# Calculus/Differentiation/Basics of Differentiation/Exercises

# Find the Derivative by Definition

Find the derivative of the following functions using the limit definition of the derivative.

1. 
$$f(x) = x^{2}$$
  
2.  $f(x) = 2x + 2$   
3.  $f(x) = \frac{x^{2}}{2}$   
4.  $f(x) = 2x^{2} + 4x + 4$   
5.  $f(x) = \sqrt{x + 2}$   
6.  $f(x) = \frac{1}{x}$   
7.  $f(x) = \frac{3}{x + 1}$   
8.  $f(x) = \frac{1}{\sqrt{x + 1}}$   
9.  $f(x) = \frac{x}{x + 2}$ 

## **Prove the Constant Rule**

10. Use the definition of the derivative to prove that for any fixed real number c ,  $rac{d}{dx}[c \cdot f(x)] = c \cdot rac{d}{dx}[f(x)]$ 

### Find the Derivative by Rules

Find the derivative of the following functions:

#### **Power Rule**

11. 
$$f(x) = 2x^2 + 4$$
  
12.  $f(x) = 3\sqrt[3]{x}$   
13.  $f(x) = 2x^5 + 8x^2 + x - 78$   
14.  $f(x) = 7x^7 + 8x^5 + x^3 + x^2 - x$   
15.  $f(x) = \frac{1}{x^2} + 3x^{\frac{1}{3}}$ 

16. 
$$f(x) = 3x^{15} + \frac{x^2}{17} + \frac{2}{\sqrt{x}}$$
  
17.  $f(x) = \frac{3}{x^4} - \sqrt[4]{x} + x$   
18.  $f(x) = 6x^{1/3} - x^{0.4} + \frac{9}{x^2}$   
19.  $f(x) = \frac{1}{\sqrt[3]{x}} + \sqrt{x}$ 

#### **Product Rule**

20. 
$$f(x) = (x^4 + 4x + 2)(2x + 3)$$
  
21.  $f(x) = (2x - 1)(3x^2 + 2)$   
22.  $f(x) = (x^3 - 12x)(3x^2 + 2x)$   
23.  $f(x) = (2x^5 - x)(3x + 1)$   
24.  $f(x) = (5x^2 + 3)(2x + 7)$   
25.  $f(x) = 3x^2(5x^2 + 1)^4$   
26.  $f(x) = x^3(2x^2 - x + 4)^4$   
27.  $f(x) = 5x^2(x^3 - x + 1)^3$   
28.  $f(x) = (2 - x)^6(5 + 2x)^4$ 

#### **Quotient Rule**

24. 
$$f(x) = \frac{2x+1}{x+5}$$
25. 
$$f(x) = \frac{3x^4 + 2x + 2}{3x^2 + 1}$$
26. 
$$f(x) = \frac{x^{\frac{3}{2}} + 1}{x+2}$$
27. 
$$d(u) = \frac{u^3 + 2}{u^3}$$
28. 
$$f(x) = \frac{x^2 + x}{2x - 1}$$

29. 
$$f(x) = \frac{x+1}{2x^2+2x+3}$$
  
30.  $f(x) = \frac{16x^4+2x^2}{x}$   
 $f(x) = \frac{8x^3+2}{5x+5}$   
 $f(x) = \frac{(3x-2)^2}{\sqrt{x}}$   
 $f(x) = \frac{\sqrt{x}}{2x-1}$   
 $f(x) = \frac{4x-3}{x+2}$   
 $f(x) = \frac{4x+3}{2x-1}$   
 $f(x) = \frac{x^2}{x+3}$   
 $f(x) = \frac{x^5}{3-x}$ 

#### **Chain Rule**

| 31. $f(x) = (x+5)^2$                      |
|-------------------------------------------|
| 32. $g(x) = (x^3 - 2x + 5)^2$             |
| $33. f(x) = \sqrt{1-x^2}$                 |
| 34. $f(x) = rac{(2x+4)^3}{4x^3+1}$       |
| 35. $f(x) = (2x+1)\sqrt{2x+2}$            |
| 36. $f(x) = rac{2x+1}{\sqrt{2x+2}}$      |
| 37. $f(x) = \sqrt{2x^2 + 1}(3x^4 + 2x)^2$ |
| 38. $f(x) = \frac{2x+3}{(x^4+4x+2)^2}$    |

39. 
$$f(x) = \sqrt{x^3 + 1}(x^2 - 1)$$
  
40.  $f(x) = ((2x + 3)^4 + 4(2x + 3) + 2)^2$   
41.  $f(x) = \sqrt{1 + x^2}$ 

#### Exponentials

42. 
$$f(x) = (3x^2 + e)e^{2x}$$
  
43.  $f(x) = e^{2x^2 + 3x}$   
44.  $f(x) = e^{e^{2x^2 + 1}}$   
45.  $f(x) = 4^x$ 

#### Logarithms

46. 
$$f(x) = 2^{x-3} \cdot 3\sqrt{x^3 - 2} + \ln(x)$$
  
47.  $f(x) = \ln(x) - 2e^x + \sqrt{x}$   
48.  $f(x) = \ln(\ln(x^3(x+1)))$   
49.  $f(x) = \ln(2x^2 + 3x)$   
50.  $f(x) = \log_4(x) + 2\ln(x)$ 

#### Trigonometric functions

| 51. $f(x) = 3e^x - 4\cos(x) - $ | $\frac{\ln(x)}{4}$ |
|---------------------------------|--------------------|
| 52. $f(x) = \sin(x) + \cos(x)$  |                    |

# **More Differentiation**

53. 
$$\frac{d}{dx}[(x^3+5)^{10}]$$
  
54.  $\frac{d}{dx}[x^3+3x]$   
55.  $\frac{d}{dx}[(x+4)(x+2)(x-3)]$   
56.  $\frac{d}{dx}[\frac{x+1}{3x^2}]$ 

57. 
$$\frac{d}{dx}[3x^3]$$
58. 
$$\frac{d}{dx}[x^4 \sin(x)]$$
59. 
$$\frac{d}{dx}[2^x]$$
60. 
$$\frac{d}{dx}[e^{x^2}]$$
61. 
$$\frac{d}{dx}[e^{2^x}]$$

# **Implicit Differentiation**

Use implicit differentiation to find  $y^{\prime}$ 

62. 
$$x^3 + y^3 = xy$$
  
63.  $(2x + y)^4 + 3x^2 + 3y^2 = \frac{x}{y} + 1$ 

# **Logarithmic Differentiation**

Use logarithmic differentiation to find  $\frac{dy}{dx}$ :

64. 
$$y = x(\sqrt[4]{1-x^3})$$
  
65.  $y = \sqrt{\frac{x+1}{1-x}}$   
66.  $y = (2x)^{2x}$   
67.  $y = (x^3 + 4x)^{3x+1}$   
68.  $y = (6x)^{\cos(x)+1}$ 

# **Equation of Tangent Line**

For each function, f, (a) determine for what values of x the tangent line to f is horizontal and (b) find an equation of the tangent line to f at the given point.

69. 
$$f(x) = \frac{x^3}{3} + x^2 + 5$$
, (3,23)  
70.  $f(x) = x^3 - 3x + 1$ , (1,-1)  
71.  $f(x) = \frac{2x^3}{3} + x^2 - 12x + 6$ , (0,6)



#### **Higher Order Derivatives**

77. What is the second derivative of  $3x^4 + 3x^2 + 2x$ ?

78. Use induction to prove that the (n+1)th derivative of a *n*-th order polynomial is 0.

Retrieved from "https://en.wikibooks.org/w/index.php?title=Calculus/Differentiation/Basics\_of\_Differentiation/Exercises&oldid=3325630"

This page was last edited on 10 November 2017, at 14:35.

Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.