
Chapter�6.�Authentication
Prev� Part�I.�A	Guide	to	Building	Secure	Web	Applications �Next

Chapter�6.�Authentication
Table	of	Contents

What	is	Authentication?

Types	of	Authentication
Browser	Limitations
HTTP	Basic
HTTP	Digest
Forms	Based	Authentication
Digital	Certificates	(SSL	and	TLS)
Entity	Authentication
Infrastructure	Authentication
Password	Based	Authentication	Systems

What	is	Authentication?
Authentication	is	the	process	of	determining	if	a	user	or	entity	is	who	he/she	claims	to	be.

In	a	web	application	it	is	easy	to	confuse	authentication	and	session	management	(dealt	with	in	a	later	section).
Users	are	typically	authenticated	by	a	username	and	password	or	similar	mechanism.	When	authenticated,	a
session	token	is	usually	placed	into	the	user's	browser	(stored	in	a	cookie).	This	allows	the	browser	to	send	a	token
each	time	a	request	is	being	made,	thus	performing	entity	authentication	on	the	browser.	The	act	of	user
authentication	usually	takes	place	only	once	per	session,	but	entity	authentication	takes	place	with	every	request.

Types	of	Authentication

As	mentioned	there	are	principally	two	types	of	authentication	and	it	is	worth	understanding	the	two	types	and
determining	which	you	really	need	to	be	doing.

User	Authentication	is	the	process	of	determining	that	a	user	is	who	he/she	claims	to	be.

Entity	authentication	is	the	process	of	determining	if	an	entity	is	who	it	claims	to	be.

Imagine	a	scenario	where	an	Internet	bank	authenticates	a	user	initially	(user	authentication)	and	then	manages
sessions	with	session	cookies	(entity	authentication).	If	the	user	now	wishes	to	transfer	a	large	sum	of	money	to
another	account	2	hours	after	logging	on,	it	may	be	reasonable	to	expect	the	system	to	re-authenticate	the	user!

Browser	Limitations

When	reading	the	following	sections	on	the	possible	means	of	providing	authentication	mechanisms,	it	should	be
firmly	in	the	mind	of	the	reader	that	ALL	data	sent	to	clients	over	public	links	should	be	considered	"tainted"	and
all	input	should	be	rigorously	checked.	SSL	will	not	solve	problems	of	authentication	nor	will	it	protect	data	once	it
has	reached	the	client.	Consider	all	input	hostile	until	proven	otherwise	and	code	accordingly.

HTTP	Basic

There	are	several	ways	to	do	user	authentication	over	HTTP.	The	simplest	is	referred	to	as	HTTP	Basic
authentication.	When	a	request	is	made	to	a	URI,	the	web	server	returns	a	HTTP	401	unauthorized	status	code	to
the	client:

HTTP/1.1	401	Authorization	Required

This	tells	the	client	to	supply	a	username	and	password.	Included	in	the	401	status	code	is	the	authentication
header.	The	client	requests	the	username	and	password	from	the	user,	typically	in	a	dialog	box.	The	client	browser
concatenates	the	username	and	password	using	a	":"	separator	and	base	64	encodes	the	string.	A	second	request	is
then	made	for	the	same	resource	including	the	encoded	username	password	string	in	the	authorization	headers.

HTTP	authentication	has	a	problem	in	that	there	is	no	mechanism	available	to	the	server	to	cause	the	browser	to
'logout';	that	is,	to	discard	its	stored	credentials	for	the	user.	This	presents	a	problem	for	any	web	application	that
may	be	used	from	a	shared	user	agent.

The	username	and	password	of	course	travel	in	effective	clear-text	in	this	process	and	the	system	designers	need

http://www.cgisecurity.com/owasp/html/ch06.html Go MAR APR JUN

29
2015 2016 2017

98	captures
	 	
	

� ⍰❎
f �

3	Mar	2003	-	18	Oct	2017 ▾	About	this	capture



to	provide	transport	security	to	protect	it	in	transit.	SSL	or	TLS	are	the	most	common	ways	of	providing
confidentiality	and	integrity	in	transit	for	web	applications.

HTTP	Digest

There	are	two	forms	of	HTTP	Digest	authentication	that	were	designed	to	prevent	the	problem	of	username	and
password	being	interceptable.	The	original	digest	specification	was	developed	as	an	extension	to	HTTP	1.0,	with
an	improved	scheme	defined	for	HTTP	1.1.	Given	that	the	original	digest	scheme	can	work	over	HTTP	1.0	and
HTTP	1.1	we	will	describe	both	for	completeness.	The	purpose	of	digest	authentication	schemes	is	to	allow	users
to	prove	they	know	a	password	without	disclosing	the	actual	password.	The	Digest	Authentication	Mechanism	was
originally	developed	to	provide	a	general	use,	simple	implementation,	authentication	mechanism	that	could	be
used	over	unencrypted	channels.

As	can	be	seen	by	the	figure	above,	an	important	part	of	ensuring	security	is	the	addition	of	the	data	sent	by	the
server	when	setting	up	digest	authentication.	If	no	unique	data	were	supplied	for	request,	an	attacker	would
simply	be	able	to	replay	the	digest	or	hash.

The	authentication	process	begins	with	a	401	Unauthorized	response	as	with	basic	authentication.	An	additional
header	WWW-Authenticate	header	is	added	that	explicitly	requests	digest	authentication.	A	nonce	is	generated
(the	data)	and	the	digest	computed.	The	actual	calculation	is	as	follows:

1.	 String	"A1"	consists	of	username,	realm,	password	concatenated	with	colons.

owasp:users@owasp.org:password

2.	 Calculate	MD5	hash	of	this	string	and	represent	the	128	bit	output	in	hex

3.	 String	"A2"	consists	of	method	and	URI

GET:/guide/index.shtml

4.	 Calculate	MD5	of	"A2"	and	represent	output	in	ASCII.

5.	 Concatenate	A1	with	nonce	and	A2	using	colons

6.	 Compute	MD5	of	this	string	and	represent	it	in	ASCII

This	is	the	final	digest	value	sent.

As	mentioned	HTTP	1.1	specified	an	improved	digest	scheme	that	has	additional	protection	for

Replay	attacks

Mutual	authentication

Integrity	protection

The	digest	scheme	in	HTTP	1.0	is	susceptible	to	replay	attacks.	This	occurs	because	an	attacker	can	replay	the
correctly	calculated	digest	for	the	same	resource.	In	effect	the	attacker	sends	the	same	request	to	the	server.	The
improved	digest	scheme	of	HTTP	1.1	includes	a	NC	parameter	or	a	nonce	count	into	the	authorization	header.	This
eight	digit	number	represented	in	hex	increments	each	time	the	client	makes	a	request	with	the	same	nonce.	The
server	must	check	to	ensure	the	nc	is	greater	than	the	last	nc	value	it	received	and	thus	not	honor	replayed
requests.

Other	significant	improvements	of	the	HTTP	1.1	scheme	are	mutual	authentication,	enabling	clients	to	also



authenticate	servers	as	well	as	allowing	servers	to	authenticate	clients	and	integrity	protection.

Forms	Based	Authentication

Rather	than	relying	on	authentication	at	the	protocol	level,	web	based	applications	can	use	code	embedded	in	the
web	pages	themselves.	Specifically,	developers	have	previously	used	HTML	FORMs	to	request	the	authentication
credentials	(this	is	supported	by	the	TYPE=PASSWORD	input	element).	This	allows	a	designer	to	present	the
request	for	credentials	(Username	and	Password)	as	a	normal	part	of	the	application	and	with	all	the	HTML
capabilities	for	internationalization	and	accessibility.

While	dealt	with	in	more	detail	in	a	later	section	it	is	essential	that	authentication	forms	are	submitted	using	a
POST	request.	GET	requests	show	up	in	the	user's	browser	history	and	therefore	the	username	and	password	may
be	visible	to	other	users	of	the	same	browser.

Of	course	schemes	using	forms-based	authentication	need	to	implement	their	own	protection	against	the	classic
protocol	attacks	described	here	and	build	suitable	secure	storage	of	the	encrypted	password	repository.

A	common	scheme	with	Web	applications	is	to	prefill	form	fields	for	users	whenever	possible.	A	user	returning	to
an	application	may	wish	to	confirm	his	profile	information,	for	example.	Most	applications	will	prefill	a	form	with
the	current	information	and	then	simply	require	the	user	to	alter	the	data	where	it	is	inaccurate.	Password	fields,
however,	should	never	be	prefilled	for	a	user.	The	best	approach	is	to	have	a	blank	password	field	asking	the	user
to	confirm	his	current	password	and	then	two	password	fields	to	enter	and	confirm	a	new	password.	Most	often,
the	ability	to	change	a	password	should	be	on	a	page	separate	from	that	for	changing	other	profile	information.

This	approach	offers	two	advantages.	Users	may	carelessly	leave	a	prefilled	form	on	their	screen	allowing	someone
with	physical	access	to	see	the	password	by	viewing	the	source	of	the	page.	Also,	should	the	application	allow
(through	some	other	security	failure)	another	user	to	see	a	page	with	a	prefilled	password	for	an	account	other
than	his	own,	a	"View	Source"	would	again	reveal	the	password	in	plain	text.	Security	in	depth	means	protecting	a
page	as	best	you	can,	assuming	other	protections	will	fail.

Note:	Forms	based	authentication	requires	the	system	designers	to	create	an	authentication	protocol	taking	into
account	the	same	problems	that	HTTP	Digest	authentication	was	created	to	deal	with.	Specifically,	the	designer
should	remember	that	forms	submitted	using	GET	or	POST	will	send	the	username	and	password	in	effective	clear-
text,	unless	SSL	is	used.

Digital	Certificates	(SSL	and	TLS)

Both	SSL	and	TLS	can	provide	client,	server	and	mutual	entity	authentication.	Detailed	descriptions	of	the
mechanisms	can	be	found	in	the	SSL	and	TLS	sections	of	this	document.	Digital	certificates	are	a	mechanism	to
authenticate	the	providing	system	and	also	provide	a	mechanism	for	distributing	public	keys	for	use	in
cryptographic	exchanges	(including	user	authentication	if	necessary).	Various	certificate	formats	are	in	use.	By	far
the	most	widely	accepted	is	the	International	Telecommunication	Union's	X509	v3	certificate	(refer	to	RFC	2459).
Another	common	cryptographic	messaging	protocol	is	PGP.	Although	parts	of	the	commercial	PGP	product	(no
longer	available	from	Network	Associates)	are	proprietary,	the	OpenPGP	Alliance	(http://www.openPGP.org)
represents	groups	who	implement	the	OpenPGP	standard	(refer	to	RFC	2440).

The	most	common	usage	for	digital	certificates	on	web	systems	is	for	entity	authentication	when	attempting	to
connect	to	a	secure	web	site	(SSL).	Most	web	sites	work	purely	on	the	premise	of	server	side	authentication	even
though	client	side	authentication	is	available.	This	is	due	to	the	scarcity	of	client	side	certificates	and	in	the
current	web	deployment	model	this	relies	on	users	to	obtain	their	own	personal	certificates	from	a	trusted	vendor;
and	this	hasn't	really	happened	on	any	kind	of	large	scale.

For	high	security	systems,	client	side	authentication	is	a	must	and	as	such	a	certificate	issuance	scheme	(PKI)
might	need	to	be	deployed.	Further,	if	individual	user	level	authentication	is	required,	then	2-factor	authentication
will	be	necessary.

There	is	a	range	of	issues	concerned	with	the	use	of	digital	certificates	that	should	be	addressed:

Where	is	the	root	of	trust?	That	is,	at	some	point	the	digital	certificate	must	be	signed;	who	is	trusted	to	sign
the	certificate?	Commercial	organizations	provide	such	a	service	identifying	degrees	of	rigor	in	identification
of	the	providing	parties,	permissible	trust	and	liability	accepted	by	the	third	party.	For	many	uses	this	may	be
acceptable,	but	for	high-risk	systems	it	may	be	necessary	to	define	an	in-house	Public	Key	Infrastructure.

Certificate	management:	who	can	generate	the	key	pairs	and	send	them	to	the	signing	authority?

What	is	the	Naming	convention	for	the	distinguished	name	tied	to	the	certificate?

What	is	the	revocation/suspension	process?

What	is	the	key	recovery	infrastructure	process?

Many	other	issues	in	the	use	of	certificates	must	be	addressed,	but	the	architecture	of	a	PKI	is	beyond	the	scope	of
this	document.



Entity	Authentication

Using	Cookies

Cookies	are	often	used	to	authenticate	the	user's	browser	as	part	of	session	management	mechanisms.	This	is
discussed	in	detail	in	the	session	management	section	of	this	document.

A	Note	About	the	Referer

The	referer	[sic]	header	is	sent	with	a	client	request	to	show	where	the	client	obtained	the	URI.	On	the	face	of	it,
this	may	appear	to	be	a	convenient	way	to	determine	that	a	user	has	followed	a	path	through	an	application	or
been	referred	from	a	trusted	domain.	However,	the	referer	is	implemented	by	the	user's	browser	and	is	therefore
chosen	by	the	user.	Referers	can	be	changed	at	will	and	therefore	should	never	be	used	for	authentication
purposes.

Infrastructure	Authentication

DNS	Names

There	are	many	times	when	applications	need	to	authenticate	other	hosts	or	applications.	IP	addresses	or	DNS
names	may	appear	like	a	convenient	way	to	do	this.	However	the	inherent	insecurities	of	DNS	mean	that	this
should	be	used	as	a	cursory	check	only,	and	as	a	last	resort.

IP	Address	Spoofing

IP	address	spoofing	is	also	possible	in	certain	circumstances	and	the	designer	may	wish	to	consider	the
appropriateness.	In	general	use	gethostbyaddr()	as	opposed	to	gethostbyname().	For	stronger	authentication	you
may	consider	using	X.509	certificates	or	implementing	SSL.

Password	Based	Authentication	Systems

Usernames	and	passwords	are	the	most	common	form	of	authentication	in	use	today.	Despite	the	improved
mechanisms	over	which	authentication	information	can	be	carried	(like	HTTP	Digest	and	client	side	certificates),
most	systems	usually	require	a	password	as	the	token	against	which	initial	authorization	is	performed.	Due	to	the
conflicting	goals	that	good	password	maintenance	schemes	must	meet,	passwords	are	often	the	weakest	link	in	an
authentication	architecture.	More	often	than	not,	this	is	due	to	human	and	policy	factors	and	can	be	only	partially
addressed	by	technical	remedies.	Some	best	practices	are	outlined	here,	as	well	as	risks	and	benefits	for	each
countermeasure.	As	always,	those	implementing	authentication	systems	should	measure	risks	and	benefits	against
an	appropriate	threat	model	and	protection	target.

Usernames

While	usernames	have	few	requirements	for	security,	a	system	implementor	may	wish	to	place	some	basic
restriction	on	the	username.	Usernames	that	are	derivations	of	a	real	name	or	actual	real	names	can	clearly	give
personal	detail	clues	to	an	attacker.	Other	usernames	like	social	security	numbers	or	tax	ID's	may	have	legal
implications.	Email	addresses	are	not	good	usernames	for	the	reason	stated	in	the	Password	Lockout	section.

Storing	Usernames	and	Passwords

In	all	password	schemes	the	system	must	maintain	storage	of	usernames	and	corresponding	passwords	to	be	used
in	the	authentication	process.	This	is	still	true	for	web	applications	that	use	the	built	in	data	store	of	operating
systems	like	Windows	NT.	This	store	should	be	secure.	By	secure	we	mean	the	passwords	should	be	stored	in	such
a	way	that	the	application	can	compute	and	compare	passwords	presented	to	it	as	part	of	an	authentication
scheme,	but	the	database	should	not	be	able	to	be	used	or	read	by	administrative	users	or	by	an	adversary	who
manages	to	compromise	the	system.	Hashing	the	passwords	with	a	simple	hash	algorithm	like	SHA-1	is	a
commonly	used	technique.

Ensuring	Password	Quality

Password	quality	refers	to	the	entropy	of	a	password	and	is	clearly	essential	to	ensure	the	security	of	the	users'
accounts.	A	password	of	"password"	is	obviously	a	bad	thing.	A	good	password	is	one	that	is	impossible	to	guess.
That	typically	is	a	password	of	at	least	8	characters,	one	alphanumeric,	one	mixed	case	and	at	least	one	special
character	(not	A-Z	or	0-9).	In	web	applications	special	care	needs	to	be	taken	with	meta-characters.

Password	Lockout

If	an	attacker	is	able	to	guess	passwords	without	the	account	becoming	disabled,	then	eventually	he	will	probably
be	able	to	guess	at	least	one	password.	Automating	password	checking	across	the	web	is	very	simple!	Password
lockout	mechanisms	should	be	employed	that	lock	out	an	account	if	more	than	a	preset	number	of	unsuccessful



login	attempts	are	made.	A	suitable	number	would	be	five.

Password	lockout	mechanisms	do	have	a	drawback,	however.	It	is	conceivable	that	an	adversary	can	try	a	large
number	of	random	passwords	on	known	account	names,	thus	locking	out	entire	systems	of	users.	Given	that	the
intent	of	a	password	lockout	system	is	to	protect	from	brute-force	attacks,	a	sensible	strategy	is	to	lockout
accounts	for	a	number	of	hours.	This	significantly	slows	down	attackers,	while	allowing	the	accounts	to	be	open	for
legitimate	users.

Password	Aging	and	Password	History

Rotating	passwords	is	generally	good	practice.	This	gives	valid	passwords	a	limited	life	cycle.	Of	course,	if	a
compromised	account	is	asked	to	refresh	its	password	then	there	is	no	advantage.

Automated	Password	Reset	Systems

Automated	password	reset	systems	are	common.	They	allow	users	to	reset	their	own	passwords	without	the
latency	of	calling	a	support	organization.	They	clearly	pose	some	security	risks	in	that	a	password	needs	to	be
issued	to	a	user	who	cannot	authenticate	himself.

There	are	several	strategies	for	doing	this.	One	is	to	ask	a	set	of	questions	during	registration	that	can	be	asked	of
someone	claiming	to	be	a	specific	user.	These	questions	should	be	free	form,	i.e.,	the	application	should	allow	the
user	to	choose	his	own	question	and	the	corresponding	answer	rather	than	selecting	from	a	set	of	predetermined
questions.	This	typically	generates	significantly	more	entropy.

Care	should	be	taken	to	never	render	the	questions	and	answers	in	the	same	session	for	confirmation;	i.e.,	during
registration	either	the	question	or	answer	may	be	echoed	back	to	the	client,	but	never	both.

If	a	system	utilizes	a	registered	email	address	to	distribute	new	passwords,	the	password	should	be	set	to	change
the	first	time	the	new	user	logs	on	with	the	changed	password.

It	is	usually	good	practice	to	confirm	all	password	management	changes	to	the	registered	email	address.	While
email	is	inherently	insecure	and	this	is	certainly	no	guarantee	of	notification,	it	is	significantly	harder	for	an
adversary	to	be	able	to	intercept	the	email	consistently.

Sending	Out	Passwords

In	highly	secure	systems	passwords	should	only	be	sent	via	a	courier	mechanism	or	reset	with	solid	proof	of
identity.	Processes	such	as	requiring	valid	government	ID	to	be	presented	to	an	account	administrator	are
common.

Single	Sign-On	Across	Multiple	DNS	Domains

With	outsourcing,	hosting	and	ASP	models	becoming	more	prevalent,	facilitating	a	single	sign-on	experience	to
users	is	becoming	more	desirable.	The	Microsoft	Passport	and	Project	Liberty	schemes	will	be	discussed	in	future
revisions	of	this	document.

Many	web	applications	have	relied	on	SSL	as	providing	sufficient	authentication	for	two	servers	to	communicate
and	exchange	trusted	user	information	to	provide	a	single	sign	on	experience.	On	the	face	of	it	this	would	appear
sensible.	SSL	provides	both	authentication	and	protection	of	the	data	in	transit.

However,	poorly	implemented	schemes	are	often	susceptible	to	man	in	the	middle	attacks.	A	common	scenario	is
as	follows:



The	common	problem	here	is	that	the	designers	typically	rely	on	the	fact	that	SSL	will	protect	the	payload	in
transit	and	assumes	that	it	will	not	be	modified.	He	of	course	forgets	about	the	malicious	user.	If	the	token	consists
of	a	simple	username	then	the	attacker	can	intercept	the	HTTP	302	redirect	in	a	Man-in-the-Middle	attack,	modify
the	username	and	send	the	new	request.	To	do	secure	single	sign-on	the	token	must	be	protected	outside	of	SSL.
This	would	typically	be	done	by	using	symmetric	algorithms	and	with	a	pre-exchanged	key	and	including	a	time-
stamp	in	the	token	to	prevent	replay	attacks.

Prev� Up �Next
Chapter�5.�Architecture� Home �Chapter�7.�Managing	User	Sessions


