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Bayesian	Networks

What	is	a	BN?

Bayesian	networks	provide	a	means	of	parsimoniously	expressing	joint	probability
distributions	over	many	interrelated	hypotheses.	A	Bayesian	network	consists	of	a
directed	acyclic	graph	(DAG)	and	a	set	of	local	distributions.	Each	node	in	the	graph
represents	a	random	variable.	A	random	variable	denotes	an	attribute,	feature,	or
hypothesis	about	which	we	may	be	uncertain.	Each	random	variable	has	a	set	of
mutually	exclusive	and	collectively	exhaustive	possible	values.	That	is,	exactly	one	of
the	possible	values	is	or	will	be	the	actual	value,	and	we	are	uncertain	about	which
one	it	is.	The	graph	represents	direct	qualitative	dependence	relationships;	the	local
distributions	represent	quantitative	information	about	the	strength	of	those
dependencies.	The	graph	and	the	local	distributions	together	represent	a	joint
distribution	over	the	random	variables	denoted	by	the	nodes	of	the	graph.

Introduction	to	BNs
Bayesian	networks	have	been	successfully	applied	to	create	consistent	probabilistic	representations	of	uncertain	knowledge

in	diverse	fields	such	as	medical	diagnosis	(Spiegelhalter	et	al.,	1989),	image	recognition	(Booker	&	Hota,	1986),	language

understanding	(Charniak	&	Goldman,	1989a,	1989b),	search	algorithms	(Hansson	&	Mayer,	1989),	and	many	others.

Heckerman	et.	al.	(1995b)	provides	a	detailed	list	of	recent	applications	of	Bayesian	Networks.

One	of	the	most	important	features	of	Bayesian	networks	is	the	fact	that	they	provide	an	elegant	mathematical	structure	for

modeling	complicated	relationships	among	random	variables	while	keeping	a	relatively	simple	visualization	of	these

relationships.	The	figure	below	gives	three	simple	examples	of	qualitatively	different	probability	relationships	among	three

random	variables.

As	a	means	for	realizing	the	communication	power	of	this	representation,	one	could	compare	two	hypothetical	scenarios	in

which	a	domain	expert	with	little	background	in	probability	tries	to	interpret	what	is	represented	in	the	figure	above.	Initially,

suppose	that	she	is	allowed	to	look	only	to	the	written	equations	below	the	pictures.	In	this	case,	we	believe	that	she	will

have	to	think	at	least	twice	before	making	any	conclusion	on	the	relationships	among	events	A,	B,	and	C.	On	the	other	hand,

if	she	is	allowed	to	look	only	to	the	pictures,	it	seems	fair	to	say	that	she	will	immediately	perceive	that	in	the	leftmost

picture,	for	example,	event	B	is	independent	of	events	A	and	C,	and	event	C	depends	on	event	A.	Also,	simply	comparing	the

pictures	would	allow	her	to	see	that,	in	the	center	picture,	A	is	now	dependent	on	B,	and	that	in	the	rightmost	picture	B

influences	both	A	and	C.	Advantages	of	easily	interpretable	graphical	representation	become	more	apparent	as	the	number

of	hypothesis	and	the	complexity	of	the	problem	increases.

Pearl's	Bi-directional	Belief	Updating	Algorithm
One	of	the	most	powerful	characteristics	of	Bayesian	Networks	is	its	ability	to	update	the	beliefs	of	each	random	variable	via

bi-directional	propagation	of	new	information	through	the	whole	structure.	This	was	initially	achieved	by	an	algorithm

proposed	by	Pearl	(1988)	that	fuses	and	propagates	the	impact	of	new	evidence	providing	each	node	with	a	belief	vector

consistent	with	the	axioms	of	probability	theory.	The	figure	below	shows	a	graphical	representation	of	Pearl's	bi-directional

propagation	scheme.
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Roughly	speaking,	information	can	be	inserted	in	Bayesian	Networks	through	a	data	updating	in	the	prior	probabilities	or	in

the	posterior	probabilities.	In	the	first	case,the	new	data	will	flow	via	a	π	row	vector	(prior	evidence	vector),	while	in	the

former	case	data	will	flow	via	a	λ	column	vector	(posterior	evidence	vector).	Both	vectors	update	the	node	belief	(say	node

B)	by	the	equation:

where	“α”	is	a	normalizing	constant,	and	“	•	“	means	term	by	term	multiplication	(inner	or	dot	product).	The	resulting	column

vector	is	the	new	belief	of	node	B,	clearly,	vector	Bel(B)	will	have	as	many	elements	as	the	number	of	states	of	the	random

variable	depicted	by	node	B.

Nodes	of	a	Bayesian	network	have	different	number	of	states,	which	will	reflect	in	the	number	of	elements	each	π	or	λ

vectors	will	have.	After	receiving	a	π	vector	with	updated	information	from	a	parent	node	(say	A),	node	B	will	send	its	own	π

vector	to	its	children	nodes.	The	equation	used	in	node	B	for	creating	its	π	vector	is:

where	“	⊗	“	means	vector	multiplication	(or	congruent	product),	and	MB|A	is	the	likelihood	matrix,	or	conditional	probability

distribution	matrix	between	nodes	B	and	A.

When	receiving	a	λ	vector	with	updated	information	from	a	child	node	(say	node	C),	node	B	will	send	its	own	λ	vector	to	its

parent	nodes.	The	formula	used	in	node	B	for	creating	its	λ	vector	is:

where	the	resulting	column	vector	λ(B)	is	then	transmitted	to	parent	nodes.

However,	a	node	usually	has	multiple	children,	which	means	it	may	receive	different	λ	vectors.	The	node	internal	algorithm

must	be	able	to	deal	with	these	vectors	concurrently,	as	more	than	one	node	can	send	λ	vectors	at	the	same	time.	The	figure

below	shows	the	internal	structure	of	a	single	node	processor,	which	explains	how	this	problem	was	solved	by	Pearl's

algorithm.	In	fact,	the	graph	itself	is	an	adaptation	of	the	one	used	in	page	168	of	Pearl's	book	(Pearl,	1988).



As	an	example	illustrating	the	effectiveness	of	the	algorithm,	let's	imagine	the	case	in	which	node	B	has	two	children	(say

nodes	C	and	D).	When	a	λ	vector	is	received	from	node	C,	that	information	will	update	node	B's	belief	vector	and	this	new

belief	vector	will	be	sent	to	parent	nodes	(as	λ	vectors),	and	to	children	nodes	(as	π	vectors).	However,	sending	a	π	vector

back	to	node	C	would	generate	a	new	update	in	node	C	with	the	same	data	it	sent	before,	thus	creating	a	loop.	The	division

that	happens	in	the	lower	left	part	of	the	diagram	prevents	this	unwanted	characteristic.	The	message	that	is	sent	to	children

nodes	is	BEL(B)	divided	by	the	respective	children	node	λ	vector,	eliminating	the	possibility	of	double	counting	the

information.	In	our	example,	node	D	will	receive	a	π	vector	from	node	B	that	has	the	information	sent	by	node	C	(which

means	that	node	C's	new	information	is	propagated	to	D).	In	contrast,	node	C	will	receive	a	π	vector	that	is	divided	by	λC	so

the	information	already	sent	will	not	be	double	counted.

Other	Belief	Updating	Algorithms	for	Bayesian	Networks
Pearl’s	algorithm	performs	exact	Bayesian	updating,	but	only	for	singly	connected	networks.	Subsequently,	general	Bayesian

updating	algorithms	have	been	developed.	One	of	the	most	commonly	applied	is	the	Junction	Tree	algorithm	(Lauritzen	&

Spiegelhalter,	1988).	Neapolitan	(2003)	provides	a	discussion	on	many	Bayesian	propagation	algorithms.	Although	Cooper

(1987)	showed	that	exact	belief	propagation	in	Bayesian	Networks	can	be	NP-Hard,	exact	computation	is	practical	for	many

problems	of	practical	interest.

Some	complex	applications	are	too	challenging	for	exact	inference,	and	require	approximate	solutions	(Dagum	&	Luby,	1993).

Many	computationally	efficient	inference	algorithms	have	been	developed,	such	as	probabilistic	logic	sampling	(Henrion,

1988),	likelihood	weighting	(Fung	&	Chang,	1989;	Shachter	&	Peot,	1990),	backward	sampling	(Fung	&	del	Favero,	1994),

Adaptive	Importance	Sampling		(Cheng	&	Druzdzel,	2000),	and	Approximate	Posterior	Importance	Sampling	(Druzdzel	&	Yuan,

2003).

Those	algorithms	allow	the	impact	of	evidence	about	one	node	to	propagate	to	other	nodes	in	multiply-connected	trees,

making	Bayesian	Networks	a	reliable	engine	for	probabilistic	inference.	The	prospective	reader	will	find	comprehensive

coverage	of	Bayesian	Networks	in	a	large	and	growing	literature	on	this	subject,	such	as	Pearl	(1988),	Neapolitan	(1990,

2003),	Oliver	&	Smith	(1990),	Charniak	(1991),	Jensen	(1996,	2001),	or	Korb	&	Nicholson	(2003).

Limitations	of	Probabilistic	Reasoning	with	Bayesian	Networks
Bayesian	Networks	have	received	praise	for	being	a	powerful	tool	for	performing	probabilistic	inference,	but	they	do	have

some	limitations	that	impede	their	application	to	complex	problems.	As	the	technique	grew	in	popularity,	Bayesian	Network's

limitations	became	increasingly	apparent.	One	of	the	most	important	limitations	for	it	to	be	applied	in	the	context	of	PR-OWL

is	the	fact	that,	although	a	powerful	tool,	BNs	are	not	expressive	enough	for	many	real-world	applications.	More	specifically,

Bayesian	Networks	assume	a	simple	attribute-value	representation	–	that	is,	each	problem	instance	involves	reasoning	about

the	same	fixed	number	of	attributes,	with	only	the	evidence	values	changing	from	problem	instance	to	problem	instance.

This	type	of	representation	is	inadequate	for	many	problems	of	practical	importance.		Many	domains	require	reasoning	about

varying	numbers	of	related	entities	of	different	types,	where	the	numbers,	types	and	relationships	among	entities	usually

cannot	be	specified	in	advance	and	may	have	uncertainty	in	their	own	definitions.	As	will	be	demonstrated	below,	Bayesian



networks	are	insufficiently	expressive	for	such	problems.

The	(Basic)	Starship	Case	Study
Choosing	a	particular	real-life	domain	would	pose	the	risk	of	getting	bogged	down	in	domain-specific	detail.	For	this	reason,

we	opted	to	construct	a	case	study	based	on	the	popular	television	series	Star	Trek.	Nonetheless,	the	examples	presented

here	have	been	constructed	to	be	accessible	to	anyone	having	some	familiarity	with	space-based	science	fiction.	We	begin

our	exposition	narrating	a	highly	simplified	problem	of	detecting	enemy	starships.

In	this	simplified	version	of	the	PR-OWL	Starship	case	study,	the	main	task	of	a	decision	system	is	to	model	the	problem	of

detecting	Romulan	starships	(here	considered	as	hostile	by	the	United	Federation	of	Planets)	and	assessing	the	level	of

danger	they	bring	to	our	own	starship,	the	Enterprise.	All	other	starships	are	considered	either	friendly	or	neutral.	Starship

detection	is	performed	by	the	Enterprise’s	suite	of	sensors,	which	can	correctly	detect	and	discriminate	starships	with	an

accuracy	of	95%.	However,	Romulan	starships	may	be	in	“cloak	mode,”	which	makes	them	invisible	to	the	Enterprise’s

sensors.	Even	for	the	most	current	sensor	technology,	the	only	hint	of	a	nearby	starship	in	cloak	mode	is	a	slight	magnetic

disturbance	caused	by	the	enormous	amount	of	energy	required	for	cloaking.	The	Enterprise	has	a	magnetic	disturbance

sensor,	but	it	is	very	hard	to	distinguish	background	magnetic	disturbance	from	that	generated	by	a	nearby	starship	in	cloak

mode.

This	simplified	situation	is	modeled	by	the	BN

depicted	on	the	right	(1),	which	also	considers

the	characteristics	of	the	zone	of	space	where

the	action	takes	place.	Each	node	in	our	BN

has	a	finite	number	of	mutually	exclusive,

collectively	exhaustive	states.	The	node	Zone

Nature	(ZN)	is	a	root	node,	and	its	prior

probability	distribution	can	be	read	directly

from	the	BN	(e.g.	80%	for	deep	space).	The

probability	distribution	for	Magnetic

Disturbance	Report	(MDR)	depends	on	the

values	of	its	parents	ZN	and	Cloak	Mode	(CM).

The	strength	of	this	influence	is	quantified	via

the	conditional	probability	table	(CPT)	for	node	MDR,	shown	below.	Similarly,	Operator	Species	(OS)	depends	on	ZN,	and	the

two	report	nodes	depend	on	CM	and	the	hypothesis	on	which	they	are	reporting.

Graphical	models	provide	a	powerful	modeling	framework	and	have	been	applied	to	many	real	world	problems	involving

uncertainty.	Yet,	the	model	depicted	above	is	of	little	use	in	a	“real	life”	starship	environment.	After	all,	hostile	starships

cannot	be	expected	to	approach	Enterprise	one	at	a	time	so	as	to	render	its	simple	BN	model	usable.	If	four	starships	were

closing	in	on	the	Enterprise,	the	BN	depicted	above	would	have	to	be	replaced	by	the	one	shown	below.

Unfortunately,	building	a	BN	for	each	possible	number	of	nearby	starships	is	not	only	a	daunting	task	but	also	a	pointless

one,	since	there	is	no	way	of	knowing	in	advance	how	many	starships	the	Enterprise	is	going	to	encounter	and	thus	which	BN

to	use	at	any	given	time.	In	short,	BNs	lack	the	expressive	power	to	represent	entity	types	(e.g.,	starships)	that	can	be

instantiated	as	many	times	as	required	for	the	situation	at	hand.

In	spite	of	its	naiveté,	we	will	briefly	hold	on	to	the	premise	that	only	one	starship	can	be	approaching	the	Enterprise	at	a

time,	so	that	the	first	BN	presented	here	is	valid.	Furthermore,	we	will	assume	that	the	Enterprise	is	traveling	in	deep	space,

and	its	sensor	reports	imply	that	there	is	no	trace	of	any	nearby	starship	(i.e.	the	state	of	node	SR	state	is	Nothing).	Further,

there’s	a	newly	arrived	report	indicating	a	strong	magnetic	disturbance	(i.e.	the	state	of	node	MDR	is	High).	A	brief	look	at	the

MDR	node's	CPT	shows	that	the	likelihood	ratio	for	a	high	MDR	is	7/5	=	1.4	in	favor	of	a	starship	in	cloak	mode.	Although	this

favors	a	cloaked	starship	in	the	vicinity,	the	evidence	is	not	overwhelming.



Repetition	is	a	powerful	way	to

boost	the	discriminatory	power	of

weak	signals.	As	an	example	from

airport	terminal	radars,	a	single

pulse	reflected	from	an	aircraft

usually	arrives	back	to	the	radar

receiver	very	weakened,	making	it

hard	to	set	apart	from	background

noise.	However,	a	steady	sequence

of	reflected	radar	pulses	is	easily

distinguishable	from	background

noise.

Following	the	same	logic,	it	is

reasonable	to	assume	that	an

abnormal	background	disturbance	will	show	random	fluctuation,	whereas	a	disturbance	caused	by	a	starship	in	cloak	mode

would	show	a	characteristic	temporal	pattern.	Thus,	when	there	is	a	cloaked	starship	nearby,	the	MDR	state	at	any	time

depends	on	its	previous	state.	A	BN	similar	to	the	one	below	could	capitalize	on	this	for	pattern	recognition	purposes.

Dynamic	Bayesian	Networks	(DBNs)	allow	nodes

to	be	repeated	over	time	(Murphy,	1998).	The

BN	shown	here	has	both	static	and	dynamic

nodes,	and	thus	is	a	partially	dynamic	Bayesian

network	(PDBN),	also	known	as	a	temporal

Bayesian	network	(Takikawa	et	al.,	2002).	While

DBNs	and	PDBNs	are	useful	for	temporal

recursion,	a	more	general	recursion	capability	is

needed,	as	well	as	a	parsimonious	syntax	for

expressing	recursive	relationships.

What	has	been	discussed	here	is	just	a	glimpse

of	the	issues	that	confront	an	engineer

attempting	to	apply	Bayesian	networks	to

realistically	complex	problems.	We	did	not	provide	a	comprehensive	analysis	of	the	limitations	of	Bayesian	networks	for

solving	complex	problems,	since	this	brief	overview	is	enough	for	making	the	point	that	even	relatively	simple	situations

might	require	more	expressiveness	than	BNs	can	provide.

A	much	more	powerful	representational	formalism	is	offered	by	first-order	logic	(FOL),	which	has	the	ability	to	represent

entities	of	different	types	interacting	with	each	other	in	varied	ways.	Sowa	states	that	first-order	logic	“has	enough

expressive	power	to	define	all	of	mathematics,	every	digital	computer	that	has	ever	been	built,	and	the	semantics	of	every

version	of	logic,	including	itself”	(Sowa,	2000,	page	41).	For	this	reason,	FOL	has	become	the	de	facto	standard	for	logical

systems	from	both	a	theoretical	and	practical	standpoint.	

However,	systems	based	on	classical	first-order	logic	lack	a	theoretically	principled,	widely	accepted,	logically	coherent

methodology	for	reasoning	under	uncertainty.	PR-OWL	aims	to	fill	this	gap,	as	it	merges	the	representational	power	of	FOL

with	the	elegant	reasoning	framework	of	Bayesian	inference.

Footnotes
(1)Bayesian	network	screen	shots	were	constructed	using	Netica™,	available	at	Norsys	.
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