
UP	|	HOME

9.	Strings

Table	of	Contents
Declaring	strings

null-termination
Modifying	strings
String	handling	routines	in	the	C	standard	library

An	example:	Concatenating	two	strings
Comparing	two	strings
Converting	strings	to	and	from	numeric	types

Strings	to	numbers
Numbers	to	strings
Numbers	to	string	II	(slightly	esoteric)

Arrays	of	Strings
Links
Exercises

Solutions

I'll	be	honest,	C	is	slightly	awkward	for	dealing	with	character	strings,	especially	compared	to	languages	like	Python.

Declaring	strings
Constant	character	strings	are	written	inside	double-quotation	marks	(line	5	below).

Strings	are	actually,	under	the	hood,	arrays	of	characters.	Single	character	variables	are	declared	using	single-quotation
marks	(line	7	below).

String	variables	can	be	declared	as	indicated	on	line	8	below.	The	double	square	brackets	signify	an	array.

Hello	world
c=p	and	s=paul

null-termination

An	important	thing	to	remember	about	strings	is	that	they	are	always	null-terminated.	This	means	that	the	last
element	of	the	character	array	is	a	"null"	character,	abbreviated	\0.	When	you	declare	a	string	as	in	line	8	above,	you
don't	have	to	put	the	null	termination	character	in	yourself,	the	compiler	does	it	for	you.	We	can	use	the	sizeof()
function	to	inspect	our	character	string	above	to	see	how	long	it	actually	is:

s	is	5	elements	long

So,	to	summarize,	in	C,	strings	are	simply	null-terminated	arrays	of	characters.

#include	<stdio.h>

int	main(void)	{

		printf("Hello	world\n");

		char	c	=	'p';
		char	s[]	=	"paul";

		printf("c=%c	and	s=%s\n",	c,	s);

		return	0;
}

#include	<stdio.h>

int	main(void)	{

		char	s[]	=	"paul";

		printf("s	is	%ld	elements	long\n",	sizeof(s));

		return	0;
}

http://gribblelab.org/CBootcamp/9_Strings.html Go MAR MAY JUN

03
2015 2016 2017

37	captures
	 	
	

� ⍰❎
f �

2	Oct	2012	-	5	Nov	2017 ▾	About	this	capture



Modifying	strings
Importantly,	once	a	string	is	declared	to	be	a	given	length,	you	cannot	just	make	it	longer	or	shorter	by	reassigning	a
new	constant	to	the	variable.	Well,	you	can	sort	of	make	it	shorter,	by	writing	a	new	shorter	string	in	the	old	string
array,	and	terminating	the	new	(shorter)	string	with	a	null	character.	Then	essentially	you	will	have	a	short	string	sitting
in	a	long	array,	but	that's	ok,	since	we	know	where	the	end	is	(the	null	termination	character).

String	handling	routines	in	the	C	standard	library
The	standard	C	library,	(which	you	can	load	into	your	program	by	including	the	statement	#include	<string.h>	at	the
top	of	your	program),	contains	many	useful	routines	for	manipulating	these	null-terminated	strings.

I	suggest	you	consult	a	reference	source	(or	Wikipedia,	e.g.	C	String	Handling)	for	a	list	(it's	relatively	long)	of	all	the
functions	that	exist	for	manipulating	null-terminated	strings	in	C.	There	are	functions	for	copying	strings,	concatenating
strings,	getting	the	length	of	strings,	comparing	strings,	etc.

An	example:	Concatenating	two	strings

s3=,	strlen(s3)=0
s3=paul,	strlen(s3)=4
s3=paul	,	strlen(s3)=5
s3=paul	gribble,	strlen(s3)=12

Comparing	two	strings

Importantly,	you	cannot	simply	use	the	==	operator	to	test	whether	two	strings	are	equal.	Remember,	strings	are	arrays
of	characters.	You	have	to	use	a	special	string	handling	function	to	test	equality	of	two	strings,	since	it	has	to	do	a
"deep"	comparison,	comparing	each	element	against	each	other.	Here's	how	you	would	do	it:

strcmp(s1,s2)?	0
strcmp(s1,s3)?	-4
strcmp(s1,s4)?	12

Note	that	the	strcmp(s1,s2)	function	returns	0	if	s1	and	s2	are	equal,	a	positive	value	if	s1	is	(lexicographically)	less
than	s2,	and	a	negative	value	if	s1	is	greater	than	s2.

Converting	strings	to	and	from	numeric	types

#include	<stdio.h>
#include	<string.h>

int	main(void)	{

		char	s1[]	=	"paul";
		char	s2[]	=	"gribble";
		char	s3[256];
		printf("s3=%s,	strlen(s3)=%ld\n",	s3,	strlen(s3));

		strcat(s3,	s1);
		printf("s3=%s,	strlen(s3)=%ld\n",	s3,	strlen(s3));

		strcat(s3,	"	");		
		printf("s3=%s,	strlen(s3)=%ld\n",	s3,	strlen(s3));

		strcat(s3,	s2);
		printf("s3=%s,	strlen(s3)=%ld\n",	s3,	strlen(s3));

		return	0;
}

#include	<stdio.h>
#include	<string.h>

int	main(void)	{

		char	s1[]	=	"paul";
		char	s2[]	=	"paul";
		char	s3[]	=	"peter";
		char	s4[]	=	"dave";

		printf("strcmp(s1,s2)?	%d\n",	strcmp(s1,s2));
		printf("strcmp(s1,s3)?	%d\n",	strcmp(s1,s3));
		printf("strcmp(s1,s4)?	%d\n",	strcmp(s1,s4));

		return	0;
}



Strings	to	numbers

There	are	several	functions	to	convert	strings	to	numeric	types	like	integers	and	floating-point	numbers.	You	will	need	to
#include	<stdlib.h>	at	the	top	of	your	program.

double	atof(s)	converts	the	string	pointed	to	by	s	into	a	floating-point	number	(a	double),	returning	the	result
int	atoi(s)	converts	string	s	into	an	integer

There	are	a	host	of	others,	again	I	suggest	consulting	a	reference	source	for	a	comprehensive	list.

Numbers	to	strings

The	common	way	of	converting	a	numeric	type	like	an	integer	or	a	floating-point	number	into	a	string,	is	to	use	the
sprintf()	function.	It	it	used	much	like	the	printf()	function	we	have	seen	before,	but	instead	of	printing	something
to	the	screen,	sprintf()	"prints"	something	to	a	character	string.	Here's	how	to	use	it:

s1	=	12
s2	=	3.141

Note	how	on	lines	6	and	7	when	s1	and	s2	are	declared,	I	declare	them	as	character	arrays	large	enough	to	hold	256
characters.	If	you	try	to	sprintf()	to	a	string	that	is	not	big	enough	to	hold	what	you're	trying	to	put	into	it,	then	you
will	end	up	writing	values	beyond	the	end	of	the	string,	and	onto	who	knows	what,	in	memory.	If	you	are	dealing	with
strings	that	you	know	will	be	relatively	short	(things	like	filenames,	subject	names,	dates,	etc)	then	probably	the	easiest
way	of	doing	things	is	to	use	preallocated	strings	that	are	long	enough	to	hold	any	reasonable	value	(e.g.	256
characters	long).	After	all	we	have	enough	RAM	in	our	computers	these	days	not	to	have	to	worry	too	much	about	256
bytes	here	and	there.

Numbers	to	string	II	(slightly	esoteric)

There	is,	however,	a	way	to	do	this	without	having	to	hard-code	the	size	of	the	string	to	be	written	to,	although	it's	a
little	bit	roundabout.	However	it	does	illustrate	several	principles	of	C	so	let's	have	a	look	at	it.

First	we	will	use	the	snprintf()	function	in	a	roundabout	way	to	determine	the	number	of	bytes	that	the	numeric	to
string	conversion	will	result	in.	Then	we	will	use	malloc()	to	allocate	a	new	string	(character	array)	of	that	length.
Finally	we	will	use	sprintf()	to	write	to	that	character	array.	The	first	step	ensures	that	we	have	a	character	array	(a
string)	that	is	just	the	right	length	to	recieve	the	converted	numeric:	not	too	small,	and	not	too	big.

Here	is	some	sample	code	that	demonstrates	this,	first	for	an	integer	conversion,	and	then	for	a	floating-point
conversion:

#include	<stdio.h>
#include	<string.h>

int	main(void)	{

		char	s1[256];
		char	s2[256];
		int	i1	=	12;
		double	d1	=	3.141;

		sprintf(s1,	"%d",	i1);
		sprintf(s2,	"%.3f",	d1);

		printf("s1	=	%s\n",	s1);
		printf("s2	=	%s\n",	s2);

		return	0;
}

#include	<stdio.h>
#include	<stdlib.h>
#include	<string.h>

int	main(void)	{

		int	size;

		int	x	=	8765309;
		size	=	snprintf(NULL,	0,	"%d",	x);
		char	*xc	=	malloc(size	+	1);
		sprintf(xc,	"%d",	x);

		double	y	=	876.5309;
		size	=	snprintf(NULL,	0,	"%.4f",	y);
		char	*yc	=	malloc(size	+	1);
		sprintf(yc,	"%.4f",	y);

		printf("xc	=	%s\n",	xc);
		printf("yc	=	%s\n",	yc);



xc	=	8765309
yc	=	876.5309

Note	on	lines	10	and	15,	where	we	use	snprintf(),	we	are	passing	NULL	as	the	first	argument.	The	snprintf()
function	is	like	sprintf(),	but	it	takes	as	its	second	argument,	the	maximum	number	of	bytes	to	write	out	to	the
destination	string.	Thus	snprintf()	can	be	thought	of	as	a	"safe"	version	of	sprintf()	in	that	you	know	for	sure	that
you	will	never	write	out	more	than	the	maximum	number	of	bytes	you	ask	for.	Thus	you	can	avoid	over-writing	past	the
end	of	your	destination	string	buffer.	The	snprintf()	function	will	return	as	its	return	value,	the	number	of	bytes	that
would	have	been	written	had	the	second	argument	been	sufficiently	large	(not	counting	the	termination	\0
character).

So	here	we	are	passing	NULL	as	the	first	argument,	and	0	as	the	second.	So	as	a	result,	snprintf()	won't	actually	write
any	characters	anywhere,	it	will	simply	return	the	number	of	characters	that	would	have	been	written.	Then	on	lines	11
and	16,	we	can	use	malloc()	to	dynamically	allocate	character	arrays	of	exactly	the	required	length.

Arrays	of	Strings
We	have	seen	that	strings	are	just	arrays	of	characters,	terminated	by	a	null	character.	We	have	also	seen	that	the
variables	that	hold	strings	(like	arrays	of	other	types,	e.g.	int	or	double,	are	actually	pointers	to	the	head	of	the	array.
We	can	use	an	array	of	pointers,	where	each	pointer	is	a	pointer	to	the	head	of	a	character	array	(in	other	words	a
string),	to	store	an	array	of	strings.	Here	is	an	example:

provinces[0]	=	British	Columbia
provinces[1]	=	Alberta
provinces[2]	=	Saskatchewan
provinces[3]	=	Manitoba
provinces[4]	=	Ontario
provinces[5]	=	Quebec
provinces[6]	=	New	Brunswick
provinces[7]	=	Nova	Scotia
provinces[8]	=	Prince	Edward	Island
provinces[9]	=	Newfoundland
provinces[10]	=	Yukon
provinces[11]	=	Northwest	Territories
provinces[12]	=	Nunavut

Links
Wikipedia:	C	string	handling

Exercises
1	Alter	the	program	above	that	prints	out	the	provinces,	so	that	it	prints	out	each	province	using	all	upper	case
letters.	Hint:	Ascii	Table.	Another	hint:

		free(xc);
		free(yc);

		return	0;
}

#include	<stdio.h>

int	main(int	argc,	char	*argv[])
{
		char	*provinces[]	=	{	"British	Columbia",	"Alberta",	"Saskatchewan",	
																								"Manitoba",	"Ontario",	"Quebec",	"New	Brunswick",
																								"Nova	Scotia",	"Prince	Edward	Island",	"Newfoundland",
																								"Yukon",	"Northwest	Territories",	"Nunavut"	};
		int	i;
		for	(i=0;	i<13;	i++)	{
				printf("provinces[%d]	=	%s\n",	i,	provinces[i]);
		}
		return	0;
}

#include	<stdio.h>

int	main(int	argc,	char	*argv[])
{
		char	c	=	'a';
		printf("%c	-	32	=	%c\n",	c,	c-32);
		return	0;
}



a	-	32	=	A

Solutions

1

Paul	Gribble	|	Summer	2012
This	work	is	licensed	under	a	Creative	Commons	Attribution	4.0	International	License


