
Compiler	Construction/Introduction

A	compiler	is	a	computer	program	that	implements	a	programming	language	specification	to	"translate"	programs,	usually	as	a	set	of	files
which	constitute	 the	source	code	written	 in	source	language,	 into	 their	 equivalent	machine	 readable	 instructions	 (the	 target	 language,
often	having	a	binary	form	known	as	object	code).	This	 translation	process	 is	called	compilation.	We	compile	 the	 source	program	 to
create	the	compiled	program.	The	compiled	program	can	then	be	run	(or	executed)	to	do	what	was	specified	in	the	original	source	program.

The	source	language	is	always	a	higher-level	language	in	comparison	to	machine	code,	written	using	some	mixture	of	English	words	and
mathematical	 notation,	 assembly	 language	 being	 the	 lowest	 compilable	 language	 (an	 assembler	 being	 a	 special	 case	 of	 a	 compiler	 that
translates	assembly	language	into	machine	code).	Higher-level	languages	are	the	most	complex	to	support	in	a	compiler/interpreter,	not	only
because	they	increase	the	level	of	abstraction	between	the	source	code	and	the	resulting	machine	code,	but	because	increased	complexity	is
required	to	formalize	those	abstract	structures.

The	 target	 language	 is	 normally	 a	 low-level	 language	 such	 as	 assembly,	 written	 with	 somewhat	 cryptic	 abbreviations	 for	 machine
instructions,	 in	 these	 cases	 it	 will	 also	 run	 an	 assembler	 to	 generate	 the	 final	machine	 code.	 But	 some	 compilers	 can	 directly	 generate
machine	code	for	some	actual	or	virtual	computer	e.g.	byte-code	for	the	Java	Virtual	Machine.

Another	common	approach	to	the	resulting	compilation	effort	is	to	target	a	virtual	machine.	That	will	do	just-in-time	compilation	and	byte-
code	interpretation	and	blur	the	traditional	categorizations	of	compilers	and	interpreters.

For	 example,	 C	 and	C++	will	 generally	 be	 compiled	 for	 a	 target	 `architecture'.	 The	 draw-back	 is	 that	 because	 there	 are	many	 types	 of
processor	there	will	need	to	be	as	many	distinct	compilations.	In	contrast	Java	will	target	a	Java	Virtual	Machine,	which	is	an	independent
layer	above	the	'architecture'.	The	difference	is	that	the	generated	byte-code,	not	true	machine	code,	brings	the	possibility	of	portability,	but
will	need	a	Java	Virtual	Machine	(the	byte-code	interpreter)	for	each	platform.	The	extra	overhead	of	this	byte-code	interpreter	means	slower
execution	speed.

An	interpreter	is	a	computer	program	which	executes	the	translation	of	the	source	program	at	run-time.	It	will	not	generate	independent
executable	programs	nor	object	libraries	ready	to	be	included	in	other	programs.

A	program	which	does	a	lot	of	calculation	or	internal	data	manipulation	will	generally	run	faster	in	compiled	form	than	when	interpreted.	But
a	program	which	does	a	lot	of	input/output	and	very	little	calculation	or	data	manipulation	may	well	run	at	about	the	same	speed	in	either
case.

Being	themselves	computer	programs,	both	compilers	and	interpreters	must	be	written	in	some	implementation	language.	Up	until	the	early
1970's,	most	compilers	were	written	in	assembly	language	for	some	particular	type	of	computer.	The	advent	of	C	and	Pascal	compilers,	each
written	in	their	own	source	language,	led	to	the	more	general	use	of	high-level	languages	for	writing	compilers.	Today,	operating	systems	will
provide	at	least	a	free	C	compiler	to	the	user	and	some	will	even	include	it	as	part	of	the	OS	distribution.

Compiler	construction	 is	normally	considered	as	an	advanced	rather	 than	a	novice	programming	task,	mainly	due	to	 the	quantity	of	code
needed	(and	the	difficulties	of	grokking	this	amount	of	code)	rather	than	the	difficulty	of	any	particular	coding	constructs.	To	this	most	books
about	compilers	have	some	blame.	The	large	gap	between	production	compilers	and	educational	exercises	promotes	this	defeatist	view.

For	 the	 first	 version	of	 a	 compiler	written	 in	 its	 own	 source	 language	you	have	a	bootstrapping	problem.	Once	you	get	a	 simple	version
working,	you	can	then	use	it	to	improve	itself.

The	compilation	process

At	the	highest	level,	compilation	is	broken	into	a	number	of	parts:

1.	 Lexical	analysis	(tokenizing)
2.	 Syntax	analysis	(parsing)
3.	 Type	checking
4.	 Code	generation

Any	compiler	has	some	essential	requirements,	which	are	perhaps	more	stringent	than	for	most	programs:

Any	valid	program	must	be	translated	correctly,	i.e.	no	incorrect	translation	is	allowed.
Any	invalid	program	must	be	rejected	and	not	translated.

There	will	inevitably	be	some	valid	programs	which	can't	be	translated	due	to	their	size	or	complexity	in	relation	to	the	hardware	available,
for	example	problems	due	to	memory	size.	The	compiler	may	also	have	some	fixed-size	tables	which	place	limits	on	what	can	be	compiled
(some	language	definitions	place	explicit	lower	bounds	on	the	sizes	of	certain	tables,	to	ensure	that	programs	of	reasonable	size/complexity
can	be	compiled).

There	are	also	some	desirable	requirements,	some	of	which	may	be	mutually	exclusive:

Introducing	Compilers	and	Interpreters

Requirements



Errors	should	be	reported	in	terms	of	the	source	language	or	program.
The	position	at	which	an	error	was	detected	should	be	indicated;	if	the	actual	error	probably	occurred	somewhat	earlier	then	some
indication	of	possible	cause(s)	should	also	be	provided.
Compilation	should	be	fast.
The	translated	program	should	be	fast.
The	translated	program	should	be	small.
If	the	source	language	has	some	national	or	international	standard:

Ideally	the	entire	standard	should	be	implemented.
Any	restrictions	or	limits	should	be	well	and	clearly	documented.
If	extensions	to	the	standard	have	been	implemented:

These	extensions	should	be	documented	as	such.
There	should	be	some	way	of	turning	these	extensions	off.

There	are	also	some	possibly	controversial	requirements	to	consider	(see	chapter	on	dealing	with	errors):

Errors	detected	when	the	translated	program	is	running	should	still	be	reported	in	relation	to	the	original	source	program	e.g.	line	number.
Errors	detected	when	the	translated	program	is	running	should	include	division	by	0,	running	out	of	memory,	use	of	an	array
subscript/index	which	is	too	big	or	too	small,	attempted	use	of	an	undefined	variable,	incorrect	use	of	pointers,	etc.

For	 ease	 of	 exposition	 we	 will	 divide	 the	 compiler	 into	 a	 front	 end	 and	 a	 back	 end.	 These	 need	 not	 even	 be	 written	 in	 the	 same
implementation	language,	providing	they	can	communicate	effectively	via	some	intermediate	representation.

The	following	list	itemizes	the	tasks	carried	out	by	the	front	end	and	the	back	end.	Note	that	the	tasks	are	not	carried	out	in	any	particular
order,	as	outlined	below,	and	discussed	in	more	detail	in	subsequent	chapters.

Front	end

lexical	analysis	-	convert	characters	to	tokens
syntax	analysis	-	check	for	valid	sequence	of	tokens
semantic	analysis	-	check	for	meaning
some	global/high-level	optimization

Back	end

some	local	optimization
register	allocation
peep-hole	optimization
code	generation
instruction	scheduling

Almost	 all	 the	 source-language	 aspects	 are	 handled	 by	 the	 front	 end.	 It	 is	 possible	 to	 have	 different	 front	 ends	 for	 different	 high-level
languages,	and	a	common	back	end	which	does	most	of	the	optimization.

Almost	all	the	machine-dependent	aspects	are	handled	by	the	back	end.	It	is	possible	to	have	different	back	ends	for	different	computers	so
that	the	compiler	can	produce	code	for	different	computers.

The	 front	 end	 is	 normally	 controlled	 by	 the	 syntax	 analysis	 processing.	 As	 necessary,	 the	 syntax	 analysis	 code	will	 call	 a	 routine	which
performs	 some	 lexical	 analysis	 and	 returns	 the	 next	 token.	 At	 selected	 points	 during	 syntax	 analysis,	 appropriate	 semantic	 routines	 are
called	which	perform	any	relevant	semantic	checks	and/or	add	information	to	the	internal	representation.

Next	-	Describing	a	Programming	Language

Retrieved	from	"https://en.wikibooks.org/w/index.php?title=Compiler_Construction/Introduction&oldid=3357979"

This	page	was	last	edited	on	5	January	2018,	at	20:05.

Text	is	available	under	the	Creative	Commons	Attribution-ShareAlike	License.;	additional	terms	may	apply.	By	using	this	site,	you	agree	to	the
Terms	of	Use	and	Privacy	Policy.

Overall	Structure


