	Digital	Signatures	(xmldsig)

Kerberos:	The	Network	Authentication	Protocol	(MIT)
The	MIT	Kerberos	&	Internet	trust	(MIT-KIT)	Consortium	(MIT)
Peter	Gutman's	godzilla	crypto	tutorial
Pretty	Good	Privacy	(PGP):

The	GNU	Privacy	Guard	(GPG)
GPGTools
The	International	PGP	Home	Page
The	OpenPGP	Alliance

RSA's	Cryptography	FAQ	(v4.1,	2000)
Interspersed	in	RSA's	Public-Key	Cryptography	Standards	(PKCS)	pages	are	a	very	good	set	of	chapters
about	cryptography.
Ron	Rivest's	"Cryptography	and	Security"	Page
"List	of	Cryptographers"	from	U.C.	Berkeley

Software:
Wei	Dai's	Crypto++,	a	free	C++	class	library	of	cryptographic	primitives
Peter	Gutman's	cryptlib	security	toolkit
A	Perl	implementation	of	RC4	(for	academic	but	not	production	purposes)	can	be	found	at
http://www.garykessler.net/software/index.html#RC4.
A	Perl	program	to	decode	Cisco	type	7	passwords	can	be	found	at
http://www.garykessler.net/software/index.html#cisco7.
The	Rijndael	page

And	for	a	purely	enjoyable	fiction	book	that	combines	cryptography	and	history,	check	out	Neal	Stephenson's
Crytonomicon	(published	May	1999).	You	will	also	find	in	it	a	new	secure	crypto	scheme	based	upon	an	ordinary
deck	of	cards	(ok,	you	need	the	jokers...)	called	the	Solitaire	Encryption	Algorithm,	developed	by	Bruce	Schneier.

Finally,	I	am	not	in	the	clothing	business	although	I	do	have	an	impressive	t-
shirt	collection	(over	350	and	counting!).	I	still	proudly	wear	the	DES	(well,
actually	the	IDEA)	encryption	algorithm	t-shirt	from	2600	Magazine	which,
sadly,	appears	to	be	no	longer	available	(left).	(It	was	always	ironic	to	me
that	The	Hacker	Quarterly	got	the	algorithm	wrong	but...)	A	t-shirt	with
Adam	Back's	RSA	Perl	code	can	be	found	at
http://www.cypherspace.org/~adam/uk-shirt.html	(right).

APPENDIX.	SOME	MATH	NOTES

A	number	of	readers	over	time	have	asked	for	some	rudimentary	background	on	a	few	of	the	less	well-known
mathematical	functions	mentioned	in	this	paper.	Although	this	is	purposely	not	a	mathematical	treatise,	some	of
the	math	functions	mentioned	here	are	essential	to	grasping	how	modern	crypto	functions	work.	To	that	end,	some
of	the	mathematical	functions	mentioned	in	this	paper	are	defined	in	greater	detail	below.

A.1.	The	Exclusive-OR	(XOR)	Function

Exclusive	OR	(XOR)	is	one	of	the	fundamental	mathematical	operations	used	in	cryptography	(and	many	other
applications).	George	Boole,	a	mathematician	in	the	late	1800s,	invented	a	new	form	of	"algebra"	that	provides	the
basis	for	building	electronic	computers	and	microprocessor	chips.	Boole	defined	a	bunch	of	primitive	logical
operations	where	there	are	one	or	two	inputs	and	a	single	output	depending	upon	the	operation;	the	input	and
output	are	either	TRUE	or	FALSE.	The	most	elemental	Boolean	operations	are:

NOT:	The	output	value	is	the	inverse	of	the	input	value	(i.e.,	the	output	is	TRUE	if	the	input	is	false,	FALSE	if
the	input	is	true)
AND:	The	output	is	TRUE	if	all	inputs	are	true,	otherwise	FALSE.	(E.g.,	"the	sky	is	blue	AND	the	world	is	flat"
is	FALSE	while	"the	sky	is	blue	AND	security	is	a	process"	is	TRUE.)
OR:	The	output	is	TRUE	if	either	or	both	inputs	are	true,	otherwise	FALSE.	(E.g.,	"the	sky	is	blue	OR	the
world	is	flat"	is	TRUE	and	"the	sky	is	blue	OR	security	is	a	process"	is	TRUE.)
XOR	(Exclusive	OR):	The	output	is	TRUE	if	exactly	one	of	the	inputs	is	TRUE,	otherwise	FALSE.	(E.g.,	"the	sky
is	blue	XOR	the	world	is	flat"	is	TRUE	while	"the	sky	is	blue	XOR	security	is	a	process"	is	FALSE.)

I'll	only	discuss	XOR	for	now	and	demonstrate	its	function	by	the	use	of	a	so-called	truth	tables.	In	computers,
Boolean	logic	is	implemented	in	logic	gates;	for	design	purposes,	XOR	has	two	inputs	(black)	and	a	single	output
(red),	and	its	logic	diagram	looks	like	this:

XOR
Input	#1

0 1

Input	#2
0 0 1

1 1 0

So,	in	an	XOR	operation,	the	output	will	be	a	1	if	one	input	is	a	1;	otherwise,	the	output	is	0.	The	real	significance
of	this	is	to	look	at	the	"identity	properties"	of	XOR.	In	particular,	any	value	XORed	with	itself	is	0	and	any	value
XORed	with	0	is	just	itself.	Why	does	this	matter?	Well,	if	I	take	my	plaintext	and	XOR	it	with	a	key,	I	get	a	jumble
of	bits.	If	I	then	take	that	jumble	and	XOR	it	with	the	same	key,	I	return	to	the	original	plaintext.

NOTE:	Boolean	truth	tables	usually	show	the	inputs	and	output	as	a	single	bit	because	they	are	based	on	single	bit
inputs,	namely,	TRUE	and	FALSE.	In	addition,	we	tend	to	apply	Boolean	operations	bit-by-bit.	For	convenience,	I
have	created	Boolean	logic	tables	when	operating	on	bytes.

A.2.	The	modulo	Function
The	modulo	function	is,	simply,	the	remainder	function.	It	is	commonly	used	in	programming	and	is	critical	to	the
operation	of	any	mathematical	function	using	digital	computers.

To	calculate	X	modulo	Y	(usually	written	X	mod	Y),	you	merely	determine	the	remainder	after	removing	all
multiples	of	Y	from	X.	Clearly,	the	value	X	mod	Y	will	be	in	the	range	from	0	to	Y-1.

Some	examples	should	clear	up	any	remaining	confusion:

15	mod	7	=	1
25	mod	5	=	0
33	mod	12	=	9
203	mod	256	=	203

Modulo	arithmetic	is	useful	in	crypto	because	it	allows	us	to	set	the	size	of	an	operation	and	be	sure	that	we	will
never	get	numbers	that	are	too	large.	This	is	an	important	consideration	when	using	digital	computers.

A.3.	Information	Theory	and	Entropy

Information	theory	is	the	formal	study	of	reliable	transmission	of	information	in	the	least	amount	of	space	or,	in	the
vernacular	of	information	theory,	the	fewest	symbols.	For	purposes	of	digital	communication,	a	symbol	can	be	a
byte	(i.e.,	an	eight-bit	octet)	or	an	even	smaller	unit	of	transmission.

The	father	of	information	theory	is	Bell	Labs	scientist	and	MIT	professor	Claude	E.	Shannon.	His	seminal	paper,	"A
Mathematical	Theory	of	Communication"	(The	Bell	System	Technical	Journal,	Vol.	27,	pp.	379-423,	623-656,	July,
October,	1948),	defined	a	field	that	has	laid	the	mathematical	foundation	for	so	many	things	that	we	take	for
granted	today,	from	data	compression,	data	storage	and	communication,	and	quantum	computing	to	language
processing,	plagiarism	detection	and	other	linguistic	analysis,	and	statistical	modeling.	And,	of	course,
cryptography	—	although	crypto	pre-dates	information	theory	by	nearly	2000	years.

There	are	many	everyday	computer	and	communications	applications	that	have	been	enabled	by	the	formalization
of	information	theory,	such	as:

Lossless	data	compression,	where	the	compressed	data	is	an	exact	replication	of	the	uncompressed	source
(e.g.,	PKZip,	GIF,	PNG,	and	WAV).
Lossy	data	compression,	where	the	compressed	data	can	be	used	to	reproduce	the	original	uncompressed
source	within	a	certain	threshold	of	accuracy	(e.g.,	JPG	and	MP3).
Coding	theory,	which	describes	the	impact	of	bandwidth	and	noise	on	the	capacity	of	data	communication
channels	from	modems	to	Digital	Subscriber	Line	(DSL)	services,	why	a	CD	or	DVD	with	scratches	on	the
surface	can	still	be	read,	and	codes	used	in	error-correcting	memory	chips	and	forward	error-correcting
satellite	communication	systems.

One	of	the	key	concepts	of	information	theory	is	that	of	entropy.	In	physics,	entropy	is	a	quantification	of	the
disorder	in	a	system;	in	information	theory,	entropy	describes	the	uncertainty	of	a	random	variable	or	the
randomness	of	an	information	symbol.	As	an	example,	consider	a	file	that	has	been	compressed	using	PKZip.	The
original	file	and	the	compressed	file	have	the	same	information	content	but	the	smaller	(i.e.,	compressed)	file	has
more	entropy	because	the	content	is	stored	in	a	smaller	space	(i.e.,	with	fewer	symbols)	and	each	data	unit	has
more	randomness	than	in	the	uncompressed	version.	In	fact,	a	perfect	compression	algorithm	would	result	in
compressed	files	with	the	maximum	possible	entropy;	i.e.,	the	files	would	contain	the	same	number	of	0s	and	1s,
and	they	would	be	distributed	within	the	file	in	a	totally	unpredictable,	random	fashion.

As	another	example,	consider	the	entropy	of	passwords	(this	text	is	taken	from	my	paper,	"Passwords	—	Strengths
And	Weaknesses,"	citing	an	example	from	Firewalls	and	Internet	Security:	Repelling	the	Wily	Hacker	by	Cheswick
&	Bellovin	[1994]):

Most	Unix	systems	limit	passwords	to	eight	characters	in	length,	or	64	bits.	But	Unix	only	uses	the	seven
significant	bits	of	each	character	as	the	encryption	key,	reducing	the	key	size	to	56	bits.	But	even	this	is
not	as	good	as	it	might	appear	because	the	128	possible	combinations	of	seven	bits	per	character	are	not
equally	likely;	users	usually	do	not	use	control	characters	or	non-alphanumeric	characters	in	their
passwords.	In	fact,	most	users	only	use	lowercase	letters	in	their	passwords	(and	some	password	systems
are	case-insensitive,	in	any	case).	The	bottom	line	is	that	ordinary	English	text	of	8	letters	has	an
information	content	of	about	2.3	bits	per	letter,	yielding	an	18.4-bit	key	length	for	an	8-letter	passwords
composed	of	English	words.	Many	people	choose	names	as	a	password	and	this	yields	an	even	lower
information	content	of	about	7.8	bits	for	the	entire	8-letter	name.	As	phrases	get	longer,	each	letter	only
adds	about	1.2	to	1.5	bits	of	information,	meaning	that	a	16-letter	password	using	words	from	an	English
phrase	only	yields	a	19-	to	24-bit	key,	not	nearly	what	we	might	otherwise	expect.

Encrypted	files	tend	to	have	a	great	deal	of	randomness.	This	is	why	a	compressed	file	can	be	encrypted	but	an
encrypted	file	cannot	be	compressed;	compression	algorithms	rely	on	redundancy	and	repetitive	patterns	in	the
source	file	and	such	syndromes	do	not	appear	in	encrypted	files.

Randomness	is	such	an	integral	characteristic	of	encrypted	files	that	an	entropy	test	is	often	the	basis	for
searching	for	encrypted	files.	Not	all	highly	randomized	files	are	encrypted,	but	the	more	random	the	contents	of	a
file,	the	more	likely	that	the	file	is	encrypted.	As	an	example,	AccessData's	Forensic	Toolkit	(FTK),	software	widely
used	in	the	computer	forensics	field,	uses	the	following	tests	to	detect	encrypted	files:

Arithmetic	Mean:	Calculated	by	summing	all	of	the	bytes	in	a	file	and	dividing	by	the	file	length;	if	random,
the	value	should	be	~1.75.
Χ2	Error	Percent:	This	distribution	is	calculated	for	a	byte	stream	in	a	file;	the	value	indicates	how	frequently
a	truly	random	number	would	exceed	the	calculated	value.
Entropy:	Describes	the	information	density	(per	Shannon)	of	a	file	in	bits/character;	as	entropy	approaches	8,
there	is	more	randomness.
MCPI	Error	Percent:	The	Monte	Carlo	algorithm	uses	statistical	techniques	to	approximate	the	value	of	π;	a

high	error	rate	implies	more	randomness.
Serial	Correlation	Coefficient:	Indicates	the	amount	to	which	each	byte	is	an	e-mail	relies	on	the	previous
byte.	A	value	close	to	0	indicates	randomness.

SIDEBAR:	An	8-bit	byte	has	256	possible	values.	The	entropy	of	a	binary	file	can	be	calculated	using	the
following	formula:

where	n=256	and	P(xi)	is	the	probability	of	a	byte	in	this	file	having	the	value	i.	A	small	Perl	program	to
compute	the	entropy	of	a	file	can	be	found	at	entropy.zip.

Given	this	need	for	randomness,	how	do	we	ensure	that	crypto	algorithms	produce	random	numbers	for	high	levels
of	entropy?	Computers	use	random	number	generators	(RNGs)	for	myriad	purposes	but	computers	cannot	actually
generate	truly	random	sequences	but,	rather,	sequences	that	have	mostly	random	characteristics.	To	this	end,
computers	use	pseudorandom	number	generator	(PRNG),	aka	deterministic	random	number	generator,
algorithms.	NIST	has	a	series	of	documents	(SP	800-90:	Random	Bit	Generators)	that	address	this	very	issue:

SP	800-90A:	Recommendation	for	Random	Number	Generation	Using	Deterministic	Random	Bit	Generators
Draft	SP	800-90	B:	Recommendation	for	the	Entropy	Sources	Used	for	Random	Bit	Generation
Draft	SP	800-90	C:	Recommendation	for	Random	Bit	Generator	(RBG)	Constructions

SIDEBAR:	While	the	purpose	of	this	document	is	to	be	tutorial	in	nature,	I	cannot	totally	ignore	the
disclosures	of	Edward	Snowden	in	2013	about	NSA	activities	related	to	cryptography.	One	interesting	set
of	disclosures	is	around	deliberate	weaknesses	in	the	NIST	PRNG	standards	at	the	behest	of	the	NSA.
NIST	denies	any	such	purposeful	flaws	but	this	will	be	evolving	news	over	time.	Interested	readers	might
want	to	review	"NSA	encryption	backdoor	proof	of	concept	published"	(M.	Lee)	or	"Dual_EC_DRBG
backdoor:	a	proof	of	concept"	(A.	Adamantiadis).

Along	these	lines,	another	perspective	of	the	Snowden	disclosures	relates	to	the	impact	on	the	world's
most	confidential	data	and	critical	infrastructures	if	governments	are	able	to	access	encrypted
communications.	In	July	2015,	14	esteemed	cryptographers	and	computer	scientists	released	a	paper
continuing	the	debate	around	cryptography	and	privacy.	The	paper,	titled	"Keys	Under	Doormats:
Mandating	insecurity	by	requiring	government	access	to	all	data	and	communications,"	argues	that
government	access	to	individual	users'	encrypted	information	will	ultimately	yield	significant	flaws	in
larger	systems	and	infrastructures.	Also	check	out	the	N.Y.	Times	article,	"Security	Experts	Oppose
Government	Access	to	Encrypted	Communication"	(N.	Perlroth).

For	readers	interested	in	learning	more	about	information	theory,	see	the	following	sites:

Wikipedia	entry	for	Information	Theory
A	Short	Course	in	Information	Theory	(Eight	lectures	by	David	J.C.	MacKay)
Entropy	and	Information	Theory	by	Gray	(Revised	1st	ed.,	1991).	In	2011,	the	second	edition	was	published.

Finally,	it	is	important	to	note	that	information	theory	is	an	continually	evolving	field.	There	is	an	area	of	research
essentially	questioning	the	"power"	of	entropy	in	determining	the	strength	of	a	cryptosystem.	An	interesting	paper
about	this	is	"Brute	force	searching,	the	typical	set	and	Guesswork"	by	Christiansen,	Duffy,	du	Pin	Calmon,	&
Médard	(2013	IEEE	International	Symposium	on	Information	Theory);	a	relatively	non-technical	overview	of	that
paper	can	be	found	at	"Encryption	Not	Backed	by	Math	Anymore"	by	Hardesty	(DFI	News,	8/15/2013).

ABOUT	THE	AUTHOR

Gary	C.	Kessler,	Ph.D.,	CCE,	CCFP,	CISSP,	is	the	president	and	janitor	of	Gary	Kessler	Associates,	an	independent
consulting	and	training	firm	specializing	in	computer	and	network	security,	computer	forensics,	Internet	access
issues,	and	TCP/IP	networking.	He	has	written	over	60	papers	for	industry	publications,	is	co-author	of	ISDN,	4th.
edition	(McGraw-Hill,	1998),	and	is	a	past	editor-in-chief	of	the	Journal	of	Digital	Forensics,	Security	and	Law.
Gary	is	also	a	Professor	of	Cybersecurity	and	chair	of	the	Security	Studies	&	International	Affairs	Dept.	at	Embry-
Riddle	Aeronautical	University	in	Daytona	Beach,	Florida.	He	is	a	former-member	of	the	Vermont	Internet	Crimes
Against	Children	(ICAC)	Task	Force	and	works	with	the	North	Florida	ICAC,	and	is	an	Adjunct	Professor	at	Edith
Cowan	University	in	Perth,	Western	Australia.	Gary	was	formerly	an	Associate	Professor	and	Program	Director	of
the	M.S.	in	Information	Assurance	program	at	Norwich	University	in	Northfield,	Vermont,	and	he	started	the	M.S.
in	Digital	Investigation	Management	and	undergraduate	Computer	&	Digital	Forensics	programs	at	Champlain
College	in	Burlington,	Vermont.	Gary's	e-mail	address	is	gck@garykessler.net	and	his	PGP	public	key	can	be	found
at	http://www.garykessler.net/pubkey.html	or	on	MIT's	PGP	keyserver	(import	the	latest	key!).	Some	of	Gary's	other
crypto	pointers	of	interest	on	the	Web	can	be	found	at	his	Security-related	URLs	list.

ACKNOWLEDGEMENTS

An	acknowledgements	section	is	probably	well	overdue	and	so	I	apologize	to	all	of	you	who	have	made	helpful
comments	that	remain	unacknowledged.	If	you	did	make	comments	that	I	adopted	that	improved	this	paper	and	I
have	failed	to	recognize	you,	please	remind	me!

To	get	the	ball	rolling,	thanks	are	offered	to	Sitaram	Chamarty,	William	R.	Godwin,	Hugh	Macdonald,	and	Douglas
P.	McNutt.

