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The	quantum	atom
Wave	functions,	quantum	numbers	and	orbitals

The	picture	of	the	atom	that	Niels	Bohr	developed
in	1913	served	as	the	starting	point	for	modern
atomic	theory,	but	it	was	not	long	before	Bohr
himself	recognized	that	the	advances	in	quantum
theory	that	occurred	through	the	1920's	required
an	even	more	revolutionary	change	in	the	way	we
view	the	electron	as	it	exists	in	the	atom.	This
lesson	will	attempt	to	show	you	this	view	—	or	at
least	the	portion	of	it	that	can	be	appreciated
without	the	aid	of	more	than	a	small	amount	of
mathematics.

	



If	this	equation	looks	a	bit	weird	to
you,	don't	be	too	concerned;	we	show
it	here	only	because	one	hears	so
much	about	it	—	quite	justifiably,	as	it
"drives"	every	atom	in	the	universe.

1			From	orbits	to	orbitals
About	ten	years	after	Bohr	had	developed	his	theory,	de	Broglie	showed	that	the
electron	should	have	wavelike	properties	of	its	own,	thus	making	the	analogy
with	the	mechanical	theory	of	standing	waves	somewhat	less	artificial.	One
serious	difficulty	with	the	Bohr	model	still	remained,	however:	it	was	unable	to
explain	the	spectrum	of	any	atom	more	complicated	than	hydrogen.	A
refinement	suggested	by	Sommerfeld	assumed	that	some	of	the	orbits	are
elliptical	instead	of	circular,	and	invoked	a	second	quantum	number,
l,	that	indicated	the	degree	of	ellipticity.	This	concept	proved	useful,	and	it	also
began	to	offer	some	correlation	with	the	placement	of	the	elements	in	the
periodic	table.

The	Schrödinger	equation

By	1926,	de	Broglie's	theory	of	the	wave	nature	of	the	electron	had	been
experimentally	confirmed,	and	the	stage	was	set	for	its	extension	to	all	matter.
At	about	the	same	time,	three	apparently	very	different	theories	that	attempted
to	treat	matter	in	general	terms	were	developed.	These	were	Schrödinger's
wave	mechanics,	Heisenberg's	matrix	mechanics,	and	a	more	abstract	theory	of
P.A.M.	Dirac.	These	eventually	were	seen	to	be	mathematically	equivalent,	and
all	continue	to	be	useful.

Of	these	alternative	treatments,	the	one	developed	by
Schrödinger	is	the	most	easily	visualized.	Schrödinger
started	with	the	simple	requirement	that	the	total	energy
of	the	electron	is	the	sum	of	its	kinetic	and	potential
energies:

The	second	term	represents	the	potential	energy	of	an
electron	(whose	charge	is	denoted	by	e)	at	a	distance	r
from	a	proton	(the	nucleus	of	the	hydrogen	atom).	In	quantum	mechanics	it	is
generally	easier	to	deal	with	equations	that	use	momentum	(p	=	mv)	rather	than
velocity,	so	the	next	step	is	to	make	this	substitution:

This	is	still	an	entirely	classical	relation,	as	valid	for	the	waves	on	a	guitar	string
as	for	those	of	the	electron	in	a	hydrogen	atom.	The	third	step	is	the	big	one:	in
order	to	take	into	account	the	wavelike	character	of	the	hydrogen	atom,	a
mathematical	expression	that	describes	the	position	and	momentum	of	the
electron	at	all	points	in	space	is	applied	to	both	sides	of	the	equation.	The
function,	denoted	by	Ψ	(psi),	"modulates"	the	equation	of	motion	of	the	electron
so	as	to	reflect	the	fact	that	the	electron	manifests	itself	with	greater	probability
in	some	locations	that	at	others.	This	yields	the	celebrated	Schrödinger
equation:

Physical	significance	of	the	wave	function	Ψ

How	can	such	a	simple-looking	expression	contain	within	it	the	quantum-
mechanical	description	of	an	electron	in	an	atom—	and	thus,	by	extension,	of	all
matter?	The	catch,	as	you	may	well	suspect,	lies	in	discovering	the	correct	form
of	Ψ	,	which	is	known	as	the	wave	function.	As	this	nams	suggests,	the	value	of
Ψ	is	a	function	of	location	in	space	relative	to	that	of	the	proton	which	is	the
source	of	the	binding	force	acting	on	the	electron.	As	in	any	system	composed	of
standing	waves,	certain	boundary	conditions	must	be	applied,	and	these	are
also	contained	in	Ψ;	the	major	ones	are	that	the	value	of	Ψ	must	approach	zero
as	the	distance	from	the	nucleus	approaches	infinity,	and	that	the	function	be
continuous.

When	the	functional	form	of	Ψ	has	been	worked	out,	the	Schrödinger
equation	is	said	to	have	been	solved	for	a	particular	atomic	system.
The	details	of	how	this	is	done	are	beyond	the	scope	of	this	course,
but	the	consequences	of	doing	so	are	extremely	important	to	us.	Once



the	form	of	is	known,	the	allowed	energies	E	of	an	atom	can	be
predicted	from	the	above	equation.	Soon	after	Schrödinger's
proposal,	his	equation	was	solved	for	several	atoms,	and	in	each	case
the	predicted	energy	levels	agreed	exactly	with	the	observed	spectra.

There	is	another	very	useful	kind	of	information	contained	in	Ψ.	Recalling	that
its	value	depends	on	the	location	in	space	with	respect	to	the	nucleus	of	the
atom,	the	square	of	this	function	Ψ2,	evaluated	at	any	given	point	in	space,
represents	the	probability	of	finding	the	electron	at	that	particular	location.	The
significance	of	this	cannot	be	overemphasized;	although	the	electron	remains	a
particle	having	a	definite	charge	and	mass,	the	question	of	"where"	it	is	located
is	no	longer	meaningful.
Any	single	experimental	observation	will	reveal	a	definite	location	for	the
electron,	but	this	will	in	itself	have	little	significance;	only	a	large	number	of
such	observations	(similar	to	a	series	of	multiple	exposures	of	a	photographic
film)	will	yield	meaningful	results	which	will	show	that	the	electron	can	"be"
anywhere	with	at	least	some	degree	of	probability.	This	does	not	mean	that	the
electron	is	"moving	around"	to	all	of	these	places,	but	that	(in	accord	with	the
uncertainty	principle)	the	concept	of	location	has	limited	meaning	for	a	particle
as	small	as	the	electron.	If	we	count	only	those	locations	in	space	at	which	the
probability	of	the	electron	manifesting	itself	exceeds	some	arbitrary	value,	we
find	that	the	Ψ	function	defines	a	definite	three-dimensional	region	which	we
call	an	orbital.

Why	doesn't	the	electron	fall	into	the	nucleus?

We	can	now	return	to	the	question	which	Bohr	was	unable	to	answer	in	1912.
Even	the	subsequent	discovery	of	the	wavelike	nature	of	the	electron	and	the
analogy	with	standing	waves	in	mechanical	systems	did	not	really	answer	the
question;	the	electron	is	still	a	particle	having	a	negative	charge	and	is
attracted	to	the	nucleus.

The	answer	comes	from	the	Heisenberg	uncertainty	principle,	which	says	that	a
quantum	particle	such	as	the	electron	cannot	simultaneously	have	sharply-
defined	values	of	location	and	of	momentum	(and	thus	kinetic	energy).	To
understand	the	implications	of	this	restriction,	suppose	that	we	place	the
electron	in	a	small	box.	The	walls	of	the	box	define	the	precision	δx	to	which	the
location	is	known;	the	smaller	the	box,	the	more	exactly	will	we	know	the
location	of	the	electron.	But	as	the	box	gets	smaller,	the	uncertainty	in	the
electron's	kinetic	energy	will	increase.	As	a	consequence	of	this	uncertainty,	the
electron	will	at	times	possess	so	much	kinetic	energy	(the	"confinement
energy")	that	it	may	be	able	to	penetrate	the	wall	and	escape	the	confines	of	the
box.

This	process	is	known	as	quantum	tunneling.	It	is	exploited	in	various
kinds	of	semiconductor	devices,	and	it	is	the	mechanism	whereby	electrons
jump	between	dissolved	ions	and	the	electrode	in	batteries	and	other
electrochemical	devices.

(For	more,	see	this	Wikipedia	article	on	quantum	tunneling)

The	region	near	the	nucleus	can	be	thought	of	as	an	extremely	small	funnel-
shaped	box,	the	walls	of	which	correspond	to	the	electrostatic	attraction	that
must	be	overcome	if	an	electron	confined	within	this	region	is	to	escape.	As	an
electron	is	drawn	toward	the	nucleus	by	electrostatic	attraction,	the	volume	to
which	it	is	confined	diminishes	rapidly.	Because	its	location	is	now	more
precisely	known,	its	kinetic	energy	must	become	more	uncertain;	the	electron's
kinetic	energy	rises	more	rapidly	than	its	potential	energy	falls,	so	that	it	gets
ejected	back	into	one	of	its	allowed	values	of	n.

The	electron	well	of	the	atom

The	red	circles	show	the	average	distance	of	the	electron	from	the	nucleus	for
the	allowed	quantum	levels	(standing	wave	patterns)	of	
n=1	through	n=3.	As	n	decreases,	the	potential	energy	of	the	system	becomes
more	negative	and	the	electron	becomes	more	confined	in	space.	According	to
the	uncertainty	principle,	this	increases	the	momentum	of	the	electron,	and
hence	its	kinetic	energy.	The	latter	acts	as	a	kind	of	"confinement	energy"	that
restores	the	electron	to	one	of	the	allowed	levels.

The	values	of	n	in	the	above	diagram	correspond	to	the	principal	quantum
number	of	the	hydrogen	atom.	When	the	H	atom	is	in	its	normal	"ground	state",
n	=	1	and	the	radius	of	this	circle	corresponds	exactly	to	the	radius	predicted	by



Bohr's	model.	The	big	difference
between	Bohr's	model	and	the
quantum	model	is	that	in	the
latter,	the	n=1	circle	defines
the	radius	at	which	the	electron	is
most	likely	to	be	found,	rather
than	the	radius	to	which	it	is
confined	as	Bohr's	theory	predicts.
The	nature	of	the	n=1	orbital	of
the	H	atom	is	more	clearly
visualized	by	this	2-dimensional
plot	which	shows	the	quantity	of
electron	charge	per	unit	volume	of
space	at	various	distances	from
the	nucleus.	This	is	known	as	a
probability	density	plot.	The	"per
unit	volume	of	space"	part	is	very
important	here;	as	we	consider

radii	closer	to	the	nucleus,	these
volumes	become	very	small,	so	the
number	of	electrons	per	unit
volume	increases	very	rapidly.	In
this	view,	it	appears	as	if	the
electron	does	fall	into	the	nucleus!
But	it	doesn't	quite	make	it;		as	the
electron	approaches	the	tiny
volume	of	space	occupied	by	the
nucleus,	its	potential	energy	dives
down	toward	minus-infinity,	and	its
kinetic	energy	(momentum	and
velocity)	shoots	up	toward	positive-
infinity.	This	"battle	of	the	infinities"
cannot	be	won	by	either	side,	so	a
compromise	is	reached	in	which

theory	tells	us	that	the	fall	in	potential	energy	is	just	twice	the	kinetic	energy,
and	the	electron	dances	at	an	average	distance	that	corresponds	to	the	Bohr
radius.

Orbits	give	way	to	orbitals	and	electron	clouds

The	modern	view	of	atomic	structure
dismisses	entirely	the	old	but	comfortable
planetary	view	of	electrons	circling	around	the
nucleus	in	fixed	orbits.

We	can	also	dispose	of	the	question	of	why	the
orbiting	electron	does	not	radiate	its	kinetic
energy	away	as	it	revolves	around	the	nucleus.
The	Schrödinger	equation	completely	discards
any	concept	of	a	definite	path	or	trajectory	of

a	particle;	what	was	formerly	known	as	an	"orbit"	is	now	an	"orbital",	defined	as
the	locations	in	space	at	which	the	probability	of	finding	electrons	exceeds	some
arbitrary	value.	It	should	be	noted	that	this	wavelike	character	of	the	electron
coexists	with	its	possession	of	a	momentum,	and	thus	of	an	effective	velocity,
even	though	its	motion	does	not	imply	the	existence	of	a	definite	path	or
trajectory	that	we	associate	with	a	more	massive	particle.

The	term	"electron	cloud"	is
commonly	used	to	denote	the
region	of	space	in	which	an
electron	has	a	significant	(90-95
percent)	probability	of	manifesting
itself.	It	is	important	to
understand	that	this	does	not
mean	that	the	electron	is	itself
"smeared	out"	in	space.		If	you	had
a	magical	camera	that	could	take
pictures	of	the	electron	at	random
instants,	it	would	always	record	it
as	being	at	some	definite	location	with	a	probability	that	corresponds	to	the
curve	labeled	"radial	probability"	in	this	representation	of	the	n=1	orbital	of	the



hydrogen	atom.



2		The	quantum	numbers
Modern	quantum	theory	tells	us	that	the	various	allowed	states	of	existence	of
the	electron	in	the	hydrogen	atom	correspond	to	different	standing	wave
patterns.	In	the	preceding	lesson	we	showed	examples	of	standing	waves	that
occur	on	a	vibrating	guitar	string.	The	wave	patterns	of	electrons	in	an	atom	are
different	in	two	important	ways:

1.	 Instead	of	indicating	displacement	of	a	point	on	a	vibrating	string,	the	electron
waves	represent	the	probability	that	an	electron	will	manifest	itself	(appear	to	be
located)	at	any	particular	point	in	space.	(Note	carefully	that	this	is	not	the	same
as	saying	that	"the	electron	is	smeared	out	in	space";	at	any	given	instant	in	time,
it	is	either	at	a	given	point	or	it	is	not.)

2.	 The	electron	waves	occupy	all	three	dimensions	of	space,	whereas	guitar	strings
vibrate	in	only	two	dimensions.

Aside	from	this,	the	similarities	are	striking.
Each	wave	pattern	is	identified	by	an	integer	number	n,	which	in	the	case	of	the
atom	is	known	as	the	principal	quantum	number.	The	value	of	n	tells	how
many	peaks	of	amplitude	(antinodes)	exist	in	that	particular	standing	wave
pattern;	the	more	peaks	there	are,	the	higher	the	energy	of	the	state.

The	three	simplest	orbitals	of	the	hydrogen	atom	are	depicted	above	in	pseudo-
3D,	in	cross-section,	and	as	plots	of	probability	(of	finding	the	electron)	as	a
function	of	distance	from	the	nucleus.	The	average	radius	of	the	electron
probability	is	shown	by	the	blue	circles	or	plots	in	the	two	columns	on	the	right.
These	radii	correspond	exactly	to	those	predicted	by	the	Bohr	model.

Physical	significance	of	n
The	potential	energy	of	the	electron	is	given	by	the	formula

in	which	e	is	the	charge	of	the	electron,	m	is	its	mass,	h	is	Planck's	constant,
and	n	is	the	principal	quantum	number.	The	negative	sign	ensures	that	the
potential	energy	is	always	negative.	Notice	that	this	energy	in	inversely
proportional	to	the	square	of	n,	so	that	the	energy	rises	toward	zero	as	n
becomes	very	large,	but	it	can	never	exceed	zero.

This	formula	was	actually	part	of	Bohr's	original	theory,	and	is	still	applicable	to	the
hydrogen	atom,	although	not	to	atoms	containing	two	or	more	electrons.	In	the	Bohr
model,	each	value	of	n	corresponded	to	an	orbit	of	a	different	radius.	The	larger	the
orbital	radius,	the	higher	the	potential	energy	of	the	electron;	the	inverse	square
relationship	between	electrostatic	potential	energy	and	distance	is	reflected	in	the
inverse	square	relation	between	the	energy	and	n	in	the	above	formula.



Although	the	concept	of	a	definite	trajectory	or	"orbit"	of	the	electron	is	no
longer	tenable,	the	same	orbital	radii	that	relate	to	the	different	values	of	n	in
Bohr's	theory	now	have	a	new	significance:	they	give	the	average	distance	of
the	electron	from	the	nucleus.	As	you	can	see	from	the	figure,	the	averaging
process	must	encompass	several	probability	peaks	in	the	case	of	higher	values
of	n.	The	spatial	distribution	of	these	probability	maxima	defines	the	particular
orbital.

This	physical	interpretation	of	the	principal	quantum
number	as	an	index	of	the	average	distance	of	the

electron	from	the	nucleus	turns	out	to	be	extremely	useful
from	a	chemical	standpoint,	because	it	relates	directly	to

the	tendency	of	an	atom	to	lose	or	gain	electrons	in
chemical	reactions.



The	angular	momentum	quantum	number

The	electron	wave	functions	that	are	derived	from	Schrödinger's	theory	are
characterized	by	several	quantum	numbers.	The	first	one,	n,	describes	the	nodal
behavior	of	the	probability	distribution	of	the	electron,	and	correlates	with	its
potential	energy	and	average	distance	from	the	nucleus	as	we	have	just
described.

The	theory	also	predicts	that	orbitals	having	the	same	value	of	n	can	differ	in
shape	and	in	their	orientation	in	space.	The	quantum	number	l,	known	as	the
angular	momentum	quantum	number,	determines	the	shape	of	the	orbital.
(More	precisely,	l	determines	the	number	of	angular	nodes,	that	is,	the	number
of	regions	of	zero	probability	encountered	in	a	360°	rotation	around	the	center.)

When	l	=	0,	the	orbital	is
spherical	in	shape.
If	l	=	1,	the	orbital	is
elongated	into	something
resembling	a	figure-8
shape,	and	higher	values
of	l	correspond	to	still
more	complicated	shapes
—	but	note	that	the
number	of	peaks	in	the
radial	probability
distributions	(below)
decreases	with	increasing
l.	The	possible	values	that
l	can	take	are	strictly
limited	by	the	value	of	the
principal	quantum
number;	l	can	be	no
greater	than	n	–	1.	This
means	that	for	n	=	1,	l

can	only	have	the	single	value	zero	which	corresponds	to	a	spherical	orbital.	For	historical	reasons,
the	orbitals	corresponding	to	different	values	of	l	are	designated	by	letters,	starting	with	s	for	l	=	0,	p
for	l	=	1,	d	for	l	=	2,	and	f	for	l	=	3.
The	shapes	and	radial	distributions	of	the	orbitals	corresponding	to	the	three
allowed	values	of	l	for	the	n	=	3	level	of	hydrogen	are	shown	above.	Notice	that
the	average	orbital	radius	r	decreases	somewhat	at	higher	values	of	l.	The
function	relationship	is	given	by

in	which	z	is	the	nuclear	charge	of	the	atom,	which	of	course	is	unity	for
hydrogen.

The	magnetic	quantum	number

An	s-orbital,	corresponding	to	l	=	0,	is	spherical	in	shape	and	therefore	has	no
special	directional	properties.	The	probability	cloud	of	a	p	orbital	is	aligned
principally	along	an	axis	extending	along	any	of	the	three	directions	of	space.
The	additional	quantum	number	m	is	required	to	specify	the	particular	direction
along	which	the	orbital	is	aligned.

"Direction	in	space"	has	no	meaning	in	the	absence	of	a	force	field
that	serves	to	establish	a	reference	direction.	For	an	isolated	atom
there	is	no	such	external	field,	and	for	this	reason	there	is	no
distinction	between	the	orbitals	having	different	values	of	m.	If	the
atom	is	placed	in	an	external	magnetic	or	electrostatic	field,	a
coordinate	system	is	established,	and	the	orbitals	having	different
values	of	m	will	split	into	slightly	different	energy	levels.	This	effect
was	first	seen	in	the	case	of	a	magnetic	field,	and	this	is	the	origin	of
the	term	magnetic	quantum	number.
In	chemistry,	however,	electrostatic	fields	are	much	more	important
for	defining	directions	at	the	atomic	level	because	it	is	through	such
fields	that	nearby	atoms	in	a	molecule	interact	with	each	other.	The
electrostatic	field	created	when	other	atoms	or	ions	come	close	to	an
atom	can	cause	the	energies	of	orbitals	having	different	direction
properties	to	split	up	into	different	energy	levels;	this	is	the	origin	of
the	colors	seen	in	many	inorganic	salts	of	transition	elements,	such	as
the	blue	color	of	copper	sulfate.

The	quantum	number	m	can	assume	2l	+	1	values	for	each	value	of	l,	from	–l



The	best	non-mathematical
explanation	of	the	exclusion
principle	that	I	have	come
across	is	Phil	Fraundorf's
Candle	Dances	and	Atoms
page	at	U.	Missouri-St.
Louis.

through	0	to	+l.	When	l	=	0	the	only	possible	value	of	m	will	also	be	zero,	and
for	the	p	orbital	(l	=	1),	m	can	be	–1,	0,	and	+1.	Higher	values	of	l	introduce
more	complicated	orbital	shapes	which	give	rise	to	more	possible	orientations	in
space,	and	thus	to	more	values	of	m.

Electron	spin	and	the	exclusion	principle

Certain	fundamental	particles	have	associated	with	them	a	magnetic	moment
that	can	align	itself	in	either	of	two	directions	with	respect	to	an	external
magnetic	field.	The	electron	is	one	such	particle,	and	the	direction	of	its
magnetic	moment	is	called	its	spin.

The	mechanical	analogy	implied	by	the	term	spin	is	easy	to	visualize,	but	should	not
be	taken	literally.	Physical	rotation	of	an	electron	is	meaningless.	However,	the
coordinates	of	the	electron's	wave	function	can	be	rotated	mathematically;	when	this
is	done,	it	is	found	that	a	rotation	of	720°	is	required	to	restore	the	function	to	its
initial	value—	rather	weird,	considering	that	a	360°	rotation	will	leave	any	extended
body	unchanged!	Electron	spin	is	basically	a	relativistic	effect	in	which	the	electron's
momentum	distorts	local	space	and	time.	It	has	no	classical	counterpart	and	thus
cannot	be	visualized	other	than	through	mathematics.

A	basic	principle	of	modern	physics	states
that	for	particles	such	as	electrons	that	possess	half-integral	values	of	spin,	no
two	of	them	can	be	in	identical	quantum	states	within	the	same	system.	The
quantum	state	of	a	particle	is	defined	by	the	values	of	its	quantum	numbers,	so
what	this	means	is	that	no	two	electrons	in	the	same	atom	can	have	the
same	set	of	quantum	numbers.	This	is	known	as	the	Pauli	exclusion
principle,	named	after	the	German	physicist	Wolfgang	Pauli	(1900-1958,	Nobel
Prize	1945).

The	exclusion	principle	was	discovered	empirically	and
was	placed	on	a	firm	theoretical	foundation	by	Pauli	in
1925.	A	complete	explanation	requires	some	familiarity
with	quantum	mechanics,	so	all	we	will	say	here	is	that
if	two	electrons	possess	the	same	quantum	numbers	n,	l,
m	and	s	(defined	below),	the	wave	function	that
describes	the	state	of	existence	of	the	two	electrons
together	becomes	zero,	which	means	that	this	is	an
"impossible"	situation.

A	given	orbital	is	characterized	by	a	fixed	set	of	the	quantum	numbers	n,	l,	and
m.	The	electron	spin	itself	constitutes	a	fourth	quantum	number	s,	which	can
take	the	two	values	+1	and	–1.	Thus	a	given	orbital	can	contain	two
electrons	having	opposite	spins,	which	"cancel	out"	to	produce	zero
magnetic	moment.	Two	such	electrons	in	a	single	orbital	are	often	referred	to	as
an	electron	pair.

More	on	the	Pauli	exclusion	principle	from	answers.com

If	it	were	not	for	the	exclusion	principle,	the	atoms	of	all
elements	would	behave	in	the	same	way,	and	there	would

be	no	need	for	a	science	of	Chemistry!

As	we	have	seen,	the	lowest-energy	standing	wave	pattern	the	electron	can
assume	in	an	atom	corresponds	to	n=1,	which	describes	the	state	of	the	single
electron	in	hydrogen,	and	of	the	two	electrons	in	helium.	Since	the	quantum
numbers	m	and	l	are	zero	for	n=1,	the	pair	of	electrons	in	the	helium	orbital
have	the	values	(n,	l,	m,	s)	=	(1,0,0,+1)	and	(1,0,0,–1)—	that	is,	they	differ	only
in	spin.	These	two	sets	of	quantum	numbers	are	the	only	ones	that	are	possible
for	a	n=1	orbital.	The	additional	electrons	in	atoms	beyond	helium	must	go	into
higher-energy	(n>1)	orbitals.
Electron	wave	patterns	corresponding	to	these	greater	values	of	n	are
concentrated	farther	from	the	nucleus,	with	the	result	that	these	electrons	are
less	tightly	bound	to	the	atom	and	are	more	accessible	to	interaction	with	the
electrons	of	neighboring	atoms,	thus	influencing	their	chemical	behavior.	If	it
were	not	for	the	Pauli	principle,	all	the	electrons	of	every	element	would	be	in
the	lowest-energy	n=1	state,	and	the	differences	in	the	chemical	behavior	the
different	elements	would	be	minimal.	Chemistry	would	certainly	be	a	simpler
subject,	but	it	would	not	be	very	interesting!

What	you	should	be	able	to	do
Make	sure	you	thoroughly	understand	the	following	essential	concepts	that
have	been	presented	above.

State	the	fundamental	distinction	between	Bohr's	original	model	of	the	atom	and
the	modern	orbital	model.



Explain	the	role	of	the	uncertainty	principle	in	preventing	the	electron	from
falling	into	the	nucleus.
State	the	physical	meaning	of	the	principal	quantum	number	of	an	electron
orbital,	and	make	a	rough	sketch	of	the	shape	of	the	probability-vs-distance	curve
for	any	value	of	n.
Sketch	out	the	shapes	of	an	s,	p,	or	a	typical	d	orbital.
Describe	the	significance	of	the	magnetic	quantum	number	as	it	applies	to	a	p
orbital.
State	the	Pauli	exclusion	principle	and	comment	on	its	effects	on	the	shape	of
the	periodic	table.
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