Calculus/Differentiation/Basics of Differentiation/Exercises

Find the Derivative by Definition

Find the derivative of the following functions using the limit definition of the derivative.

1.
$$f(x) = x^2$$

2.
$$f(x) = 2x + 2$$

3.
$$f(x) = \frac{x^2}{2}$$

4.
$$f(x) = 2x^2 + 4x + 4$$

5.
$$f(x) = \sqrt{x+2}$$

6.
$$f(x) = \frac{1}{x}$$

7.
$$f(x)=rac{3}{x+1}$$

8.
$$f(x) = \frac{1}{\sqrt{x+1}}$$

9.
$$f(x) = \frac{x}{x+2}$$

Prove the Constant Rule

10. Use the definition of the derivative to prove that for any fixed real number c , $\dfrac{d}{dx}[c\cdot f(x)]=c\cdot \dfrac{d}{dx}[f(x)]$

Find the Derivative by Rules

Find the derivative of the following functions:

Power Rule

11.
$$f(x) = 2x^2 + 4$$

12.
$$f(x) = 3\sqrt[3]{x}$$

13.
$$f(x) = 2x^5 + 8x^2 + x - 78$$

14.
$$f(x) = 7x^7 + 8x^5 + x^3 + x^2 - x$$

15.
$$f(x) = \frac{1}{x^2} + 3x^{\frac{1}{3}}$$

16.
$$f(x) = 3x^{15} + \frac{x^2}{17} + \frac{2}{\sqrt{x}}$$

17.
$$f(x) = \frac{3}{x^4} - \sqrt[4]{x} + x$$

18.
$$f(x) = 6x^{1/3} - x^{0.4} + \frac{9}{x^2}$$

19.
$$f(x) = \frac{1}{\sqrt[3]{x}} + \sqrt{x}$$

Product Rule

20.
$$f(x) = (x^4 + 4x + 2)(2x + 3)$$

21.
$$f(x) = (2x-1)(3x^2+2)$$

22.
$$f(x) = (x^3 - 12x)(3x^2 + 2x)$$

23.
$$f(x) = (2x^5 - x)(3x + 1)$$

24.
$$f(x) = (5x^2 + 3)(2x + 7)$$

25.
$$f(x) = 3x^2(5x^2+1)^4$$

26.
$$f(x) = x^3(2x^2 - x + 4)^4$$

27.
$$f(x) = 5x^2(x^3 - x + 1)^3$$

28.
$$f(x) = (2-x)^6 (5+2x)^4$$

Quotient Rule

24.
$$f(x) = \frac{2x+1}{x+5}$$

25.
$$f(x) = \frac{3x^4 + 2x + 2}{3x^2 + 1}$$

26.
$$f(x) = \frac{x^{\frac{3}{2}} + 1}{x + 2}$$

27.
$$d(u) = \frac{u^3 + 2}{u^3}$$

28.
$$f(x) = \frac{x^2 + x}{2x - 1}$$

29.
$$f(x) = \frac{x+1}{2x^2+2x+3}$$

30.
$$f(x) = \frac{16x^4 + 2x^2}{x}$$

$$f(x)=\frac{8x^3+2}{5x+5}$$

$$f(x) = \frac{(3x-2)^2}{\sqrt{x}}$$

$$f(x)=rac{\sqrt{x}}{2x-1}$$

$$f(x)=\frac{4x-3}{x+2}$$

$$f(x)=\frac{4x+3}{2x-1}$$

$$f(x) = \frac{x^2}{x+3}$$

$$f(x) = \frac{x^5}{3-x}$$

Chain Rule

31.
$$f(x) = (x+5)^2$$

32.
$$g(x) = (x^3 - 2x + 5)^2$$

33.
$$f(x) = \sqrt{1 - x^2}$$

34.
$$f(x) = \frac{(2x+4)^3}{4x^3+1}$$

35.
$$f(x) = (2x+1)\sqrt{2x+2}$$

36.
$$f(x) = \frac{2x+1}{\sqrt{2x+2}}$$

37.
$$f(x) = \sqrt{2x^2 + 1}(3x^4 + 2x)^2$$

38.
$$f(x) = \frac{2x+3}{(x^4+4x+2)^2}$$

39.
$$f(x) = \sqrt{x^3 + 1}(x^2 - 1)$$

40.
$$f(x) = ((2x+3)^4 + 4(2x+3) + 2)^2$$

41.
$$f(x) = \sqrt{1+x^2}$$

Exponentials

42.
$$f(x) = (3x^2 + e)e^{2x}$$

43.
$$f(x) = e^{2x^2 + 3x}$$

44.
$$f(x) = e^{e^{2x^2+1}}$$

45.
$$f(x) = 4^x$$

Logarithms

46.
$$f(x) = 2^{x-3} \cdot 3\sqrt{x^3 - 2} + \ln(x)$$

47.
$$f(x) = \ln(x) - 2e^x + \sqrt{x}$$

48.
$$f(x) = \ln(\ln(x^3(x+1)))$$

49.
$$f(x) = \ln(2x^2 + 3x)$$

50.
$$f(x) = \log_4(x) + 2\ln(x)$$

Trigonometric functions

51.
$$f(x) = 3e^x - 4\cos(x) - \frac{\ln(x)}{4}$$

52.
$$f(x) = \sin(x) + \cos(x)$$

More Differentiation

53.
$$\frac{d}{dx}[(x^3+5)^{10}]$$

$$54. \ \frac{d}{dx}[x^3+3x]$$

55.
$$\frac{d}{dx}[(x+4)(x+2)(x-3)]$$

$$56. \ \frac{d}{dx} \left[\frac{x+1}{3x^2} \right]$$

57.
$$\frac{d}{dx}[3x^3]$$

$$58. \ \frac{d}{dx}[x^4\sin(x)]$$

59.
$$\frac{d}{dx}[2^x]$$

60.
$$\frac{d}{dx}[e^{x^2}]$$

61.
$$\frac{d}{dx}[e^{2^x}]$$

Implicit Differentiation

Use implicit differentiation to find y'

62.
$$x^3 + y^3 = xy$$

63.
$$(2x+y)^4 + 3x^2 + 3y^2 = \frac{x}{y} + 1$$

Logarithmic Differentiation

Use logarithmic differentiation to find $rac{dy}{dx}$

64.
$$y = x(\sqrt[4]{1-x^3})$$

65.
$$y = \sqrt{\frac{x+1}{1-x}}$$

66.
$$y = (2x)^{2x}$$

67.
$$y = (x^3 + 4x)^{3x+1}$$

68.
$$y = (6x)^{\cos(x)+1}$$

Equation of Tangent Line

For each function, f, (a) determine for what values of x the tangent line to f is horizontal and (b) find an equation of the tangent line to f at the given point.

69.
$$f(x) = \frac{x^3}{3} + x^2 + 5,$$
 (3,23)

70.
$$f(x) = x^3 - 3x + 1,$$
 $(1,-1)$

71.
$$f(x) = \frac{2x^3}{3} + x^2 - 12x + 6,$$
 $(0,6)$

72.
$$f(x) = 2x + \frac{1}{\sqrt{x}},$$
 (1,3)

73.
$$f(x) = (x^2 + 1)(2 - x),$$
 (2,0)

74.
$$f(x) = rac{2x^3}{3} + rac{5x^2}{2} + 2x + 1,$$
 $(3, rac{95}{2})$

- 75. Find an equation of the tangent line to the graph defined by $(x-y-1)^3=x$ at the point (1,-1).
- 76. Find an equation of the tangent line to the graph defined by $e^{xy} + x^2 = y^2$ at the point (1,0).

Higher Order Derivatives

- 77. What is the second derivative of $3x^4 + 3x^2 + 2x$?
- 78. Use induction to prove that the (n+1)th derivative of a n-th order polynomial is 0.

 $Retrieved \ from \ "https://en.wikibooks.org/w/index.php?title=Calculus/Differentiation/Basics_of_Differentiation/Exercises\&oldid=3325630"$

This page was last edited on 10 November 2017, at 14:35.

Text is available under the <u>Creative Commons Attribution-ShareAlike License.</u>; additional terms may apply. By using this site, you agree to the <u>Terms of Use and Privacy Policy.</u>